1
|
Yi J, Yang L, Widman AJ, Toliver A, Bertels Z, Del Rosario JS, Slivicki RA, Payne M, Dourson AJ, Li JN, Kumar R, Gupta P, Mwirigi JM, Chamessian A, Lemen J, Copits BA, Gereau RW. Human sensory neurons exhibit cell-type-specific, pain-associated differences in intrinsic excitability and expression of SCN9A and SCN10A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645367. [PMID: 40196681 PMCID: PMC11974934 DOI: 10.1101/2025.03.25.645367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Despite the prevalence of chronic pain, the approval of novel, non-opioid therapeutics has been slow. A major translational challenge in analgesic development is the difference in gene expression and functional properties between human and rodent dorsal root ganglia (DRG) sensory neurons. Extensive work in rodents suggests that sensitization of nociceptors in the DRG is essential for the pathogenesis and persistence of pain; however, direct evidence demonstrating similar physiological sensitization in humans is limited. Here, we examine whether pain history is associated with nociceptor hyperexcitability in human DRG (hDRG). We identified three electrophysiologically distinct clusters (E-types) of hDRG neurons based on firing properties and membrane excitability. Combining electrophysiological recordings and single-cell RNA-sequencing ("Patch-seq"), we linked these E-types to specific transcriptionally defined nociceptor subpopulations. Comparing hDRG neurons from donors with and without evident pain history revealed cluster-specific, pain history-associated differences in hDRG excitability. Finally, we found that hDRG from donors with pain history express higher levels of transcripts encoding voltage-gated sodium channel 1.7 (NaV1.7) and 1.8 (NaV1.8) which specifically regulate nociceptor excitability. These findings suggest that donors with pain history exhibit distinct hDRG electrophysiological profiles compared to those without pain history and further validate NaV1.7 and 1.8 as targets for analgesic development.
Collapse
Affiliation(s)
- Jiwon Yi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Lite Yang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Allie J. Widman
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexa Toliver
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachariah Bertels
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Smith Del Rosario
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard A. Slivicki
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Maria Payne
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Adam J. Dourson
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Jun-Nan Li
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Rakesh Kumar
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Prashant Gupta
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Juliet M. Mwirigi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexander Chamessian
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Lemen
- Mid-America Transplant, St. Louis, MO, United States
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neuroscience, Washington University, St. Louis, MO, United States
| |
Collapse
|
2
|
Madheswaran K, Srinivedha CV, George R, V R HK, Padmanabhan K. Deciphering the Enigma: Lignocaine Resistance After Scorpion Envenomation. Cureus 2025; 17:e81128. [PMID: 40276405 PMCID: PMC12019894 DOI: 10.7759/cureus.81128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Lignocaine, an amide-type local anesthetic (LA), is routinely used in dentistry. Resistance to lignocaine is rare, and it can occur due to various reasons, such as genetic mutations or variations in the local environment where it is injected. One reason might be scorpion envenomation. We report a case of a 39-year-old female patient with a chief complaint of a gradual reduction in mouth opening for the past five years, with a history of scorpion bite. The patient had a scorpion bite 18 years back. She started developing symptoms of oral submucous fibrosis five years ago. The patient exhibited resistance to lignocaine, after which alternate agents were tried. We found that ropivacaine was effective as a LA, enabling airway management via cricothyrotomy and subsequent nasal intubation, following which bilateral fibrotomy, bilateral coronoidectomy, and bilateral nasolabial flap reconstruction were performed. The resistance to lignocaine is due to modifications in the sodium channels. Scorpion venom affects the local environment surrounding the nerve and has systemic effects as well. As an alternative to lignocaine, bupivacaine and ropivacaine can be tested for sensitivity. In patients with a recent history of scorpion bites, there is a higher chance of resistance to lignocaine. Therefore, evaluating the patients with a history of scorpion bites for resistance to lignocaine before any procedure is mandatory.
Collapse
Affiliation(s)
- Karthiga Madheswaran
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth, Puducherry, IND
| | - C V Srinivedha
- Department of Dentistry, Sri Balaji Vidyapeeth, Puducherry, IND
| | - Rinku George
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth, Puducherry, IND
| | - Hemanth Kumar V R
- Department of Anesthesiology and Critical Care, Mahatma Gandhi Medical College and Research Institute, Puducherry, IND
| | - Karthikeyan Padmanabhan
- Department of Otolaryngology - Head and Neck Surgery, Mahatma Gandhi Medical College and Research Institute, Puducherry, IND
| |
Collapse
|
3
|
Li YZ, Ji RR. Gene therapy for chronic pain management. Cell Rep Med 2024; 5:101756. [PMID: 39366385 PMCID: PMC11513853 DOI: 10.1016/j.xcrm.2024.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/20/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Despite significant advances in identifying molecular targets for chronic pain over the past two decades, many remain difficult to target with traditional methods. Gene therapies such as antisense oligonucleotides (ASOs), RNA interference (RNAi), CRISPR, and virus-based delivery systems have played crucial roles in discovering and validating new pain targets. While there has been a surge in gene therapy-based clinical trials, those focusing on pain as the primary outcome remain uncommon. This review examines various gene therapy strategies, including ASOs, small interfering RNA (siRNAs), optogenetics, chemogenetics, and CRISPR, and their delivery methods targeting primary sensory neurons and non-neuronal cells, including glia and chondrocytes. We also explore emerging gene therapy tools and highlight gene therapy's clinical potential in pain management, including trials targeting pain-related diseases. Advances in single-cell analysis of sensory neurons and non-neuronal cells, along with the development of new delivery tools, are poised to accelerate the application of gene therapy in pain medicine.
Collapse
Affiliation(s)
- Yi-Ze Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Qiao LY. Satellite Glial Cells Bridge Sensory Neuron Crosstalk in Visceral Pain and Cross-Organ Sensitization. J Pharmacol Exp Ther 2024; 390:213-221. [PMID: 38777604 PMCID: PMC11264254 DOI: 10.1124/jpet.123.002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Following colonic inflammation, the uninjured bladder afferent neurons are also activated. The mechanisms and pathways underlying this sensory neuron cross-activation (from injured neurons to uninjured neurons) are not fully understood. Colonic and bladder afferent neurons reside in the same spinal segments and are separated by satellite glial cells (SGCs) and extracellular matrix in dorsal root ganglia (DRG). SGCs communicate with sensory neurons in a bidirectional fashion. This review summarizes the differentially regulated genes/proteins in the injured and uninjured DRG neurons and explores the role of SGCs in regulation of sensory neuron crosstalk in visceral cross-organ sensitization. The review also highlights the paracrine pathways in mediating neuron-SGC and SGC-neuron coupling with an emphasis on the neurotrophins and purinergic systems. Finally, I discuss the results from recent RNAseq profiling of SGCs to reveal useful molecular markers for characterization, functional study, and therapeutic targets of SGCs. SIGNIFICANCE STATEMENT: Satellite glial cells (SGCs) are the largest glial subtypes in sensory ganglia and play a critical role in mediating sensory neuron crosstalk, an underlying mechanism in colon-bladder cross-sensitization. Identification of novel and unique molecular markers of SGCs can advance the discovery of therapeutic targets in treatment of chronic pain including visceral pain comorbidity.
Collapse
Affiliation(s)
- Liya Y Qiao
- Department of Physiology and Biophysics, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
5
|
Haroun R, Gossage SJ, Iseppon F, Fudge A, Caxaria S, Arcangeletti M, Leese C, Davletov B, Cox JJ, Sikandar S, Welsh F, Chessell IP, Wood JN. Novel therapies for cancer-induced bone pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100167. [PMID: 39399223 PMCID: PMC11470602 DOI: 10.1016/j.ynpai.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/15/2024]
Abstract
Cancer pain is a growing problem, especially with the substantial increase in cancer survival. Reports indicate that bone metastasis, whose primary symptom is bone pain, occurs in 65-75% of patients with advanced breast or prostate cancer. We optimized a preclinical in vivo model of cancer-induced bone pain (CIBP) involving the injection of Lewis Lung Carcinoma cells into the intramedullary space of the femur of C57BL/6 mice or transgenic mice on a C57BL/6 background. Mice gradually reduce the use of the affected limb, leading to altered weight bearing. Symptoms of secondary cutaneous heat sensitivity also manifest themselves. Following optimization, three potential analgesic treatments were assessed; 1) single ion channel targets (targeting the voltage-gated sodium channels NaV1.7, NaV1.8, or acid-sensing ion channels), 2) silencing µ-opioid receptor-expressing neurons by modified botulinum compounds, and 3) targeting two inflammatory mediators simultaneously (nerve growth factor (NGF) and tumor necrosis factor (TNF)). Unlike global NaV1.8 knockout mice which do not show any reduction in CIBP-related behavior, embryonic conditional NaV1.7 knockout mice in sensory neurons exhibit a mild reduction in CIBP-linked behavior. Modified botulinum compounds also failed to cause a detectable analgesic effect. In contrast, inhibition of NGF and/or TNF resulted in a significant reduction in CIBP-driven weight-bearing alterations and prevented the development of secondary cutaneous heat hyperalgesia. Our results support the inhibition of these inflammatory mediators, and more strongly their dual inhibition to treat CIBP, given the superiority of combination therapies in extending the time needed to reach limb use score zero in our CIBP model.
