1
|
AlAbdulwahab SS, Altwerqi SH, Mubaraki AA, Algabbani MF. Modulation of Primary Afferent Nerve Fiber (Ia) Reciprocal Inhibition Under Voluntary and Electrically Stimulated Muscle Conditions: Within-Subject Study Design. J Clin Med 2025; 14:1178. [PMID: 40004709 PMCID: PMC11856710 DOI: 10.3390/jcm14041178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Reciprocal inhibition (RI) is a spinal reflex that controls posture and movement. The modulation of spinal RI represented by the H-reflex has been studied, before and after voluntary contraction and electrical nerve stimulation but not during voluntary, electrically induced muscle contraction or a combination of voluntary and electrically induced muscle contractions. This study investigates the effects of the ongoing voluntary isometric contraction, the electrically induced isometric contraction, and the combination of voluntary with electrically induced isometric contraction of the Tibialis Anterior (TA) muscle on spinal RI represented by Soleus H-reflex. Methods: Eighteen healthy adults participated. Soleus H-reflex and M-response were measured during four different conditions as follows: (1) at rest, (2) electrically induced isometric contraction of the TA, (3) voluntary isometric contraction of the TA with a 1 kg force, and (4) combined voluntary and electrically induced isometric contraction of the TA with a 1 kg force. Results: The ANOVA clearly demonstrated significant differences in Soleus H-reflex amplitude across the four recording conditions (F3,16, 17.28, p < 0.001). The amplitude at rest was significantly higher than during electrically induced isometric contraction, voluntary isometric contraction, and the combined contraction conditions (p < 0.05). Furthermore, the amplitude recorded during the electrically induced isometric contraction condition significantly surpassed that of voluntary isometric contraction and the combined contraction conditions (p < 0.05). Moreover, there was no significant difference between Soleus H-reflex amplitude recorded during voluntary isometric contraction and the combined voluntary isometric contraction and electrically induced isometric contraction (p < 0.87). The combined voluntary isometric contraction and electrically induced isometric contraction condition had a higher inhibitory effect on the Soleus H-reflex with no significant differences from voluntary isometric contraction. Moreover, both were significantly better than electrically induced isometric contraction (p = 0.05). In terms of Soleus H-reflex latency, there was no significant difference among all four conditions (p > 0.05), meaning Soleus H-reflex latency was not influenced by the conditions. Conclusions: RI can be best modulated by combining voluntary with electrically induced isometric muscle contractions.
Collapse
Affiliation(s)
- Sami S. AlAbdulwahab
- Department of Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seraj H. Altwerqi
- Rehabilitation Center of King Abdulaziz Specialist Hospital, Taif 26521, Saudi Arabia
| | - Adnan A. Mubaraki
- Department of Medicine, Faculty of Medicine, Taif University, Taif 21944, Saudi Arabia
| | - Maha F. Algabbani
- Department of Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Minassian K, Freundl B, Lackner P, Hofstoetter US. Transcutaneous spinal cord stimulation neuromodulates pre- and postsynaptic inhibition in the control of spinal spasticity. Cell Rep Med 2024; 5:101805. [PMID: 39532101 PMCID: PMC11604492 DOI: 10.1016/j.xcrm.2024.101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Aside from enabling voluntary control over paralyzed muscles, a key effect of spinal cord stimulation is the alleviation of spasticity. Dysfunction of spinal inhibitory circuits is considered a major cause of spasticity. These circuits are contacted by Ia muscle spindle afferents, which are also the primary targets of transcutaneous lumbar spinal cord stimulation (TSCS). We hypothesize that TSCS controls spasticity by transiently strengthening spinal inhibitory circuit function through their Ia-mediated activation. We show that 30 min of antispasticity TSCS improves activity in post- and presynaptic inhibitory circuits beyond the intervention in ten individuals with traumatic spinal cord injury to normative levels established in 20 neurologically intact individuals. These changes in circuit function correlate with improvements in muscle hypertonia, spasms, and clonus. Our study opens the black box of the carryover effects of antispasticity TSCS and underpins a causal role of deficient post- and presynaptic inhibitory circuits in spinal spasticity.
Collapse
Affiliation(s)
- Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Brigitta Freundl
- Neurological Center, Clinic Penzing, Vienna Health Association, 1140 Vienna, Austria
| | - Peter Lackner
- Neurological Center, Clinic Penzing, Vienna Health Association, 1140 Vienna, Austria; Department of Neurology, Clinic Floridsdorf, Vienna Health Association, 1210 Vienna, Austria
| | - Ursula S Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Takano K, Yamaguchi T, Kikuma K, Okuyama K, Katagiri N, Sato T, Tanabe S, Kondo K, Fujiwara T. Transcutaneous spinal cord stimulation phase-dependently modulates spinal reciprocal inhibition induced by pedaling in healthy individuals. Exp Brain Res 2024; 242:2645-2652. [PMID: 39331051 DOI: 10.1007/s00221-024-06926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Reciprocal inhibition (RI) between leg muscles is crucial for smooth movement. Pedaling is a rhythmic movement that can increase RI in healthy individuals. Transcutaneous spinal cord stimulation (tSCS) stimulates spinal neural circuits by targeting the afferent fibers. Pedaling with simultaneous tSCS may modulate the plasticity of the spinal neural circuit and alter neural activity based on movement and muscle engagement. This study investigated the RI changes after pedaling and tSCS and determined the phase of pedaling in which tSCS should be applied for optimal RI modulation in healthy individuals. Eleven subjects underwent three interventions: pedaling combined with tSCS during the early phase of lower extension (phase 1), pedaling combined with tSCS during the late phase of lower flexion (phase 4) of the pedaling cycle, and pedaling combined with sham tSCS. The RI from the tibialis anterior to the soleus muscle was assessed before, immediately after, 15 min, and 30 min after the intervention. RI increased immediately after phase 4 and pedaling combined with sham tSCS, whereas no changes were observed after phase 1. These results demonstrate that tSCS modulates RI changes induced by pedaling in a stimulus phase-dependent manner in healthy individuals. However, the mechanism involved in this intervention needs to be explored to achieve higher efficacy.
Collapse
Affiliation(s)
- Keita Takano
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Juntendo University, Faculty of Health Science, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kano Kikuma
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Kohei Okuyama
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Natsuki Katagiri
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Takatsugu Sato
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Kunitsugu Kondo
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Juntendo University, Faculty of Health Science, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
4
|
Seo NJ, Brinkhoff M, Fredendall S, Coker-Bolt P, McGloon K, Humanitzki E. The Use of TheraBracelet Upper Extremity Vibrotactile Stimulation in a Child with Cerebral Palsy-A Case Report. ELECTRONICS 2024; 13:3147. [PMID: 39267797 PMCID: PMC11392012 DOI: 10.3390/electronics13163147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background TheraBracelet is peripheral vibrotactile stimulation applied to the affected upper extremity via a wristwatch-like wearable device during daily activities and therapy to improve upper limb function. The objective of this study was to examine feasibility of using TheraBracelet for a child with hemiplegic cerebral palsy. Methods A nine-year-old male with cerebral palsy was provided with TheraBracelet to use during daily activities in the home and community settings for 1.5 years while receiving standard care physical/occupational therapy. Results The child used TheraBracelet independently and consistently except during summer vacations and elbow-to-wrist orthotic use from growth spurt-related contracture. The use of TheraBracelet did not impede or prevent participation in daily activities. No study-related adverse events were reported by the therapist, child, or parent. Conclusion Future research is warranted to investigate TheraBracelet as a propitious therapeutic device with focus on potential impact of use to improve the affected upper limb function in daily activities in children with hemiplegic cerebral palsy.
Collapse
Affiliation(s)
- Na Jin Seo
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Molly Brinkhoff
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425
| | | | - Patricia Coker-Bolt
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Kelly McGloon
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Elizabeth Humanitzki
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
5
|
Howe EE, Sharma T, Marrelli LC, Nwebube C, Bent LR. Heating the skin on the foot sole enhances cutaneous reflexes in the lower limb. J Appl Physiol (1985) 2023; 135:985-994. [PMID: 37675471 DOI: 10.1152/japplphysiol.00533.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023] Open
Abstract
Cutaneous input is important in postural control and balance. Aging and diabetes impair skin sensitivity and motor control. Heat application can improve skin sensation, but its influence on motor control remains unknown. This study investigated the effects of heating the skin of the foot sole on lower limb cutaneous reflexes. Reflexes were evoked in the tibialis anterior muscle of 20 young, healthy adults before and after heating the foot sole to a maximum of 42°C. While holding a 15% maximum root mean square EMG generated during maximum isometric dorsiflexion, a filtered white noise (0-50 Hz) vibration at 10 times the perceptual threshold was applied to the heel to stimulate cutaneous mechanoreceptors. Reflexes were analyzed in both the time (cumulant density) and frequency (coherence, gain) domains. Heat increased foot skin temperature ∼15.4°C (P < 0.001). Cumulant density peak to peak amplitude significantly increased by 44% after heating (P = 0.01) while latencies did not vary (P = 0.46). Coherence and gain were significantly greater in the 30- to 40-Hz range following heating (P = 0.048; P = 0.02). Heating significantly enhances lower limb cutaneous reflexes. This may be due to the increased ability of cutaneous mechanoreceptors to encode in the 30- to 40-Hz range.NEW & NOTEWORTHY Cutaneous input is a known modulator of muscle activity. Targeting skin to intentionally enhance motor output has received little attention. We explored local skin heating to enhance skin sensitivity and found a significant increase in the amplitude, coherence, and gain of cutaneous reflexes in the tibialis anterior. Our current findings provide the first support for the use of heat as a viable and easily integrated modality in rehabilitation technology to improve balance and postural control.
Collapse
Affiliation(s)
- Erika E Howe
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Tushar Sharma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Laura C Marrelli
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Chioma Nwebube
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Leah R Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Perpetuini D, Russo EF, Cardone D, Palmieri R, De Giacomo A, Intiso D, Pellicano F, Pellegrino R, Merla A, Calabrò RS, Filoni S. Assessing the Impact of Electrosuit Therapy on Cerebral Palsy: A Study on the Users' Satisfaction and Potential Efficacy. Brain Sci 2023; 13:1491. [PMID: 37891858 PMCID: PMC10605024 DOI: 10.3390/brainsci13101491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study is to evaluate the effectiveness of electrosuit therapy in the clinical treatment of children with Cerebral Palsy, focusing on the effect of the therapy on spasticity and trunk control. Moreover, the compliance of caregivers with respect to the use of the tool was investigated. During the period ranging from 2019 to 2022, a total of 26 children (18 M and 8 F), clinically stable and affected by CP and attending the Neurorehabilitation Unit of the "Padre Pio Foundation and Rehabilitation Centers", were enrolled in this study. A subset of 12 patients bought or rented the device; thus, they received the administration of the EMS-based therapy for one month, whereas the others received only one-hour training to evaluate the feasibility (by the caregivers) and short-term effects. The Gross Motor Function Classification System was utilized to evaluate gross motor functions and to classify the study sample, while the MAS and the LSS were employed to assess the outcomes of the EMS-based therapy. Moreover, between 80% and 90% of the study sample were satisfied with the safety, ease of use, comfort, adjustment, and after-sales service. Following a single session of electrical stimulation with EMS, patients exhibited a statistically significant enhancement in trunk control. For those who continued this study, the subscale of the QUEST with the best score was adaptability (0.74 ± 0.85), followed by competence (0.67 ± 0.70) and self-esteem (0.59 ± 0.60). This study investigates the impact of the employment of the EMS on CP children's ability to maintain trunk control. Specifically, after undergoing a single EMS session, LSS showed a discernible improvement in children's trunk control. In addition, the QUEST and the PIADS questionnaires demonstrated a good acceptability and satisfaction of the garment by the patients and the caregivers.