Collapse
Affiliation(s)
- Rayan Haroun
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Samuel J. Gossage
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Alexander Fudge
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Manuel Arcangeletti
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, South Yorkshire S10 2TN, United Kingdom
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, South Yorkshire S10 2TN, United Kingdom
| | - James J. Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Fraser Welsh
- AstraZeneca BioPharmaceuticals R&D, Neuroscience, Discovery Centre, Biomedical campus, 1 Francis Crick Ave, Cambridge CB2 0AA, United Kingdom
| | - Iain P. Chessell
- AstraZeneca BioPharmaceuticals R&D, Neuroscience, Discovery Centre, Biomedical campus, 1 Francis Crick Ave, Cambridge CB2 0AA, United Kingdom
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
Kan P, Zhu YF, Ma J, Singh G. Computational modeling to study the impact of changes in Nav1.8 sodium channel on neuropathic pain. Front Comput Neurosci 2024; 18:1327986. [PMID: 38784679 PMCID: PMC11111952 DOI: 10.3389/fncom.2024.1327986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Objective Nav1.8 expression is restricted to sensory neurons; it was hypothesized that aberrant expression and function of this channel at the site of injury contributed to pathological pain. However, the specific contributions of Nav1.8 to neuropathic pain are not as clear as its role in inflammatory pain. The aim of this study is to understand how Nav1.8 present in peripheral sensory neurons regulate neuronal excitability and induce various electrophysiological features on neuropathic pain. Methods To study the effect of changes in sodium channel Nav1.8 kinetics, Hodgkin-Huxley type conductance-based models of spiking neurons were constructed using the NEURON v8.2 simulation software. We constructed a single-compartment model of neuronal soma that contained Nav1.8 channels with the ionic mechanisms adapted from some existing small DRG neuron models. We then validated and compared the model with our experimental data from in vivo recordings on soma of small dorsal root ganglion (DRG) sensory neurons in animal models of neuropathic pain (NEP). Results We show that Nav1.8 is an important parameter for the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability. The typical increased excitability seen is dominated by a left shift in the steady state of activation of this channel and is further modulated by this channel's maximum conductance and steady state of inactivation. Therefore, modified action potential shape, decreased threshold, and increased repetitive firing of sensory neurons in our neuropathic animal models may be orchestrated by these modulations on Nav1.8. Conclusion Computational modeling is a novel strategy to understand the generation of chronic pain. In this study, we highlight that changes to the channel functions of Nav1.8 within the small DRG neuron may contribute to neuropathic pain.
Collapse
Affiliation(s)
- Peter Kan
- Department of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yong Fang Zhu
- Department of Health Sciences, Redeemer University, Hamilton, ON, Canada
| | - Junling Ma
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Karimi SA, Zahra FT, Martin LJ. IUPHAR review: Navigating the role of preclinical models in pain research. Pharmacol Res 2024; 200:107073. [PMID: 38232910 DOI: 10.1016/j.phrs.2024.107073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Chronic pain is a complex and challenging medical condition that affects millions of people worldwide. Understanding the underlying mechanisms of chronic pain is a key goal of preclinical pain research so that more effective treatment strategies can be developed. In this review, we explore nociception, pain, and the multifaceted factors that lead to chronic pain by focusing on preclinical models. We provide a detailed look into inflammatory and neuropathic pain models and discuss the most used animal models for studying the mechanisms behind these conditions. Additionally, we emphasize the vital role of these preclinical models in developing new pain-relief drugs, focusing on biologics and the therapeutic potential of NMDA and cannabinoid receptor antagonists. We also discuss the challenges of TRPV1 modulation for pain treatment, the clinical failures of neurokinin (NK)- 1 receptor antagonists, and the partial success story of Ziconotide to provide valuable lessons for preclinical pain models. Finally, we highlight the overall success and limitations of current treatments for chronic pain while providing critical insights into the development of more effective therapies to alleviate the burden of chronic pain.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Fatama Tuz Zahra
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
8
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
9
|
Zhai R, Wang Q. Phylogenetic Analysis Provides Insight Into the Molecular Evolution of Nociception and Pain-Related Proteins. Evol Bioinform Online 2023; 19:11769343231216914. [PMID: 38107163 PMCID: PMC10725132 DOI: 10.1177/11769343231216914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Nociception and pain sensation are important neural processes in humans to avoid injury. Many proteins are involved in nociception and pain sensation in humans; however, the evolution of these proteins in animals is unknown. Here, we chose nociception- and pain-related proteins, including G protein-coupled receptors (GPCRs), ion channels (ICs), and neuropeptides (NPs), which are reportedly associated with nociception and pain in humans, and identified their homologs in various animals by BLAST, phylogenetic analysis and protein architecture comparison to reveal their evolution from protozoans to humans. We found that the homologs of transient receptor potential channel A 1 (TRPA1), TRAPM, acid-sensing IC (ASIC), and voltage-dependent calcium channel (VDCC) first appear in Porifera. Substance-P receptor 1 (TACR1) emerged from Coelenterata. Somatostatin receptor type 2 (SSTR2), TRPV1 and voltage-dependent sodium channels (VDSC) appear in Platyhelminthes. Calcitonin gene-related peptide receptor (CGRPR) was first identified in Nematoda. However, opioid receptors (OPRs) and most NPs were discovered only in vertebrates and exist from agnatha to humans. The results demonstrated that homologs of nociception and pain-related ICs exist from lower animal phyla to high animal phyla, and that most of the GPCRs originate from low to high phyla sequentially, whereas OPRs and NPs are newly evolved in vertebrates, which provides hints of the evolution of nociception and pain-related proteins in animals and humans.
Collapse
Affiliation(s)
- Rujun Zhai
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, P. R. China
| | - Qian Wang
- Changping Laboratory, Beijing, P. R. China
| |
Collapse
|
10
|
Xiao MZX, Khan JS, Dana E, Rao V, Djaiani G, Richebé P, Katz J, Wong D, Clarke H. Prevalence and Risk Factors for Chronic Postsurgical Pain after Cardiac Surgery: A Single-center Prospective Cohort Study. Anesthesiology 2023; 139:309-320. [PMID: 37192204 DOI: 10.1097/aln.0000000000004621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Chronic postsurgical pain is a common complication of surgery. The role of psychologic risk factors like depression and anxiety is substantially understudied in cardiac surgery. This study sought to identify perioperative factors associated with chronic pain at 3, 6, and 12 months after cardiac surgery. The authors hypothesize that baseline psychologic vulnerabilities have a negative influence on chronic postsurgical pain. METHODS The authors prospectively collected demographic, psychologic, and perioperative factors in a cohort of 1,059 patients undergoing cardiac surgery at the Toronto General Hospital between 2012 and 2020. Patients were followed and completed chronic pain questionnaires at 3, 6, and 12 months after surgery. RESULTS The study included 767 patients who completed at least one follow-up questionnaire. The incidence of postsurgical pain (more than 0 out of 10) at 3, 6, and 12 months after surgery was 191 of 663 (29%), 118 of 625 (19%), and 89 of 605 (15%), respectively. Notably, among patients reporting any pain, the incidence of pain compatible with a neuropathic phenotype increased from 56 of 166 (34%) at 3 months to 38 of 97 (39%) at 6 months and 43 of 67 (64%) at 12 months. Factors associated with postsurgical pain scores at 3 months include female sex, pre-existing chronic pain, previous cardiac surgery, preoperative depression, baseline pain catastrophizing scores, and moderate-to-severe acute pain (4 or more out of 10) within 5 postoperative days. CONCLUSIONS Nearly one in three patients undergoing cardiac surgery reported pain at 3 months of follow-up, with approximately 15% reporting persistent pain at 1 yr. Female sex, pre-existing chronic pain, and baseline depression were associated with postsurgical pain scores across all three time periods. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Maggie Z X Xiao
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Canada
| | - James S Khan
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Canada
| | - Elad Dana
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Canada; Department of Anesthesia, Intensive Care and Pain Medicine, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vivek Rao
- Division of Cardiovascular Surgery, University of Toronto, Toronto, Canada
| | - George Djaiani
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Canada
| | - Philippe Richebé
- Department of Anesthesiology and Pain Medicine, Research Center of the Integrated University Health and Social Services Center of the East-Island of Montreal, Maisonneuve-Rosemont Hospital, University of Montreal, Montreal, Canada
| | - Joel Katz
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Canada; Department of Psychology, York University, Toronto, Canada; Transitional Pain Service, Toronto General Hospital, Toronto, Canada
| | - Dorothy Wong
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Canada
| | - Hance Clarke
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Canada; Transitional Pain Service, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
11
|
Bielewicz J, Kamieniak M, Szymoniuk M, Litak J, Czyżewski W, Kamieniak P. Diagnosis and Management of Neuropathic Pain in Spine Diseases. J Clin Med 2023; 12:jcm12041380. [PMID: 36835916 PMCID: PMC9961043 DOI: 10.3390/jcm12041380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Neuropathic pain is generally defined as a non-physiological pain experience caused by damage to the nervous system. It can occur spontaneously, as a reaction to a given stimulus, or independently of its action, leading to unusual pain sensations usually referred to as firing, burning or throbbing. In the course of spine disorders, pain symptoms commonly occur. According to available epidemiological studies, a neuropathic component of pain is often present in patients with spinal diseases, with a frequency ranging from 36% to 55% of patients. Distinguishing between chronic nociceptive pain and neuropathic pain very often remains a challenge. Consequently, neuropathic pain is often underdiagnosed in patients with spinal diseases. In reference to current guidelines for the treatment of neuropathic pain, gabapentin, serotonin and norepinephrine reuptake inhibitors and tricyclic antidepressants constitute first-line therapeutic agents. However, long-term pharmacologic treatment often leads to developing tolerance and resistance to used medications. Therefore, in recent years, a plethora of therapeutic methods for neuropathic pain have been developed and investigated to improve clinical outcomes. In this review, we briefly summarized current knowledge about the pathophysiology and diagnosis of neuropathic pain. Moreover, we described the most effective treatment approaches for neuropathic pain and discussed their relevance in the treatment of spinal pain.
Collapse
Affiliation(s)
- Joanna Bielewicz
- Department of Neurology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Maciej Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Michał Szymoniuk
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Correspondence:
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
12
|
FUJIWARA SHINTARO, URATA KENTARO, OTO TATSUKI, HAYASHI YOSHINORI, HITOMI SUZURO, IWATA KOICHI, IINUMA TOSHIMITSU, SHINODA MASAMICHI. Age-related Changes in Trigeminal Ganglion Macrophages Enhance Orofacial Ectopic Pain After Inferior Alveolar Nerve Injury. In Vivo 2023; 37:132-142. [PMID: 36593019 PMCID: PMC9843755 DOI: 10.21873/invivo.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM The ectopic pain associated with inferior alveolar nerve (IAN) injury has been reported to involve macrophage expression in the trigeminal ganglion (TG). However, the effect of age-related changes on this abnormal pain conditions are still unknown. This study sought to clarify the involvement of age-related changes in macrophage expression and phenotypic conversion in the TG and how these changes enhance ectopic mechanical allodynia after IAN transection (IANX). MATERIALS AND METHODS We used senescence-accelerated mouse (SAM)-prone 8 (SAMP8) and SAM-resistance 1 (SAMR1) mice, which are commonly used to study ageing-related changes. Mechanical stimulation was applied to the whisker pad skin under light anaesthesia; the mechanical head withdrawal threshold (MHWT) was measured for 21 d post-IANX. We subsequently counted the numbers of Iba1 (macrophage marker)-immunoreactive (IR) cells, Iba1/CD11c (M1-like inflammatory macrophage marker)-co-IR cells, and Iba1/CD206 (M2-like anti-inflammatory macrophage marker)-co-IR cells in the TG innervating the whisker pad skin. After continuous intra-TG administration of liposomal clodronate Clophosome®-A (LCCA) to IANX-treated SAMP8-mice, the MHWT values of the whisker pad skin were examined. RESULTS Five days post-IANX, the MHWT had significantly decreased in SAMP8 mice compared to SAMR1-mice. Iba1-IR and Iba1/CD11c-co-IR cell counts were significantly increased in SAMP8 mice compared to SAMR1 mice 5 d post-IANX. LCCA administration significantly restored MHWT compared to control-LCCA administration. CONCLUSION Ectopic mechanical allodynia of whisker pad skin after IANX is exacerbated by ageing, which involves increases in M1-like inflammatory macrophages in the TG.
Collapse
Affiliation(s)
- SHINTARO FUJIWARA
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - KENTARO URATA
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - TATSUKI OTO
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - YOSHINORI HAYASHI
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - SUZURO HITOMI
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - KOICHI IWATA
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - TOSHIMITSU IINUMA
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - MASAMICHI SHINODA
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
13
|
Ambroxol for neuropathic pain: hiding in plain sight? Pain 2023; 164:3-13. [PMID: 35580314 DOI: 10.1097/j.pain.0000000000002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Ambroxol is a multifaceted drug with primarily mucoactive and secretolytic actions, along with anti-inflammatory, antioxidant, and local anaesthetic properties. It has a long history of use in the treatment of respiratory tract diseases and has shown to be efficacious in relieving sore throat. In more recent years, ambroxol has gained interest for its potential usefulness in treating neuropathic pain. Research into this area has been slow, despite clear preclinical evidence to support its primary analgesic mechanism of action-blockade of voltage-gated sodium (Na v ) channels in sensory neurons. Ambroxol is a commercially available inhibitor of Na v 1.8, a crucial player in the pathophysiology of neuropathic pain, and Na v 1.7, a particularly exciting target for the treatment of chronic pain. In this review, we discuss the analgesic mechanisms of action of ambroxol, as well as proposed synergistic properties, followed by the preclinical and clinical results of its use in the treatment of persistent pain and neuropathic pain symptoms, including trigeminal neuralgia, fibromyalgia, and complex regional pain syndrome. With its well-established safety profile, extensive preclinical and clinical drug data, and early evidence of clinical effectiveness, ambroxol is an old drug worthy of further investigation for repurposing. As a patent-expired drug, a push is needed to progress the drug to clinical trials for neuropathic pain. We encourage the pharmaceutical industry to look at patented drug formulations and take an active role in bringing an optimized version for neuropathic pain to market.
Collapse
|
14
|
Gale JR, Gedeon JY, Donnelly CJ, Gold MS. Local translation in primary afferents and its contribution to pain. Pain 2022; 163:2302-2314. [PMID: 35438669 PMCID: PMC9579217 DOI: 10.1097/j.pain.0000000000002658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Chronic pain remains a significant problem due to its prevalence, impact, and limited therapeutic options. Progress in addressing chronic pain is dependent on a better understanding of underlying mechanisms. Although the available evidence suggests that changes within the central nervous system contribute to the initiation and maintenance of chronic pain, it also suggests that the primary afferent plays a critical role in all phases of the manifestation of chronic pain in most of those who suffer. Most notable among the changes in primary afferents is an increase in excitability or sensitization. A number of mechanisms have been identified that contribute to primary afferent sensitization with evidence for both increases in pronociceptive signaling molecules, such as voltage-gated sodium channels, and decreases in antinociceptive signaling molecules, such as voltage-dependent or calcium-dependent potassium channels. Furthermore, these changes in signaling molecules seem to reflect changes in gene expression as well as posttranslational processing. A mechanism of sensitization that has received far less attention, however, is the local or axonal translation of these signaling molecules. A growing body of evidence indicates that this process not only is dynamically regulated but also contributes to the initiation and maintenance of chronic pain. Here, we review the biology of local translation in primary afferents and its relevance to pain pathobiology.
Collapse
Affiliation(s)
- Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jeremy Y Gedeon
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Michael S Gold
- Corresponding author: Michael S Gold, PhD, Department of Neurobiology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, P: 412-383-5367,
| |
Collapse
|
15
|
A Guide to Preclinical Models of Zoster-Associated Pain and Postherpetic Neuralgia. Curr Top Microbiol Immunol 2022; 438:189-221. [PMID: 34524508 DOI: 10.1007/82_2021_240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reactivation of latent varicella-zoster virus (VZV) causes herpes zoster (HZ), which is commonly accompanied by acute pain and pruritus over the time course of a zosteriform rash. Although the rash and associated pain are self-limiting, a considerable fraction of HZ cases will subsequently develop debilitating chronic pain states termed postherpetic neuralgia (PHN). How VZV causes acute pain and the mechanisms underlying the transition to PHN are far from clear. The human-specific nature of VZV has made in vivo modeling of pain following reactivation difficult to study because no single animal can reproduce reactivated VZV disease as observed in the clinic. Investigations of VZV pathogenesis following primary infection have benefited greatly from human tissues harbored in immune-deficient mice, but modeling of acute and chronic pain requires an intact nervous system with the capability of transmitting ascending and descending sensory signals. Several groups have found that subcutaneous VZV inoculation of the rat induces prolonged and measurable changes in nociceptive behavior, indicating sensitivity that partially mimics the development of mechanical allodynia and thermal hyperalgesia seen in HZ and PHN patients. Although it is not a model of reactivation, the rat is beginning to inform how VZV infection can evoke a pain response and induce long-lasting alterations to nociception. In this review, we will summarize the rat pain models from a practical perspective and discuss avenues that have opened for testing of novel treatments for both zoster-associated pain and chronic PHN conditions, which remain in critical need of effective therapies.
Collapse
|
16
|
Li Z, Zhang H, Wang Y, Li Y, Li Q, Zhang L. The distinctive role of menthol in pain and analgesia: Mechanisms, practices, and advances. Front Mol Neurosci 2022; 15:1006908. [PMID: 36277488 PMCID: PMC9580369 DOI: 10.3389/fnmol.2022.1006908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Menthol is an important flavoring additive that triggers a cooling sensation. Under physiological condition, low to moderate concentrations of menthol activate transient receptor potential cation channel subfamily M member 8 (TRPM8) in the primary nociceptors, such as dorsal root ganglion (DRG) and trigeminal ganglion, generating a cooling sensation, whereas menthol at higher concentration could induce cold allodynia, and cold hyperalgesia mediated by TRPM8 sensitization. In addition, the paradoxical irritating properties of high concentrations of menthol is associated with its activation of transient receptor potential cation channel subfamily A member 1 (TRPA1). Under pathological situation, menthol activates TRPM8 to attenuate mechanical allodynia and thermal hyperalgesia following nerve injury or chemical stimuli. Recent reports have recapitulated the requirement of central group II/III metabotropic glutamate receptors (mGluR) with endogenous κ-opioid signaling pathways for menthol analgesia. Additionally, blockage of sodium channels and calcium influx is a determinant step after menthol exposure, suggesting the possibility of menthol for pain management. In this review, we will also discuss and summarize the advances in menthol-related drugs for pathological pain treatment in clinical trials, especially in neuropathic pain, musculoskeletal pain, cancer pain and postoperative pain, with the aim to find the promising therapeutic candidates for the resolution of pain to better manage patients with pain in clinics.