Collapse
Affiliation(s)
- David Perpetuini
- Department of Engineering and Geology, University G. D’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; (D.P.); (D.C.); (A.M.)
| | - Emanuele Francesco Russo
- Padre Pio Foundation and Rehabilitation Centers, 71013 San Giovanni Rotondo, Italy; (E.F.R.); (F.P.)
| | - Daniela Cardone
- Department of Engineering and Geology, University G. D’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; (D.P.); (D.C.); (A.M.)
| | - Roberta Palmieri
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.P.); (A.D.G.)
| | - Andrea De Giacomo
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.P.); (A.D.G.)
| | - Domenico Intiso
- Unit of Neuro-Rehabilitation, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (D.I.); (S.F.)
| | - Federica Pellicano
- Padre Pio Foundation and Rehabilitation Centers, 71013 San Giovanni Rotondo, Italy; (E.F.R.); (F.P.)
| | - Raffaello Pellegrino
- Department of Scientific Research, Campus Ludes, Off-Campus Semmelweis University, 6912 Lugano, Switzerland;
| | - Arcangelo Merla
- Department of Engineering and Geology, University G. D’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; (D.P.); (D.C.); (A.M.)
| | | | - Serena Filoni
- Unit of Neuro-Rehabilitation, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (D.I.); (S.F.)
| |
Collapse
|
7
|
Gunnarsson E, Rödby K, Seoane F. Seamlessly integrated textile electrodes and conductive routing in a garment for electrostimulation: design, manufacturing and evaluation. Sci Rep 2023; 13:17408. [PMID: 37833440 PMCID: PMC10575854 DOI: 10.1038/s41598-023-44622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Electro-stimulation to alleviate spasticity, pain and to increase mobility has been used successfully for years. Usually, gelled electrodes are used for this. In a garment intended for repeated use such electrodes must be replaced. The Mollii-suit by the company Inerventions utilises dry conductive rubber electrodes. The electrodes work satisfactory, but the garment is cumbersome to fit on the body. In this paper we show that knitted dry electrodes can be used instead. The knitted electrodes present a lower friction against the skin and a garment is easily fitted to the body. The fabric is stretchable and provides a tight fit to the body ensuring electrical contact. We present three candidate textrodes and show how we choose the one with most favourable features for producing the garment. We validate the performance of the garment by measuring three electrical parameters: rise time (10-90%) of the applied voltage, net injected charge and the low frequency value of the skin-electrode impedance. It is concluded that the use of flat knitting intarsia technique can produce a garment with seamlessly integrated conductive leads and electrodes and that this garment delivers energy to the body as targeted and is beneficial from manufacturing and comfort perspectives.
Collapse
Affiliation(s)
- Emanuel Gunnarsson
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, Borås, Sweden.
| | - Kristian Rödby
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, Borås, Sweden
| | - Fernando Seoane
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, Borås, Sweden
- Institute for Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Care Technology, Karolinska University Hospital, 14157, Huddinge, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, 14157, Huddinge, Sweden
| |
Collapse
|
8
|
Hirabayashi R, Edama M, Takeda M, Yamada Y, Yokota H, Sekine C, Onishi H. Participant attention on the intervention target during repetitive passive movement improved spinal reciprocal inhibition enhancement and joint movement function. Eur J Med Res 2023; 28:428. [PMID: 37828546 PMCID: PMC10571356 DOI: 10.1186/s40001-023-01418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to evaluate the effects of the participant's attention target during repetitive passive movement (RPM) intervention on reciprocal inhibition (RI) and joint movement function. Twenty healthy adults participated in two experiments involving four attention conditions [control (forward attention with no RPM), forward attention (during RPM), monitor attention (monitor counting task during RPM), ankle joint attention (ankle movement counting task during RPM)] during 10-min RPM interventions on the ankle joint. Counting tasks were included to ensure the participant's attention remained on the target during the intervention. In Experiment 1, RI was measured before, immediately after, and 5, 10, 15, 20, and 30 min after the RPM intervention. In Experiment 2, we evaluated ankle joint movement function at the same time points before and after RPM intervention. The maximum ankle dorsiflexion movement (from 30° plantar flexion to 10° dorsiflexion) was measured, reflecting RI. In Experiment 1, the RI function reciprocal Ia inhibition was enhanced for 10 min after RPM under all attention conditions (excluding the control condition. D1 inhibition was enhanced for 20 min after RPM in the forward and monitor attention conditions and 30 min after RPM in the ankle joint attention condition. In Experiment 2, the joint movement function decreased under the forward and monitor attention conditions but improved under the ankle joint attention condition. This study is the first to demonstrate that the participant's attention target affected the intervention effect of the RI enhancement method, which has implications for improving the intervention effect of rehabilitation.
Collapse
Affiliation(s)
- Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan.
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Mai Takeda
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Yuki Yamada
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Chie Sekine
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| |
Collapse
|
9
|
Saito A, Mizuno T. Effects of patterned electrical sensory nerve stimulation and static stretching on joint range of motion and passive torque. Front Neurosci 2023; 17:1205602. [PMID: 37674515 PMCID: PMC10478221 DOI: 10.3389/fnins.2023.1205602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
Static stretching and proprioceptive neuromuscular facilitation stretching techniques can modulate specific neural mechanisms to improve the range of motion. However, the effects of modulation of these neural pathways on changes in the range of motion with static stretching remain unclear. Patterned electrical stimulation of the sensory nerve induces plastic changes in reciprocal Ia inhibition. The present study examined the effects of patterned electrical stimulation and static stretching on a range of motion and passive torque in plantarflexion muscles. The subjects were 14 young men (age 20.8 ± 1.3 years). The effects of patterned electrical stimulation (10 pulses at 100 Hz every 1.5 s) or uniform electrical stimulation (one pulse every 150 ms) to the common peroneal nerve for 20 min on reciprocal Ia inhibition of the Hoffman reflex (H-reflex) were examined. Reciprocal Ia inhibition was evaluated as short-latency suppression of the soleus H-reflex by conditioning stimulation of the common peroneal nerve. Then, the effects of transcutaneous electrical nerve stimulation (patterned electrical stimulation or uniform electrical stimulation) or prolonged resting (without electrical stimulation) and static 3-min stretching on the maximal dorsiflexion angle and passive torque were investigated. The passive ankle dorsiflexion test was performed on an isokinetic dynamometer. Stretch tolerance and stiffness of the muscle-tendon unit were evaluated by the peak and slope of passive torques, respectively. Patterned electrical stimulation significantly increased reciprocal Ia inhibition of soleus H-reflex amplitude (9.7 ± 6.1%), but uniform electrical stimulation decreased it significantly (19.5 ± 8.8%). The maximal dorsiflexion angle was significantly changed by patterned electrical stimulation (4.0 ± 1.4°), uniform electrical stimulation (3.8 ± 2.3°), and stretching without electrical stimulation (2.1 ± 3.3°). The increase in stretch tolerance was significantly greater after patterned electrical stimulation and uniform electrical stimulation than after stretching without electrical stimulation. Stiffness of the muscle-tendon unit was significantly decreased by patterned electrical stimulation, uniform electrical stimulation, and stretching without electrical stimulation. Transcutaneous electrical nerve stimulation and static stretching improve stretch tolerance regardless of the degree of reciprocal Ia inhibition.
Collapse
Affiliation(s)
- Akira Saito
- Center for Health and Science, Kyushu Sangyo University, Fukuoka, Japan
| | - Takamasa Mizuno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Leszczyńska K, Huber J. The Role of Transcranial Magnetic Stimulation, Peripheral Electrotherapy, and Neurophysiology Tests for Managing Incomplete Spinal Cord Injury. Biomedicines 2023; 11:biomedicines11041035. [PMID: 37189653 DOI: 10.3390/biomedicines11041035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Efforts to find therapeutic methods that support spinal cord functional regeneration continue to be desirable. Natural recovery is limited, so high hopes are being placed on neuromodulation methods which promote neuroplasticity, such as repetitive transcranial magnetic stimulation (rTMS) and electrical stimulation used as treatment options for managing incomplete spinal cord injury (iSCI) apart from kinesiotherapy. However, there is still no agreement on the methodology and algorithms for treatment with these methods. The search for effective therapy is also hampered by the use of different, often subjective in nature, evaluation methods and difficulties in assessing the actual results of the therapy versus the phenomenon of spontaneous spinal cord regeneration. In this study, an analysis was performed on the database of five trials, and the cumulative data are presented. Participants (iSCI patients) were divided into five groups on the basis of the treatment they had received: rTMS and kinesiotherapy (N = 36), peripheral electrotherapy and kinesiotherapy (N = 65), kinesiotherapy alone (N = 55), rTMS only (N = 34), and peripheral electrotherapy mainly (N = 53). We present changes in amplitudes and frequencies of the motor units’ action potentials recorded by surface electromyography (sEMG) from the tibialis anterior—the index muscle for the lower extremity and the percentage of improvement in sEMG results before and after the applied therapies. The increase in values in sEMG parameters represents the better ability of motor units to recruit and, thus, improvement of neural efferent transmission. Our results indicate that peripheral electrotherapy provides a higher percentage of neurophysiological improvement than rTMS; however, the use of any of these additional stimulation methods (rTMS or peripheral electrotherapy) provided better results than the use of kinesiotherapy alone. The best improvement of tibialis anterior motor units’ activity in iSCI patients provided the application of electrotherapy conjoined with kinesiotherapy and rTMS conjoined with kinesiotherapy. We also undertook a review of the current literature to identify and summarise available works which address the use of rTMS or peripheral electrotherapy as neuromodulation treatment options in patients after iSCI. Our goal is to encourage other clinicians to implement both types of stimulation into the neurorehabilitation program for subjects after iSCI and evaluate their effectiveness with neurophysiological tests such as sEMG so further results and algorithms can be compared across studies. Facilitating the motor rehabilitation process by combining two rehabilitation procedures together was confirmed.
Collapse
|
11
|
Nakagawa K, Fok KL, Masani K. Neuromuscular recruitment pattern in motor point stimulation. Artif Organs 2023; 47:537-546. [PMID: 36305730 DOI: 10.1111/aor.14445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Transcutaneous electrical stimulation on the motor points over muscle belly, i.e., motor point stimulation (MPS), is widely used in clinical settings, however it is not fully understood how MPS recruits motor nerves. Here we investigated the recruitment pattern of the motor nerve and twitch force during MPS and compared to the recruitment during peripheral nerve stimulation (PNS). METHODS Ten healthy individuals participated in this study. Using MPS on the soleus muscle and PNS on the tibial nerve, a single pulse stimulation was applied with various stimulation intensities from subthreshold to the maximum intensity. We measured the evoked potentials in the lower leg muscles and twitch force. Between MPS and PNS, we compared the recruitment curves of M-waves and the dynamics of twitch force such as duration from force onset to peak (time-to-peak). RESULTS The maximum M-wave was not different between MPS and PNS in the soleus muscle, while it was much smaller in MPS than in PNS in the other lower leg muscles. This reflected the smaller twitch force of plantarflexion in MPS than PNS. In addition, the slope of the recruitment curve for the soleus M-wave was smaller in MPS than PNS. CONCLUSION Therefore, unlike PNS, MPS can efficiently and selectively recruit motor nerves of the target muscle and gradually increase the recruitment of the motor nerve.
Collapse
Affiliation(s)
- Kento Nakagawa
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,Japan Society for the Promotion of Science, Tokyo, Japan.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Kai Lon Fok
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kei Masani
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Fok KL, Kaneko N, Tajali S, Masani K. Paired associative stimulation on the soleus H-Reflex using motor point and peripheral nerve stimulation. Neurosci Lett 2023; 797:137070. [PMID: 36641045 DOI: 10.1016/j.neulet.2023.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Paired associative stimulation (PAS) has been shown to modulate the corticospinal excitability via spike timing dependent plasticity (STDP). In this study, we aimed to suppress the spinal H-Reflex using PAS. We paired two stimulation modalities, i.e., peripheral nerve stimulation (PNS) and motor point stimulation (MPS). We used PNS to dominantly activate the Ia sensory axon, and we used MPS to dominantly activate the α-motoneuron cell body antidromically. Thus, we applied both PNS and MPS such that the α-motoneuron cell body was activated 5 ms before the activation of the Ia sensory axon ending at the Ia-α motoneuron synapse. If the spinal reflexes can be modulated by STDP, and a combination of MPS and PNS is timed appropriately, then the H-Reflex amplitude will decrease while no change in H-Reflex amplitude is expected for MPS or PNS only. To test this hypothesis, six young healthy participants (5M/1F: 26.8 ± 4.1 yrs) received one of the three following conditions on days separated by at least 24 hr: 1) PAS, 2) MPS only or 3) PNS only. The H-Reflex and M-wave recruitment curves of the soleus were measured immediately prior to, immediately after, 30 min and 60 min after the intervention. The normalized H-Reflex amplitudes were then compared across conditions and times using a two-way ANOVA (3 conditions × 4 times). No main effects of condition or time, or interaction effect were found. These results suggest that relying solely on STDP may be insufficient to inhibit the soleus H-Reflex.