Collapse
Affiliation(s)
- Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Haoyue Zhang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yigang Wang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Qing Li,
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Linlin Zhang,
| |
Collapse
|
17
|
Felix R, Muñoz-Herrera D, Corzo-López A, Fernández-Gallardo M, Leyva-Leyva M, González-Ramírez R, Sandoval A. Ion channel long non-coding RNAs in neuropathic pain. Pflugers Arch 2022; 474:457-468. [PMID: 35235008 DOI: 10.1007/s00424-022-02675-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico.
| | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | | | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| |
Collapse
|
18
|
Roza C, Bernal L. Electrophysiological characterization of ectopic spontaneous discharge in axotomized and intact fibers upon nerve transection: a role in spontaneous pain? Pflugers Arch 2022; 474:387-396. [PMID: 35088129 DOI: 10.1007/s00424-021-02655-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Many patients experience positive symptoms after traumatic nerve injury. Despite the increasing number of experimental studies in models of peripheral neuropathy and the knowledge acquired, most of these patients lack an effective treatment for their chronic pain. One possible explanation might be that most of the preclinical studies focused on the development of mechanical or thermal allodynia/hyperalgesia, neglecting that most of the patients with peripheral neuropathies complain mostly about spontaneous forms of pains. Here, we summarize the aberrant electrophysiological behavior of peripheral nerve fibers recorded in experimental models, the underlying pathophysiological mechanisms, and their relationship with the symptoms reported by patients. Upon nerve section, axotomized but also intact fibers develop ectopic spontaneous activity. Most interestingly, a proportion of axotomized fibers might present receptive fields in the skin far beyond the site of damage, indicative of a functional cross talk between neuromatose and intact fibers. All these features can be linked with some of the symptoms that neuropathic patients experience. Furthermore, we spotlight the consequence of primary afferents with different patterns of spontaneous discharge on the neural code and its relationship with chronic pain states. With this article, readers will be able to understand the pathophysiological mechanisms that might underlie some of the symptoms that experience neuropathic patients, with a special focus on spontaneous pain.
Collapse
Affiliation(s)
- Carolina Roza
- Dpto. Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | | |
Collapse
|
19
|
Mulpuri Y, Yamamoto T, Nishimura I, Spigelman I. Role of voltage-gated sodium channels in axonal signal propagation of trigeminal ganglion neurons after infraorbital nerve entrapment. NEUROBIOLOGY OF PAIN 2022; 11:100084. [PMID: 35128176 PMCID: PMC8803652 DOI: 10.1016/j.ynpai.2022.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Infraorbital nerve entrapment (IoNE) induces mechanical allodynia and enhances signal propagation in primary afferent A- and C-fibers. IoNE increases sensitivity of A- and C-fibers to conduction block by tetrodotoxin (TTX) and selective voltage-gated sodium channel 1.8 (NaV1.8) inhibitor, A-803467. IoNE increases signal propagation in vibrissal pad Ad -, but not Aβ-fibers, and their sensitivity to conduction block by the selective NaV1.8 inhibitor. IoNE increases membrane excitability of dissociated small and medium sized trigeminal neurons. IoNE increases nerve, but not ganglion, levels of NaV1.3, NaV1.7, and NaV1.8 mRNAs, and NaV1.8 protein.
Chronic pain arising from peripheral nerve injuries represents a significant clinical challenge because even the most efficacious anticonvulsant drug treatments are limited by their side effects profile. We investigated pain behavior, changes in axonal signal conduction and excitability of trigeminal neurons, and expression of voltage-gated sodium channels (NaVs) in the infraorbital nerve and trigeminal ganglion (TG) after infraorbital nerve entrapment (IoNE). Compared to Sham, IoNE rats had increased A- and C-fiber compound action potentials (CAPs) and Aδ component of A-CAP area from fibers innervating the vibrissal pad. After IoNE, A- and C-fiber CAPs were more sensitive to blockade by tetrodotoxin (TTX), and those fibers that were TTX-resistant were more sensitive to blockade by the NaV1.8 selective blocker, A-803467. Although NaV1.7 blocker, ICA-121431 alone, did not affect Aδ-fiber signal propagation, cumulative application with A-803467 and 4,9-anhydro-TTX significantly reduced the Aδ-fiber CAP in IoNE rats. In patch clamp recordings from small- and medium-sized TG neurons, IoNE resulted in reduced action potential (AP) depolarizing current threshold, hyperpolarized AP voltage threshold, increased AP duration, and a more depolarized membrane potential. While the transcripts of most NaVs were reduced in the ipsilateral TG after IoNE, NaV1.3, NaV1.7, and NaV1.8 mRNAs, and NaV1.8 protein, were significantly increased in the nerve. Altogether, our data suggest that axonal redistribution of NaV1.8, and to a lesser extent NaV1.3, and NaV1.7 contributes to enhanced nociceptive signal propagation in peripheral nerve after IoNE.
Collapse
|
20
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Szulczyk B, Pasierski M, Gawlak M. Prefrontal cortex pyramidal neurons express functional Nav1.8 tetrodotoxin-resistant sodium currents. Clin Exp Pharmacol Physiol 2021; 49:350-359. [PMID: 34750860 DOI: 10.1111/1440-1681.13610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022]
Abstract
It has been repeatedly proved that Nav1.8 tetrodotoxin (TTX)-resistant sodium currents are expressed in peripheral sensory neurons where they play important role in nociception. There are very few publications that show the presence of TTX-resistant sodium currents in central neurons. The aim of this study was to assess if functional Nav1.8 TTX-resistant sodium currents are expressed in prefrontal cortex pyramidal neurons. All recordings were performed in the presence of TTX in the extracellular solution to block TTX-sensitive sodium currents. The TTX-resistant sodium current recorded in this study was mainly carried by the Nav1.8 sodium channel isoform because the Nav1.9 current was inhibited by the -65 mV holding potential that we used throughout the study. Moreover, the sodium current that we recorded was inhibited by treatment with the selective Nav1.8 inhibitor A-803467. Confocal microscopy experiments confirmed the presence of the Nav1.8 α subunit in prefrontal cortex pyramidal neurons. Activation and steady state inactivation properties of TTX-resistant sodium currents were also assessed in this study and they were similar to activation and inactivation properties of TTX-resistant sodium currents expressed in dorsal root ganglia (DRG) neurons. Moreover, this study showed that carbamazepine (60 µM) inhibited the maximal amplitude of the TTX-resistant sodium current. Furthermore, we found that carbamazepine shifts steady state inactivation curve of TTX-resistant sodium currents toward hyperpolarization. This study suggests that the Nav1.8 TTX-resistant sodium channel is expressed not only in DRG neurons, but also in cortical neurons and may be molecular target for antiepileptic drugs such as carbamazepine.
Collapse
Affiliation(s)
- Bartłomiej Szulczyk
- Department of Pharmacodynamics, The Medical University of Warsaw, Warsaw, Poland
| | - Michał Pasierski
- Department of Pharmacodynamics, The Medical University of Warsaw, Warsaw, Poland
| | - Maciej Gawlak
- Department of Pharmacodynamics, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Abstract
Managing chronic pain remains a major unmet clinical challenge. Patients can be treated with a range of interventions, but pharmacotherapy is the most common. These include opioids, antidepressants, calcium channel modulators, sodium channel blockers, and nonsteroidal anti-inflammatory drugs. Many of these drugs target a particular mechanism; however, chronic pain in many diseases is multifactorial and induces plasticity throughout the sensory neuroaxis. Furthermore, comorbidities such as depression, anxiety, and sleep disturbances worsen quality of life. Given the complexity of mechanisms and symptoms in patients, it is unsurprising that many fail to achieve adequate pain relief from a single agent. The efforts to develop novel drug classes with better efficacy have not always proved successful; a multimodal or combination approach to analgesia is an important strategy in pain control. Many patients frequently take more than one medication, but high-quality evidence to support various combinations is often sparse. Ideally, combining drugs would produce synergistic action to maximize analgesia and reduce side effects, although sub-additive and additive analgesia is still advantageous if additive side-effects can be avoided. In this review, we discuss pain mechanisms, drug actions, and the rationale for mechanism-led treatment selection.Abbreviations: COX - cyclooxygenase, CGRP - calcitonin gene-related peptide, CPM - conditioned pain modulation, NGF - nerve growth factor, NNT - number needed to treat, NMDA - N-methyl-d-aspartate, NSAID - nonsteroidal anti-inflammatory drugs, TCA - tricyclic antidepressant, SNRI - serotonin-noradrenaline reuptake inhibitor, QST - quantitative sensory testing.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| |
Collapse
|
23
|
Tonge M, Robson K, Alderson B. Single thoracic epidural injection for intra‐ and post‐lateral thoracotomy analgesia in a dog. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mary Tonge
- Department of Small Animal Clinical Science University of Liverpool Neston UK
| | - Katherine Robson
- Department of Small Animal Clinical Science University of Liverpool Neston UK
| | - Briony Alderson
- Department of Small Animal Clinical Science University of Liverpool Neston UK
| |
Collapse
|
24
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
25
|
Li CL, Yang R, Sun Y, Feng Y, Song YB. N58A Exerts Analgesic Effect on Trigeminal Neuralgia by Regulating the MAPK Pathway and Tetrodotoxin-Resistant Sodium Channel. Toxins (Basel) 2021; 13:toxins13050357. [PMID: 34067828 PMCID: PMC8157219 DOI: 10.3390/toxins13050357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 01/15/2023] Open
Abstract
The primary studies have shown that scorpion analgesic peptide N58A has a significant effect on voltage-gated sodium channels (VGSCs) and plays an important role in neuropathic pain. The purpose of this study was to investigate the analgesic effect of N58A on trigeminal neuralgia (TN) and its possible mechanism. The results showed that N58A could significantly increase the threshold of mechanical pain and thermal pain and inhibit the spontaneous asymmetric scratching behavior of rats. Western blotting results showed that N58A could significantly reduce the protein phosphorylation level of ERK1/2, P38, JNK, and ERK5/CREB pathways and the expression of Nav1.8 and Nav1.9 proteins in a dose-dependent manner. The changes in current and kinetic characteristics of Nav1.8 and Nav1.9 channels in TG neurons were detected by the whole-cell patch clamp technique. The results showed that N58A significantly decreased the current density of Nav1.8 and Nav1.9 in model rats, and shifted the activation curve to hyperpolarization and the inactivation curve to depolarization. In conclusion, the analgesic effect of N58A on the chronic constriction injury of the infraorbital (IoN-CCI) model rats may be closely related to the regulation of the MAPK pathway and Nav1.8 and Nav1.9 sodium channels.