Collapse
Affiliation(s)
- Kai Lon Fok
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada
| | - Naotsugu Kaneko
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Shirin Tajali
- KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada.
| |
Collapse
|
13
|
Dorrian RM, Berryman CF, Lauto A, Leonard AV. Electrical stimulation for the treatment of spinal cord injuries: A review of the cellular and molecular mechanisms that drive functional improvements. Front Cell Neurosci 2023; 17:1095259. [PMID: 36816852 PMCID: PMC9936196 DOI: 10.3389/fncel.2023.1095259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that causes severe loss of motor, sensory and autonomic functions. Additionally, many individuals experience chronic neuropathic pain that is often refractory to interventions. While treatment options to improve outcomes for individuals with SCI remain limited, significant research efforts in the field of electrical stimulation have made promising advancements. Epidural electrical stimulation, peripheral nerve stimulation, and functional electrical stimulation have shown promising improvements for individuals with SCI, ranging from complete weight-bearing locomotion to the recovery of sexual function. Despite this, there is a paucity of mechanistic understanding, limiting our ability to optimize stimulation devices and parameters, or utilize combinatorial treatments to maximize efficacy. This review provides a background into SCI pathophysiology and electrical stimulation methods, before exploring cellular and molecular mechanisms suggested in the literature. We highlight several key mechanisms that contribute to functional improvements from electrical stimulation, identify gaps in current knowledge and highlight potential research avenues for future studies.
Collapse
Affiliation(s)
- Ryan M. Dorrian
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia,*Correspondence: Ryan M. Dorrian,
| | | | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Anna V. Leonard
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
Pascual-Valdunciel A, Kurukuti NM, Montero-Pardo C, Barroso FO, Pons JL. Modulation of spinal circuits following phase-dependent electrical stimulation of afferent pathways. J Neural Eng 2023; 20. [PMID: 36603216 DOI: 10.1088/1741-2552/acb087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Objective.Peripheral electrical stimulation (PES) of afferent pathways is a tool commonly used to induce neural adaptations in some neural disorders such as pathological tremor or stroke. However, the neuromodulatory effects of stimulation interventions synchronized with physiological activity (closed-loop strategies) have been scarcely researched in the upper-limb. Here, the short-term spinal effects of a 20-minute stimulation protocol where afferent pathways were stimulated with a closed-loop strategy named selective and adaptive timely stimulation (SATS) were explored in 11 healthy subjects.Approach. SATS was applied to the radial nerve in-phase (INP) or out-of-phase (OOP) with respect to the muscle activity of the extensor carpi radialis (ECR). The neural adaptations at the spinal cord level were assessed for the flexor carpi radialis (FCR) by measuring disynaptic Group I inhibition, Ia presynaptic inhibition, Ib facilitation from the H-reflex and estimation of the neural drive before, immediately after, and 30 minutes after the intervention.Main results.SATS strategy delivered electrical stimulation synchronized with the real-time muscle activity measured, with an average delay of 17 ± 8 ms. SATS-INP induced increased disynaptic Group I inhibition (77 ± 23% of baseline conditioned FCR H-reflex), while SATS-OOP elicited the opposite effect (125 ± 46% of baseline conditioned FCR H-reflex). Some of the subjects maintained the changes after 30 minutes. No other significant changes were found for the rest of measurements.Significance.These results suggest that the short-term modulatory effects of phase-dependent PES occur at specific targeted spinal pathways for the wrist muscles in healthy individuals. Importantly, timely recruitment of afferent pathways synchronized with specific muscle activity is a fundamental principle that shall be considered when tailoring PES protocols to modulate specific neural circuits. (NCT number 04501133).
Collapse
Affiliation(s)
- Alejandro Pascual-Valdunciel
- Legs & Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, IL, United States of America.,Department of PM&R, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America.,Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain.,E.T.S. Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nish Mohith Kurukuti
- Legs & Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, IL, United States of America.,Department of Biomedical Engineering and Mechanical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
| | - Cristina Montero-Pardo
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain.,Universidad Carlos III de Madrid, Madrid, Spain
| | - Filipe Oliveira Barroso
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - José Luis Pons
- Legs & Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, IL, United States of America.,Department of PM&R, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America.,Department of Biomedical Engineering and Mechanical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
15
|
Rubio-Zarapuz A, Apolo-Arenas MD, Clemente-Suárez VJ, Costa AR, Pardo-Caballero D, Parraca JA. Acute Effects of a Session with The EXOPULSE Mollii Suit in a Fibromyalgia Patient: A Case Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2209. [PMID: 36767576 PMCID: PMC9915440 DOI: 10.3390/ijerph20032209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Fibromyalgia is a chronic disorder characterized by widespread musculoskeletal pain and associated fatigue, sleep disturbances, and other cognitive and somatic symptoms. A multidisciplinary approach including pharmacological therapies along with behavioral therapy, exercise, patient education, and pain management is a possible solution for the treatment of this disease. The EXOPULSE Mollii® method (EXONEURAL NETWORK AB, Danderyd, Sweden) is an innovative approach for non-invasive and self-administered electrical stimulation with multiple electrodes incorporated in a full-body suit, with already proven benefits for other diseases. Therefore, the present case report study aims to evaluate the effects that a 60 min session with the EXOPULSE Mollii suit has on a female fibromyalgia patient. After the intervention, we can conclude that a 60 min session with the EXOPULSE Mollii suit has beneficial effects on pain perception, muscle oxygenation, parasympathetic modulation, and function in a female fibromyalgia patient.