Collapse
Affiliation(s)
- Chun-Li Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.-L.L.); (R.Y.); (Y.S.); (Y.F.)
| | - Ran Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.-L.L.); (R.Y.); (Y.S.); (Y.F.)
| | - Yang Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.-L.L.); (R.Y.); (Y.S.); (Y.F.)
| | - Yuan Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.-L.L.); (R.Y.); (Y.S.); (Y.F.)
| | - Yong-Bo Song
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence:
| |
Collapse
|
26
|
Goodwin G, McMahon SB. The physiological function of different voltage-gated sodium channels in pain. Nat Rev Neurosci 2021; 22:263-274. [PMID: 33782571 DOI: 10.1038/s41583-021-00444-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/01/2023]
Abstract
Evidence from human genetic pain disorders shows that voltage-gated sodium channel α-subtypes Nav1.7, Nav1.8 and Nav1.9 are important in the peripheral signalling of pain. Nav1.7 is of particular interest because individuals with Nav1.7 loss-of-function mutations are congenitally insensitive to acute and chronic pain, and there is considerable hope that phenocopying these effects with a pharmacological antagonist will produce a new class of analgesic drug. However, studies in these rare individuals do not reveal how and where voltage-gated sodium channels contribute to pain signalling, which is of critical importance for drug development. More than a decade of research utilizing rodent genetic models and pharmacological tools to study voltage-gated sodium channels in pain has begun to unravel the role of different subtypes. Here, we review the contribution of individual channel subtypes in three key physiological processes necessary for transmission of sensory information to the CNS: transduction of stimuli at peripheral nerve terminals, axonal transmission of action potentials and neurotransmitter release from central terminals. These data suggest that drugs seeking to recapitulate the analgesic effects of loss of function of Nav1.7 will need to be brain-penetrant - which most of those developed to date are not.
Collapse
Affiliation(s)
- George Goodwin
- Pain and Neurorestoration Group, King's College London, London, UK.
| | | |
Collapse
|
27
|
Yeh HY, Lee JC, Chi HH, Chen CC, Liu Q, Yen CT. Longitudinal intravital imaging nerve degeneration and sprouting in the toes of spared nerve injured mice. J Comp Neurol 2021; 529:3247-3264. [PMID: 33880774 DOI: 10.1002/cne.25162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Neuropathic pain is pain caused by damage to the somatosensory nervous system. Both degenerating injured nerves and neighboring sprouting nerves can contribute to neuropathic pain. However, the mesoscale changes in cutaneous nerve fibers over time after the loss of the parent nerve has not been investigated in detail. In this study, we followed the changes in nerve fibers longitudinally in the toe tips of mice that had undergone spared nerve injury (SNI). Nav1.8-tdTomato, Thy1-GFP and MrgD-GFP mice were used to observe the small and large cutaneous nerve fibers. We found that peripheral nerve plexuses degenerated within 3 days of nerve injury, and free nerve endings in the epidermis degenerated within 2 days. The timing of degeneration paralleled the initiation of mechanical hypersensitivity. We also found that some of the Nav1.8-positive nerve plexuses and free nerve endings in the fifth toe survived, and sprouting occurred mostly from 7 to 28 days. The timing of the sprouting of nerve fibers in the fifth toe paralleled the maintenance phase of mechanical hypersensitivity. Our results support the hypotheses that both injured and intact nerve fibers participate in neuropathic pain, and that, specifically, nerve degeneration is related to the initiation of evoked pain and nerve sprouting is related to the maintenance of evoked pain.
Collapse
Affiliation(s)
- Han-Yuan Yeh
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jye-Chang Lee
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Han-Hsiung Chi
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Qin Liu
- Department of Anesthesiology and the Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
A modulator of the low-voltage-activated T-type calcium channel that reverses HIV glycoprotein 120-, paclitaxel-, and spinal nerve ligation-induced peripheral neuropathies. Pain 2021; 161:2551-2570. [PMID: 32541387 DOI: 10.1097/j.pain.0000000000001955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The voltage-gated calcium channels CaV3.1-3.3 constitute the T-type subfamily, whose dysfunctions are associated with epilepsy, psychiatric disorders, and chronic pain. The unique properties of low-voltage-activation, faster inactivation, and slower deactivation of these channels support their role in modulation of cellular excitability and low-threshold firing. Thus, selective T-type calcium channel antagonists are highly sought after. Here, we explored Ugi-azide multicomponent reaction products to identify compounds targeting T-type calcium channel. Of the 46 compounds tested, an analog of benzimidazolonepiperidine-5bk (1-{1-[(R)-{1-[(1S)-1-phenylethyl]-1H-1,2,3,4-tetrazol-5-yl}(thiophen-3-yl)methyl]piperidin-4-yl}-2,3-dihydro-1H-1,3-benzodiazol-2-one) modulated depolarization-induced calcium influx in rat sensory neurons. Modulation of T-type calcium channels by 5bk was further confirmed in whole-cell patch clamp assays in dorsal root ganglion (DRG) neurons, where pharmacological isolation of T-type currents led to a time- and concentration-dependent regulation with a low micromolar IC50. Lack of an acute effect of 5bk argues against a direct action on T-type channels. Genetic knockdown revealed CaV3.2 to be the isoform preferentially modulated by 5bk. High voltage-gated calcium, as well as tetrodotoxin-sensitive and -resistant sodium, channels were unaffected by 5bk. 5bk inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, 5bk did not bind human mu, delta, or kappa opioid receptors. 5bk reversed mechanical allodynia in rat models of HIV-associated neuropathy, chemotherapy-induced peripheral neuropathy, and spinal nerve ligation-induced neuropathy, without effects on locomotion or anxiety. Thus, 5bk represents a novel T-type modulator that could be used to develop nonaddictive pain therapeutics.
Collapse
|
29
|
Yousuf MS, Shiers SI, Sahn JJ, Price TJ. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Pharmacol Rev 2021; 73:59-88. [PMID: 33203717 PMCID: PMC7736833 DOI: 10.1124/pharmrev.120.000030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in regulation of mRNA translation is an increasingly recognized characteristic of many diseases and disorders, including cancer, diabetes, autoimmunity, neurodegeneration, and chronic pain. Approximately 50 million adults in the United States experience chronic pain. This economic burden is greater than annual costs associated with heart disease, cancer, and diabetes combined. Treatment options for chronic pain are inadequately efficacious and riddled with adverse side effects. There is thus an urgent unmet need for novel approaches to treating chronic pain. Sensitization of neurons along the nociceptive pathway causes chronic pain states driving symptoms that include spontaneous pain and mechanical and thermal hypersensitivity. More than a decade of preclinical research demonstrates that translational mechanisms regulate the changes in gene expression that are required for ongoing sensitization of nociceptive sensory neurons. This review will describe how key translation regulation signaling pathways, including the integrated stress response, mammalian target of rapamycin, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase-interacting kinases, impact the translation of different subsets of mRNAs. We then place these mechanisms of translation regulation in the context of chronic pain states, evaluate currently available therapies, and examine the potential for developing novel drugs. Considering the large body of evidence now published in this area, we propose that pharmacologically manipulating specific aspects of the translational machinery may reverse key neuronal phenotypic changes causing different chronic pain conditions. Therapeutics targeting these pathways could eventually be first-line drugs used to treat chronic pain disorders. SIGNIFICANCE STATEMENT: Translational mechanisms regulating protein synthesis underlie phenotypic changes in the sensory nervous system that drive chronic pain states. This review highlights regulatory mechanisms that control translation initiation and how to exploit them in treating persistent pain conditions. We explore the role of mammalian/mechanistic target of rapamycin and mitogen-activated protein kinase-interacting kinase inhibitors and AMPK activators in alleviating pain hypersensitivity. Modulation of eukaryotic initiation factor 2α phosphorylation is also discussed as a potential therapy. Targeting specific translation regulation mechanisms may reverse changes in neuronal hyperexcitability associated with painful conditions.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Stephanie I Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - James J Sahn
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| |
Collapse
|
30
|
Abstract
Neuropathic pain (NeP) can result from sources as varied as nerve compression, channelopathies, autoimmune disease, and incision. By identifying the neurobiological changes that underlie the pain state, it will be clinically possible to exploit mechanism-based therapeutics for maximum analgesic effect as diagnostic accuracy is optimized. Obtaining sufficient knowledge regarding the neuroadaptive alterations that occur in a particular NeP state will result in improved patient analgesia and a mechanism-based, as opposed to a disease-based, therapeutic approach to facilitate target identification. This will rely on comprehensive disease pathology insight; our knowledge is vastly improving due to continued forward and back translational preclinical and clinical research efforts. Here we discuss the clinical aspects of neuropathy and currently used drugs whose mechanisms of action are outlined alongside their clinical use. Finally, we consider sensory phenotypes, patient clusters, and predicting the efficacy of an analgesic for neuropathy.