Collapse
Affiliation(s)
- Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
| | - María Dolores Apolo-Arenas
- Facultad de Medicina y Ciencias de la Salud, Research Group FhysioH, Universidad de Extremadura, 06006 Badajoz, Spain
| | | | - Ana Rodrigues Costa
- Departamento de Ciências Médicas e da Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7004-516 Évora, Portugal
| | - David Pardo-Caballero
- AlgeaSalud, Clinica Neurorrehabilitación Deportiva, Avenida de Elvas, 06006 Badajoz, Spain
| | - Jose A. Parraca
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7004-516 Évora, Portugal
| |
Collapse
|
16
|
Koseki T, Kudo D, Yoshida K, Nito M, Takano K, Jin M, Tanabe S, Sato T, Katoh H, Yamaguchi T. Combined neuromuscular electrical stimulation and transcutaneous spinal direct current stimulation increases motor cortical plasticity in healthy humans. Front Neurosci 2023; 16:1034451. [PMID: 37091256 PMCID: PMC10115158 DOI: 10.3389/fnins.2022.1034451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
IntroductionNeuromuscular electrical stimulation (NMES) induces neural plasticity of the central nervous system (CNS) and improves motor function in patients with CNS lesions. However, the extended stimulus duration of NMES reduces its clinical applicability. Transcutaneous spinal direct current stimulation (tsDCS), which increases afferent input, may enhance the effects and reduce the stimulus duration of NMES. This study investigated the excitability of the motor cortex, somatosensory cortex, and spinal motor neurons after the combined stimulation of NMES and tsDCS.MethodsAmong the 55 participants in this study, 24 were allocated to experiment 1, 15 to experiment 2, and 16 to experiment 3. They received intervention for 20 min on different days: (1) NMES combined with tsDCS (NMES + tsDCS), (2) NMES combined with sham tsDCS (NMES + sham tsDCS), and (3) sham NMES combined with tsDCS (sham NMES + tsDCS). NMES was delivered to the right common peroneal nerve at 25 Hz with the intensity at 120% of the motor threshold. For tsDCS, the cathodal electrode was positioned on the thoracic 10th–12th vertebral levels, and the anodal electrode was located on the right shoulder. The stimulus intensity was 2.5 mA. In experiment 1, motor evoked potentials (MEPs) and short-latency intracortical inhibition (SICI) were measured by transcranial magnetic stimulation up to 60 min after stimulation. The spinal motor neurons’ excitability was assessed by recording the posterior root muscle reflex (PRMR) induced via transcutaneous spinal cord stimulation in experiment 2, and the primary somatosensory cortex excitability was evaluated by recording the somatosensory evoked potentials (SEPs) in experiment 3 up to 15 min after stimulation.ResultsCompared to before the stimulation, NMES + tsDCS significantly increased MEP for 60 min or more, and significantly decreased SICI immediately after. Conversely contrast, the PRMR significantly decreased immediately after, and SEPs were unchanged.DiscussionThese results suggest that simultaneous afferent inputs from different stimulus positions critically induce primary motor cortex plasticity. The combined stimulation of NMES with tsDCS may facilitate the development of a new neurorehabilitation technique.
Collapse
Affiliation(s)
- Tadaki Koseki
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Daisuke Kudo
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Kaito Yoshida
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Mitsuhiro Nito
- Department of Anatomy and Structural Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Keita Takano
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Masafumi Jin
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Toshiaki Sato
- Department of Occupational Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Hiroshi Katoh
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
- *Correspondence: Tomofumi Yamaguchi,
| |
Collapse
|
17
|
Mikhailova Y, Pozdeeva A, Suleimanova A, Leukhin A, Toschev A, Lukmanov T, Fatyhova E, Magid E, Lavrov I, Talanov M. Neurointerface with oscillator motifs for inhibitory effect over antagonist muscles. Front Neurosci 2023; 17:1113867. [PMID: 37034155 PMCID: PMC10079922 DOI: 10.3389/fnins.2023.1113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
The effect of inhibitory management is usually underestimated in artificial control systems, using biological analogy. According to our hypothesis, the muscle hypertonus could be effectively compensated via stimulation by bio-plausible patterns. We proposed an approach for the compensatory stimulation device as implementation of previously presented architecture of the neurointerface, where (1) the neuroport is implemented as a DAC and stimulator, (2) neuroterminal is used for neurosimulation of a set of oscillator motifs on one-board computer. In the set of experiments with five volunteers, we measured the efficacy of motor neuron inhibition via the antagonist muscle or nerve stimulation registering muscle force with and without antagonist stimulation. For the agonist activation, we used both voluntary activity and electrical stimulation. In the case of stimulation of both the agonist and the antagonist muscles and nerves, we experimented with delays between muscle stimulation in the range of 0-20 ms. We registered the subjective discomfort rate. We did not identify any significant difference between the antagonist muscle and nerve stimulation in both voluntary activity and electrical stimulation of cases showing agonist activity. We determined the most effective delay between the stimulation of the agonist and the antagonist muscles and nerves as 10-20 ms.