Collapse
Affiliation(s)
- Kirsty Bannister
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom;
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
31
|
Djouhri L, Zeidan A, Alzoghaibi M, Al Otaibi MF, Abd El-Aleem SA. L5 Spinal Nerve Axotomy Induces Distinct Electrophysiological Changes in Axotomized L5- and Adjacent L4-Dorsal Root Ganglion Neurons in Rats In Vivo. J Neurotrauma 2020; 38:330-341. [PMID: 32993425 DOI: 10.1089/neu.2020.7264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Peripheral neuropathic pain (PNP) is a major health problem for which effective drug treatment is lacking. Its underlying neuronal mechanisms are still illusive, but pre-clinical studies using animal models of PNP including the L5-spinal nerve axotomy (L5-SNA) model, suggest that it is partly caused by excitability changes in dorsal root ganglion (DRG) neurons. L5-SNA results in two DRG neuronal groups: (1) axotomized/damaged neurons in L5- plus some in L4-DRGs, and (2) ipsilateral L4-neurons with intact/uninjured fibers intermingling with degenerating L5-fibers. The axotomized neurons are deprived of peripherally derived trophic factors and degenerate causing neuroinflammation, whereas the uninjured L4-neuorns are subject to increased trophic factors and neuroinflammation associated with Wallerian degeneration of axotomized L5-nerve fibers. Whether these two groups of DRG neurons exhibit similar or distinct electrophysiological changes after L5-SNA remains unresolved. Conflicting evidence for this may result from some studies assuming that all L4-fibers are undamaged. Here, we recorded somatic action potentials (APs) intracellularly from C- and A-fiber L4/L5 DRG neurons in vivo, to examine our hypothesis that L5-SNA would induce distinct electrophysiological changes in the two populations of DRG neurons. Consistent with this hypothesis, we found (7 days post-SNA), in SNA rats with established pain hypersensitivity, slower AP kinetics in axotomized L5-neurons and faster AP kinetics in L4-nociceptive neurons including decreased rise time in Aδ-and Aβ-fiber nociceptors, and after-hyperpolarization duration in Aβ-fiber nociceptors. We also found several changes in axotomized L5-neurons but not in L4-nociceptive neurons, and some changes in L4-nociceptive but not L5-neurons. The faster AP kinetics (decreased refractory period) in L4-nociceptive neurons that are consistent with their reported hyperexcitability may lead to repetitive firing and thus provide enhanced afferent input necessary for initiating and/or maintaining PNP development. The changes in axotomized L5-neurons may contribute to the central mechanisms of PNP via enhanced neurotransmitter release in the central nervous system (CNS).
Collapse
Affiliation(s)
- Laiche Djouhri
- Department of Basic Medical Sciences, College of Medicine (QU Health), Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine (QU Health), Qatar University, Doha, Qatar
| | - Mohammad Alzoghaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad F Al Otaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Seham A Abd El-Aleem
- Department of Histology and Cell Biology, University of Manchester, Manchester, United Kingdom.,Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
32
|
Pathophysiological roles and therapeutic potential of voltage-gated ion channels (VGICs) in pain associated with herpesvirus infection. Cell Biosci 2020; 10:70. [PMID: 32489585 PMCID: PMC7247163 DOI: 10.1186/s13578-020-00430-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus is ranked as one of the grand old members of all pathogens. Of all the viruses in the superfamily, Herpes simplex virus type 1 (HSV-1) is considered as a model virus for a variety of reasons. In a permissive non-neuronal cell culture, HSV-1 concludes the entire life cycle in approximately 18–20 h, encoding approximately 90 unique transcriptional units. In latency, the robust viral gene expression is suppressed in neurons by a group of noncoding RNA. Historically the lesions caused by the virus can date back to centuries ago. As a neurotropic pathogen, HSV-1 is associated with painful oral lesions, severe keratitis and lethal encephalitis. Transmission of pain signals is dependent on the generation and propagation of action potential in sensory neurons. T-type Ca2+ channels serve as a preamplifier of action potential generation. Voltage-gated Na+ channels are the main components for action potential production. This review summarizes not only the voltage-gated ion channels in neuropathic disorders but also provides the new insights into HSV-1 induced pain.
Collapse
|
33
|
Hellman A, Maietta T, Byraju K, Linda Park Y, Shao M, Liss A, Neubauer P, Burdette C, Ghoshal G, Qian J, Nalwalk J, Pilitsis JG. Low Intensity Focused Ultrasound Modulation of Vincristine Induced Neuropathy. Neuroscience 2020; 430:82-93. [DOI: 10.1016/j.neuroscience.2020.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023]
|
34
|
García G, Noriega-Navarro R, Martínez-Rojas VA, Gutiérrez-Lara EJ, Oviedo N, Murbartián J. Spinal TASK-1 and TASK-3 modulate inflammatory and neuropathic pain. Eur J Pharmacol 2019; 862:172631. [DOI: 10.1016/j.ejphar.2019.172631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/09/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
|
35
|
Spider Knottin Pharmacology at Voltage-Gated Sodium Channels and Their Potential to Modulate Pain Pathways. Toxins (Basel) 2019; 11:toxins11110626. [PMID: 31671792 PMCID: PMC6891507 DOI: 10.3390/toxins11110626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are a key determinant of neuronal signalling. Neurotoxins from diverse taxa that selectively activate or inhibit NaV channels have helped unravel the role of NaV channels in diseases, including chronic pain. Spider venoms contain the most diverse array of inhibitor cystine knot (ICK) toxins (knottins). This review provides an overview on how spider knottins modulate NaV channels and describes the structural features and molecular determinants that influence their affinity and subtype selectivity. Genetic and functional evidence support a major involvement of NaV subtypes in various chronic pain conditions. The exquisite inhibitory properties of spider knottins over key NaV subtypes make them the best lead molecules for the development of novel analgesics to treat chronic pain.
Collapse
|
36
|
Price TJ, Gold MS. From Mechanism to Cure: Renewing the Goal to Eliminate the Disease of Pain. PAIN MEDICINE 2019; 19:1525-1549. [PMID: 29077871 DOI: 10.1093/pm/pnx108] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective Persistent pain causes untold misery worldwide and is a leading cause of disability. Despite its astonishing prevalence, pain is undertreated, at least in part because existing therapeutics are ineffective or cause intolerable side effects. In this review, we cover new findings about the neurobiology of pain and argue that all but the most transient forms of pain needed to avoid tissue damage should be approached as a disease where a cure can be the goal of all treatment plans, even if attaining this goal is not yet always possible. Design We reviewed the literature to highlight recent advances in the area of the neurobiology of pain. Results We discuss barriers that are currently hindering the achievement of this goal, as well as the development of new therapeutic strategies. We also discuss innovations in the field that are creating new opportunities to treat and even reverse persistent pain, some of which are in late-phase clinical trials. Conclusion We conclude that the confluence of new basic science discoveries and development of new technologies are creating a path toward pain therapeutics that should offer significant hope of a cure for patients and practitioners alike. Classification of Evidence. Our review points to new areas of inquiry for the pain field to advance the goal of developing new therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
37
|
de la Peña JBI, Song JJ, Campbell ZT. RNA control in pain: Blame it on the messenger. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1546. [PMID: 31090211 DOI: 10.1002/wrna.1546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022]
Abstract
mRNA function is meticulously controlled. We provide an overview of the integral role that posttranscriptional controls play in the perception of painful stimuli by sensory neurons. These specialized cells, termed nociceptors, precisely regulate mRNA polarity, translation, and stability. A growing body of evidence has revealed that targeted disruption of mRNAs and RNA-binding proteins robustly diminishes pain-associated behaviors. We propose that the use of multiple independent regulatory paradigms facilitates robust temporal and spatial precision of protein expression in response to a range of pain-promoting stimuli. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- June Bryan I de la Peña
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Jane J Song
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Zachary T Campbell
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| |
Collapse
|
38
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
39
|
Liu M, Zhong J, Xia L, Dou N, Li S. The expression of voltage-gated sodium channels in trigeminal nerve following chronic constriction injury in rats. Int J Neurosci 2019; 129:955-962. [PMID: 30889362 DOI: 10.1080/00207454.2019.1595616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Despite the etiology of trigeminal neuralgia has been verified by microvascular decompression as vascular compression of the trigeminal root, very few researches concerning its underlying pathogenesis has been reported in the literature. The present study focused on those voltage-gated sodium channels, which are the structural basis for generation of ectopic action potentials. Methods: The trigeminal neuralgia modeling was obtained with infraorbital nerve chronic constriction injury (ION-CCI) in rats. Two weeks postoperatively, the infraorbital nerve (TN), the trigeminal ganglion (TG), and the brain stem (BS) were removed and analyzed with a series of molecular biological techniques. Results: Western blot depicted a significant up-regulation of Nav1.3 in TN and TG but not in BS, while none of the other isoforms (Nav1.6, Nav1.7, Nav1.8, or Nav1.9) presented a statistical change. The Nav1.3 from ION-CCI group was quantified as 2.5-fold and 1.7-fold than that from sham group in TN and TG, respectively (p < .05). Immunocytochemistry showed the Nav1.3-IR from ION-CCI group accounted for 21.2 ± 2.3% versus 6.1 ± 1.2% from sham group in TN, while the Nav1.3-positive neurons from ION-CCI group accounted for 34.1 ± 3.5% versus 11.2 ± 1.8% from sham group in TG. Immunohistochemical labeling showed the Nav1.3 was co-localized with CGRP and IB4 but not with GFAP or NF-200 in TG. Conclusion: ION-CCI may give rise to an up-regulation of Nav1.3 in trigeminal nerve as well as in C-type neurons at the trigeminal ganglion. It implied that the ectopic action potential may generate from both the compressed site of the trigeminal nerve and the ganglion rather than from the trigeminal nuclei.