Collapse
Affiliation(s)
- Yulia Mikhailova
- B-Rain Labs LLC, Kazan, Russia
- Neuromorphic Computing and Neurosimulations Laboratory, Intelligent Robotics Department, Institute of Information Technologies and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Anna Pozdeeva
- B-Rain Labs LLC, Kazan, Russia
- Kazan Federal University, Kazan, Russia
| | | | - Alexey Leukhin
- B-Rain Labs LLC, Kazan, Russia
- Neuromorphic Computing and Neurosimulations Laboratory, Intelligent Robotics Department, Institute of Information Technologies and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Alexander Toschev
- B-Rain Labs LLC, Kazan, Russia
- Neuromorphic Computing and Neurosimulations Laboratory, Intelligent Robotics Department, Institute of Information Technologies and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Timur Lukmanov
- Children's Republican Clinical Hospital, Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | - Elsa Fatyhova
- Children's Republican Clinical Hospital, Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | - Evgeni Magid
- School of Electronic Engineering, Tikhonov Moscow Institute of Electronics and Mathematics, HSE University, Moscow, Russia
- Intelligent Robotics Department, Institute of Information Technologies and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, NY, United States
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Max Talanov
- Neuromorphic Computing and Neurosimulations Laboratory, Intelligent Robotics Department, Institute of Information Technologies and Intelligent Systems, Kazan Federal University, Kazan, Russia
- Institute for Artificial Intelligence R&D, Novi Sad, Serbia
- *Correspondence: Max Talanov
| |
Collapse
|
18
|
Massey S, Vanhoestenberghe A, Duffell L. Neurophysiological and clinical outcome measures of the impact of electrical stimulation on spasticity in spinal cord injury: Systematic review and meta-analysis. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1058663. [PMID: 36589715 PMCID: PMC9801305 DOI: 10.3389/fresc.2022.1058663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
This systematic review and meta-analysis aims to determine whether non-invasive electrical stimulation (ES) is effective at reducing spasticity in people living with spinal cord injury (SCI). PubMed, Web of Science, Scopus and Cochrane Central Register of Controlled Trials databases were searched in April 2022. Primary outcome measures were the Ashworth scale (AS), Modified Ashworth scale (MAS), Pendulum test and the Penn spasm frequency scale (PSFS). Secondary outcomes were the Hoffman (H)- reflex, motor-evoked potentials (MEPs) and posterior-root reflexes (PRRs). A random-effects model, using two correlation coefficients, ( C o r r = 0.1 , C o r r = 0.2 ) determined the difference between baseline and post-intervention measures for RCTs. A quantitative synthesis amalgamated data from studies with no control group (non-RCTs). Twenty-nine studies were included: five in the meta-analysis and 17 in the amalgamation of non-RCT studies. Twenty studies measured MAS or AS scores, 14 used the Pendulum test and one used the PSFS. Four measured the H-reflex and no studies used MEPs or PRRs. Types of ES used were: transcutaneous electrical nerve stimulation (TENS), transcutaneous spinal cord stimulation (TSCS), functional electrical stimulation (FES) cycling and FES gait. Meta-analyses of 3 studies using the MAS and 2 using the Pendulum test were carried out. For MAS scores, non-invasive ES was effective at reducing spasticity compared to a control group (p = 0.01, C o r r = 0.1 ; p = 0.002, C o r r = 0.2 ). For Pendulum test outcomes, there was no statistically significant difference between intervention and control groups. Quantitative synthesis of non-RCT studies revealed that 22 of the 29 studies reported improvement in at least one measure of spasticity following non-invasive ES, 13 of which were statistically significant (p < 0.05). Activation of the muscle was not necessary to reduce spasticity. Non-invasive ES can reduce spasticity in people with SCI, according to MAS scores, for both RCT and non-RCT studies, and Pendulum test values in non-RCT studies. This review could not correlate between clinical and neurophysiological outcomes; we recommend the additional use of neurophysiological outcomes for future studies. The use of TSCS and TENS, which did not induce a muscle contraction, indicate that activation of afferent fibres is at least required for non-invasive ES to reduce spasticity.
Collapse
Affiliation(s)
- Sarah Massey
- Aspire Centre for Rehabilitation Engineering and Assistive Technologies, Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| | - Anne Vanhoestenberghe
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Lynsey Duffell
- Aspire Centre for Rehabilitation Engineering and Assistive Technologies, Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
19
|
Immediate effects of transcutaneous electrical nerve stimulation on gait patterns in chronic stroke survivors: A single group, pretest-posttest clinical trial. Hum Mov Sci 2022; 83:102948. [DOI: 10.1016/j.humov.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022]
|
20
|
Seo NJ, Ramakrishnan V, Woodbury ML, Bonilha L, Finetto C, Schranz C, Scronce G, Coupland K, Blaschke J, Baker A, Howard K, Meinzer C, Velozo CA, Adams RJ. Concomitant sensory stimulation during therapy to enhance hand functional recovery post stroke. Trials 2022; 23:262. [PMID: 35382902 PMCID: PMC8981199 DOI: 10.1186/s13063-022-06241-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background Post-stroke hand impairment is prevalent and persistent even after a full course of rehabilitation. Hand diminishes stroke survivors’ abilities for activities of daily living and independence. One way to improve treatment efficacy is to augment therapy with peripheral sensory stimulation. Recently, a novel sensory stimulation, TheraBracelet, has been developed in which imperceptible vibration is applied during task practice through a wrist-worn device. The objective of this trial is to determine if combining TheraBracelet with hand task practice is superior to hand task practice alone. Methods A double-blind randomized controlled trial will be used. Chronic stroke survivors will undergo a standardized hand task practice therapy program (3 days/week for 6 weeks) while wearing a device on the paretic wrist. The device will deliver TheraBracelet vibration for the treatment group and no vibration for the control group. The primary outcome is hand function measured by the Wolf Motor Function Test. Other outcomes include the Box and Block Test, Action Research Arm Test, upper extremity use in daily living, biomechanical measure of the sensorimotor grip control, and EEG-based neural communication. Discussion This research will determine clinical utility of TheraBracelet to guide future translation. The TheraBracelet stimulation is delivered via a wrist-worn device, does not interfere with hand motion, and can be easily integrated into clinical practice. Enhancing hand function should substantially increase stroke survivors' independence and quality of life and reduce caregiver burden. Trial registration NCT04569123. Registered on September 29, 2020
Collapse
Affiliation(s)
- Na Jin Seo
- Department of Rehabilitation Sciences, Department of Health Science and Research, Medical University of South Carolina, 151B Rutledge Ave, MSC 962, Charleston, SC, 29425, USA. .,Ralph H. Johnson VA Medical Center, Charleston, SC, USA. .,Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA.