Collapse
Affiliation(s)
- Mingxing Liu
- Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Jun Zhong
- Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Lei Xia
- Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Ningning Dou
- Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Shiting Li
- Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| |
Collapse
|
40
|
Pryce KD, Powell R, Agwa D, Evely KM, Sheehan GD, Nip A, Tomasello DL, Gururaj S, Bhattacharjee A. Magi-1 scaffolds Na V1.8 and Slack K Na channels in dorsal root ganglion neurons regulating excitability and pain. FASEB J 2019; 33:7315-7330. [PMID: 30860870 DOI: 10.1096/fj.201802454rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Voltage-dependent sodium (NaV) 1.8 channels regulate action potential generation in nociceptive neurons, identifying them as putative analgesic targets. Here, we show that NaV1.8 channel plasma membrane localization, retention, and stability occur through a direct interaction with the postsynaptic density-95/discs large/zonula occludens-1-and WW domain-containing scaffold protein called membrane-associated guanylate kinase with inverted orientation (Magi)-1. The neurophysiological roles of Magi-1 are largely unknown, but we found that dorsal root ganglion (DRG)-specific knockdown of Magi-1 attenuated thermal nociception and acute inflammatory pain and produced deficits in NaV1.8 protein expression. A competing cell-penetrating peptide mimetic derived from the NaV1.8 WW binding motif decreased sodium currents, reduced NaV1.8 protein expression, and produced hypoexcitability. Remarkably, a phosphorylated variant of the very same peptide caused an opposing increase in NaV1.8 surface expression and repetitive firing. Likewise, in vivo, the peptides produced diverging effects on nocifensive behavior. Additionally, we found that Magi-1 bound to sequence like a calcium-activated potassium channel sodium-activated (Slack) potassium channels, demonstrating macrocomplexing with NaV1.8 channels. Taken together, these findings emphasize Magi-1 as an essential scaffold for ion transport in DRG neurons and a central player in pain.-Pryce, K. D., Powell, R., Agwa, D., Evely, K. M., Sheehan, G. D., Nip, A., Tomasello, D. L., Gururaj, S., Bhattacharjee, A. Magi-1 scaffolds NaV1.8 and Slack KNa channels in dorsal root ganglion neurons regulating excitability and pain.
Collapse
Affiliation(s)
- Kerri D Pryce
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Rasheen Powell
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Dalia Agwa
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Katherine M Evely
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Garrett D Sheehan
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Allan Nip
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Danielle L Tomasello
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Sushmitha Gururaj
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Arin Bhattacharjee
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| |
Collapse
|
41
|
Zhang F, Zhang C, Xu X, Zhang Y, Gong X, Yang Z, Zhang H, Tang D, Liang S, Liu Z. Naja atra venom peptide reduces pain by selectively blocking the voltage-gated sodium channel Nav1.8. J Biol Chem 2019; 294:7324-7334. [PMID: 30804211 DOI: 10.1074/jbc.ra118.007370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Indexed: 01/14/2023] Open
Abstract
The voltage-gated sodium channel Nav1.8 is preferentially expressed in peripheral nociceptive neurons and contributes to inflammatory and neuropathic pain. Therefore, Nav1.8 has emerged as one of the most promising analgesic targets for pain relief. Using large-scale screening of various animal-derived toxins and venoms for Nav1.8 inhibitors, here we identified μ-EPTX-Na1a, a 62-residue three-finger peptide from the venom of the Chinese cobra (Naja atra), as a potent inhibitor of Nav1.8, exhibiting high selectivity over other voltage-gated sodium channel subtypes. Using whole-cell voltage-clamp recordings, we observed that purified μ-EPTX-Na1a blocked the Nav1.8 current. This blockade was associated with a depolarizing shift of activation and repolarizing shift of inactivation, a mechanism distinct from that of any other gating modifier toxin identified to date. In rodent models of inflammatory and neuropathic pain, μ-EPTX-Na1a alleviated nociceptive behaviors more potently than did morphine, indicating that μ-EPTX-Na1a has a potent analgesic effect. μ-EPTX-Na1a displayed no evident cytotoxicity and cardiotoxicity and produced no obvious adverse responses in mice even at a dose 30-fold higher than that producing a significant analgesic effect. Our study establishes μ-EPTX-Na1a as a promising lead for the development of Nav1.8-targeting analgesics to manage pain.
Collapse
Affiliation(s)
- Fan Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Changxin Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Xunxun Xu
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Yunxiao Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Xue Gong
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Zuqin Yang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Heng Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Dongfang Tang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Songping Liang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Zhonghua Liu
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| |
Collapse
|
42
|
Välimaa S, Perea-Lowery L, Smått JH, Peltonen J, Budde T, Vallittu PK. Grit blasted aggregates of hydroxyl apatite functionalized calcium carbonate in occluding dentinal tubules. Heliyon 2019; 4:e01049. [PMID: 30603691 PMCID: PMC6307103 DOI: 10.1016/j.heliyon.2018.e01049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/03/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022] Open
Abstract
Objectives This study aimed to investigate the effects of using hydroxyl apatite functionalized calcium carbonate (FCC) particles on occluding dentinal tubules. Methods Dentine specimens extracted from eighteen human molars with exposed dentinal tubules were divided into three groups (n = 6/group): a) Cut surface with smear layer; b) EDTA (smear layer removed with 17% EDTA for 1 min); and c) Grit blasted functionalized calcium carbonate (FCC) with and air pressure of 280 kPa. Microscopic dentinal tubule occlusion, tubule diameter and tubule area were evaluated using scanning electron microscopy (SEM) before and after grit blasting. Biomineralization of specimens was carried out in a simulated body fluid (SBF). Elemental analysis of occluding materials was carried out using energy-dispersive X-ray spectroscopy (EDX). X-ray diffraction (XRD) analysis was performed to demonstrate the crystal structure of the biomineralized layer on dentine. Results FCC particles showed penetration into the dentinal tubules by breakage of their original particle shape and size. EDTA treated surface had higher number and larger size tubules than those with smear layer or grit blasted (p < 0.005). SEM-EDX analysis revealed mineral precipitation of calcium phosphate on the SBF immersed dentin specimens. XRD analysis showed typical crystal structure of hydroxyl apatite for the biomineralized surface layer on dentine. Conclusions Grit blasted FCC particles initially occluded effectively the opened dentinal tubules and biomineralization occurred in tubules primarily occluded by the FCC particles. However, in the optimal in vitro conditions in SBF, no difference between biomineralization was found between the grit blasted surface and the control surface. Clinical significance Several materials and methods have been established for treatment of dentinal hypersensitivity although a golden standard treatment has not been discovered. Grit blasted functionalized calcium carbonate has a potential to occlude and remineralize exposed dentinal tubules. This could offer a more biological approach on treatment of dentin hypersensitivity.
Collapse
Affiliation(s)
- S Välimaa
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Finland
| | - L Perea-Lowery
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Finland
| | - J-H Smått
- Laboratory of Physical Chemistry, Faculty of Science and Engineering and Center for Functional Materials, Åbo Akademi University, Finland
| | - J Peltonen
- Laboratory of Physical Chemistry, Faculty of Science and Engineering and Center for Functional Materials, Åbo Akademi University, Finland
| | - T Budde
- Omya International AG, Oftringen, Switzerland
| | - P K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Finland.,City of Turku, Welfare Division, Finland
| |
Collapse
|
43
|
Hameed S. Na v1.7 and Na v1.8: Role in the pathophysiology of pain. Mol Pain 2019; 15:1744806919858801. [PMID: 31172839 PMCID: PMC6589956 DOI: 10.1177/1744806919858801] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/25/2019] [Accepted: 05/30/2019] [Indexed: 01/25/2023] Open
Abstract
Chronic pain is a significant unmet medical problem. Current research regarding sodium channel function in pathological pain is advancing with the hope that it will enable the development of isoform-specific sodium channel blockers, a promising treatment for chronic pain. Before advancements in the pharmacological field, an elucidation of the roles of Nav1.7 and Nav1.8 in the pathophysiology of pain states is required. Thus, the aim of this report is to present what is currently known about the contributions of these sodium channel subtypes in the pathophysiology of neuropathic and inflammatory pain. The electrophysiological properties and localisation of sodium channel isoforms is discussed. Research concerning the genetic links of Nav1.7 and Nav1.8 in acquired neuropathic and inflammatory pain states from the scientific literature in this field is reported. The role of Nav1.7 and Nav1.8 in the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability highlights the importance of these channels in the development of pathological pain. However, further research in this area is required to fully elucidate the roles of Nav1.7 and Nav1.8 in the pathophysiology of pain for the development of subtype-specific sodium channel blockers.
Collapse
Affiliation(s)
- Shaila Hameed
- Department of Physiology, King’s College London, London, UK
| |
Collapse
|
44
|
Patel R, Kucharczyk M, Montagut‐Bordas C, Lockwood S, Dickenson AH. Neuropathy following spinal nerve injury shares features with the irritable nociceptor phenotype: A back-translational study of oxcarbazepine. Eur J Pain 2019; 23:183-197. [PMID: 30091265 PMCID: PMC6396087 DOI: 10.1002/ejp.1300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND The term 'irritable nociceptor' was coined to describe neuropathic patients characterized by evoked hypersensitivity and preservation of primary afferent fibres. Oxcarbazepine is largely ineffectual in an overall patient population, but has clear efficacy in a subgroup with the irritable nociceptor profile. We examine whether neuropathy in rats induced by spinal nerve injury shares overlapping pharmacological sensitivity with the irritable nociceptor phenotype using drugs that target sodium channels. METHODS In vivo electrophysiology was performed in anaesthetized spinal nerve ligated (SNL) and sham-operated rats to record from wide dynamic range (WDR) neurones in the ventral posterolateral thalamus (VPL) and dorsal horn. RESULTS In neuropathic rats, spontaneous activity in the VPL was substantially attenuated by spinal lidocaine, an effect that was absent in sham rats. The former measure was in part dependent on ongoing peripheral activity as intraplantar lidocaine also reduced aberrant spontaneous thalamic firing. Systemic oxcarbazepine had no effect on wind-up of dorsal horn neurones in sham and SNL rats. However, in SNL rats, oxcarbazepine markedly inhibited punctate mechanical-, dynamic brush- and cold-evoked neuronal responses in the VPL and dorsal horn, with minimal effects on heat-evoked responses. In addition, oxcarbazepine inhibited spontaneous activity in the VPL. Intraplantar injection of the active metabolite licarbazepine replicated the effects of systemic oxcarbazepine, supporting a peripheral locus of action. CONCLUSIONS We provide evidence that ongoing activity in primary afferent fibres drives spontaneous thalamic firing after spinal nerve injury and that oxcarbazepine through a peripheral mechanism exhibits modality-selective inhibitory effects on sensory neuronal processing. SIGNIFICANCE The inhibitory effects of lidocaine and oxcarbazepine in this rat model of neuropathy resemble the clinical observations in the irritable nociceptor patient subgroup and support a mechanism-based rationale for bench-to-bedside translation when screening novel drugs.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Mateusz Kucharczyk
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | | | - Stevie Lockwood
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Anthony H. Dickenson
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
45
|
Giacoppo S, Iori R, Bramanti P, Mazzon E. Topical moringin-cream relieves neuropathic pain by suppression of inflammatory pathway and voltage-gated ion channels in murine model of multiple sclerosis. Mol Pain 2018; 13:1744806917724318. [PMID: 28741431 PMCID: PMC5555508 DOI: 10.1177/1744806917724318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Neuropathic pain represents the major public health burden with a strong impact on quality life in multiple sclerosis patients. Although some advances have been obtained in the last years, the conventional therapies remain poorly effective. Thus, the discovery of innovative approaches to improve the outcomes for multiple sclerosis patients is a goal of primary importance. With this aim, we investigated the efficacy of the 4-(α−L-rhamnopyranosyloxy)benzyl isothiocyanate (moringin), purified from Moringa oleifera seeds and ready-to-use as topical treatment in experimental autoimmune encephalomyelitis, murine model of multiple sclerosis. Female C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein (MOG35–55) were topically treated with 2% moringin cream twice daily from the onset of the symptoms until the sacrifice occurred about 21 days after experimental autoimmune encephalomyelitis induction. Results Our observations showed the efficacy of 2% moringin cream treatment in reducing clinical and histological disease score, as well as in alleviating neuropathic pain with consequent recovering of the hind limbs and response to mechanical stimuli. In particular, Western blot analysis and immunohistochemical evaluations revealed that 2% moringin cream was able to counteract the inflammatory cascade by reducing the production of pro-inflammatory cytokines (interleukin-17 and interferon-γ) and in parallel by increasing the expression of anti-inflammatory cytokine (interleukin-10). Interestingly, 2% moringin cream treatment was found to modulate the expression of voltage-gated ion channels (results focused on P2X7, Nav 1.7, Nav 1.8 KV4.2, and α2δ-1) as well as metabotropic glutamate receptors (mGluR5 and xCT) involved in neuropathic pain initiation and maintenance. Conclusions Finally, our evidences suggest 2% moringin cream as a new pharmacological trend in the management of multiple sclerosis-induced neuropathic pain.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- RCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, Messina, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA), Bologna, Italy
| | - Placido Bramanti
- RCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, Messina, Italy
| | | |
Collapse
|
46
|
Liu Y, Liu Z, Wang Q, Wang Z, Zhang Y. HNTX-III Alleviates Inflammatory and Neuropathic Pain in Animal Models. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9729-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Marler TL, Wright AB, Elmslie KL, Heier AK, Remily E, Kim-Han JS, Ramachandra R, Elmslie KS. Na V1.9 channels in muscle afferent neurons and axons. J Neurophysiol 2018; 120:1032-1044. [PMID: 29847236 DOI: 10.1152/jn.00573.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The exercise pressor reflex (EPR) is activated by muscle contractions to increase heart rate and blood pressure during exercise. While this reflex is beneficial in healthy individuals, the reflex activity is exaggerated in patients with cardiovascular disease, which is associated with increased mortality. Group III and IV afferents mediate the EPR and have been shown to express both tetrodotoxin-sensitive (TTX-S, NaV1.6, and NaV1.7) and -resistant (TTX-R, NaV1.8, and NaV1.9) voltage-gated sodium (NaV) channels, but NaV1.9 current has not yet been demonstrated. Using a F--containing internal solution, we found a NaV current in muscle afferent neurons that activates at around -70 mV with slow activation and inactivation kinetics, as expected from NaV1.9 current. However, this current ran down with time, which resulted, at least in part, from increased steady-state inactivation since it was slowed by both holding potential hyperpolarization and a depolarized shift of the gating properties. We further show that, following NaV1.9 current rundown (internal F-), application of the NaV1.8 channel blocker A803467 inhibited significantly more TTX-R current than we had previously observed (internal Cl-), which suggests that NaV1.9 current did not rundown with that internal solution. Using immunohistochemistry, we found that the majority of group IV somata and axons were NaV1.9 positive. The majority of small diameter myelinated afferent somata (putative group III) were also NaV1.9 positive, but myelinated muscle afferent axons were rarely labeled. The presence of NaV1.9 channels in muscle afferents supports a role for these channels in activation and maintenance of the EPR. NEW & NOTEWORTHY Small diameter muscle afferents signal pain and muscle activity levels. The muscle activity signals drive the cardiovascular system to increase muscle blood flow, but these signals can become exaggerated in cardiovascular disease to exacerbate cardiac damage. The voltage-dependent sodium channel NaV1.9 plays a unique role in controlling afferent excitability. We show that NaV1.9 channels are expressed in muscle afferents, which supports these channels as a target for drug development to control hyperactivity of these neurons.
Collapse
Affiliation(s)
- Tyler L Marler
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Andrew B Wright
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Kristina L Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Ankeeta K Heier
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Ethan Remily
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Jeong Sook Kim-Han
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Renuka Ramachandra
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Keith S Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| |
Collapse
|
48
|
Upregulation of Ca v3.2 T-type calcium channels in adjacent intact L4 dorsal root ganglion neurons in neuropathic pain rats with L5 spinal nerve ligation. Neurosci Res 2018; 142:30-37. [PMID: 29684385 DOI: 10.1016/j.neures.2018.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
Besides the injured peripheral dorsal root ganglion (DRG) neurons, the adjacent intact DRG neurons also have important roles in neuropathic pain. Ion channels including Cav3.2 T-type calcium channel in the DRG neurons are important in the development of neuropathic pain. In the present study, we aimed to examine the expression of Cav3.2 T-type calcium channels in the intact DRG neurons in neuropathic pain. A neuropathic pain model of rat with lumbar 5 (L5) spinal nerve ligation (SNL) was established, in which the L4 DRG was separated from the axotomized L5 DRG, and the molecular, morphological and electrophysiological changes of Cav3.2 T-type calcium channels in L4 DRG neurons were investigated. Western blotting showed that total and membrane protein levels of Cav3.2 in L4 DRG neurons increased, and voltage-dependent patch clamp recordings revealed an increased T-type current density with a curve shift to the left in steady-state activation in the acutely isolated L4 DRG neurons in neuropathic pain rats. Immunofluorescent staining further showed that the membrane expression of Cav3.2 increased in CGRP-, IB4-positive small neurons and NF200-positive large ones. In conclusion, the membrane expression and the function of Cav3.2 T-type calcium channels are increased in the intact L4 DRG neurons in neuropathic pain rats with peripheral nerve injury like SNL.
Collapse
|
49
|
Yang F, Anderson M, He S, Stephens K, Zheng Y, Chen Z, Raja SN, Aplin F, Guan Y, Fridman G. Differential expression of voltage-gated sodium channels in afferent neurons renders selective neural block by ionic direct current. SCIENCE ADVANCES 2018; 4:eaaq1438. [PMID: 29651458 PMCID: PMC5895440 DOI: 10.1126/sciadv.aaq1438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/21/2018] [Indexed: 06/01/2023]
Abstract
The assertion that large-diameter nerve fibers have low thresholds and small-diameter fibers have high thresholds in response to electrical stimulation has been held in a nearly axiomatic regard in the field of neuromodulation and neuroprosthetics. In contrast to the short pulses used to evoke action potentials, long-duration ionic direct current has been shown to block neural activity. We propose that the main determinant of the neural sensitivity to direct current block is not the size of the axon but the types of voltage-gated sodium channels prevalent in its neural membrane. On the basis of the variants of voltage-gated sodium channels expressed in different types of neurons in the peripheral nerves, we hypothesized that the small-diameter nociceptive fibers could be preferentially blocked. We show the results of a computational model and in vivo neurophysiology experiments that offer experimental validation of this novel phenomenon.
Collapse
Affiliation(s)
- Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurobiology, Capital Medical University, Beijing 100069, PR China
| | - Michael Anderson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kimberly Stephens
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yu Zheng
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Felix Aplin
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gene Fridman
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
50
|
Xu JH, Wang H, Zhang W, Tang FR. Alterations of L-type voltage dependent calcium channel alpha 1 subunit in the hippocampal CA3 region during and after pilocarpine-induced epilepsy. Neurochem Int 2018; 114:108-119. [DOI: 10.1016/j.neuint.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
|