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon St, Charleston, SC, 29425, USA
| | - Michelle L Woodbury
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, MSC 606, Charleston, SC, 29425, USA
| | - Christian Finetto
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Christian Schranz
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Gabrielle Scronce
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Kristen Coupland
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Jenna Blaschke
- Department of Rehabilitation Sciences, Department of Health Science and Research, Medical University of South Carolina, 151B Rutledge Ave, MSC 962, Charleston, SC, 29425, USA
| | - Adam Baker
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Keith Howard
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Caitlyn Meinzer
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon St, Charleston, SC, 29425, USA
| | - Craig A Velozo
- Department of Rehabilitation Sciences, Department of Health Science and Research, Medical University of South Carolina, 151B Rutledge Ave, MSC 962, Charleston, SC, 29425, USA
| | - Robert J Adams
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, MSC 606, Charleston, SC, 29425, USA
| |
Collapse
|
21
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
22
|
Takahashi Y, Kawakami M, Mikami R, Nakajima T, Nagumo T, Yamaguchi T, Honaga K, Kondo K, Ishii R, Fujiwara T, Liu M. Relationship between spinal reflexes and leg motor function in sub-acute and chronic stroke patients. Clin Neurophysiol 2022; 138:74-83. [DOI: 10.1016/j.clinph.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/27/2022] [Accepted: 02/27/2022] [Indexed: 11/03/2022]
|
23
|
Karamian BA, Siegel N, Nourie B, Serruya MD, Heary RF, Harrop JS, Vaccaro AR. The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. J Orthop Traumatol 2022; 23:2. [PMID: 34989884 PMCID: PMC8738840 DOI: 10.1186/s10195-021-00623-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022] Open
Abstract
Electrical stimulation is used to elicit muscle contraction and can be utilized for neurorehabilitation following spinal cord injury when paired with voluntary motor training. This technology is now an important therapeutic intervention that results in improvement in motor function in patients with spinal cord injuries. The purpose of this review is to summarize the various forms of electrical stimulation technology that exist and their applications. Furthermore, this paper addresses the potential future of the technology.
Collapse
Affiliation(s)
- Brian A Karamian
- Rothman Orthopaedic Institute at Thomas Jefferson University, 925 Chestnut St, 5th Floor, Philadelphia, PA, 19107, USA.
| | - Nicholas Siegel
- Rothman Orthopaedic Institute at Thomas Jefferson University, 925 Chestnut St, 5th Floor, Philadelphia, PA, 19107, USA
| | - Blake Nourie
- Rothman Orthopaedic Institute at Thomas Jefferson University, 925 Chestnut St, 5th Floor, Philadelphia, PA, 19107, USA
| | | | - Robert F Heary
- Department of Neurological Surgery, Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA
| | - James S Harrop
- Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Alexander R Vaccaro
- Rothman Orthopaedic Institute at Thomas Jefferson University, 925 Chestnut St, 5th Floor, Philadelphia, PA, 19107, USA
| |
Collapse
|
24
|
Iddings JA, Zarkou A, Field-Fote EC. Noninvasive neuromodulation and rehabilitation to promote functional restoration in persons with spinal cord injury. Curr Opin Neurol 2021; 34:812-818. [PMID: 34766554 PMCID: PMC8597924 DOI: 10.1097/wco.0000000000000997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This review will focus on the use of clinically accessible neuromodulatory approaches for functional restoration in persons with spinal cord injury (SCI). RECENT FINDINGS Functional restoration is a primary rehabilitation priority for individuals with SCI. High-tech neuromodulatory modalities have been used in laboratory settings to improve hand and walking function as well as to reduce spasticity and pain in persons with SCI. However, the cost, limited accessibility, and required expertise are prohibitive for clinical applicability of these high-tech modalities. Recent literature indicates that noninvasive and clinically accessible approaches targeting supraspinal, spinal, and peripheral neural structures can modulate neural excitability. Although a limited number of studies have examined the use of these approaches for functional restoration and amelioration of secondary complications in SCI, early evidence investigating their efficacy when combined with training is encouraging. SUMMARY Larger sample studies addressing both biomarker identification and dosing are crucial next steps in the field of neurorehabilitation research before novel noninvasive stimulation approaches can be incorporated into standard clinical practice.
Collapse
Affiliation(s)
- Jennifer A Iddings
- Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center
| | - Anastasia Zarkou
- Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center
| | - Edelle C Field-Fote
- Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center
- Division of Physical Therapy, School of Medicine, Emory University
- Program in Applied Physiology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Pennati GV, Bergling H, Carment L, Borg J, Lindberg PG, Palmcrantz S. Effects of 60 Min Electrostimulation With the EXOPULSE Mollii Suit on Objective Signs of Spasticity. Front Neurol 2021; 12:706610. [PMID: 34721255 PMCID: PMC8554021 DOI: 10.3389/fneur.2021.706610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The EXOPULSE Mollii method is an innovative full-body suit approach for non-invasive electrical stimulation, primarily designed to reduce disabling spasticity and improve motor function through the mechanism of reciprocal inhibition. This study aimed to evaluate the effectiveness of one session of stimulation with the EXOPULSE Mollii suit at different stimulation frequencies on objective signs of spasticity and clinical measures, and the subjective perceptions of the intervention. Methods: Twenty patients in the chronic phase after stroke were enrolled in a cross-over, double-blind controlled study. Electrical stimulation delivered through EXOPULSE Mollii was applied for 60 min at two active frequencies (20 and 30 Hz) and in OFF-settings (placebo) in a randomized order, every second day. Spasticity was assessed with controlled-velocity passive muscle stretches using the NeuroFlexor hand and foot modules. Surface electromyography (EMG) for characterizing flexor carpi radialis, medial gastrocnemius, and soleus muscles activation, Modified Ashworth Scale and range of motion were used as complementary tests. Finally, a questionnaire was used to assess the participants' perceptions of using the EXOPULSE Mollii suit. Results: At group level, analyses showed no significant effect of stimulation at any frequency on NeuroFlexor neural component (NC) and EMG amplitude in the upper or lower extremities (p > 0.35). Nevertheless, the effect was highly variable at the individual level, with eight patients exhibiting reduced NC (>1 N) in the upper extremity after stimulation at 30 Hz, 5 at 20 Hz and 3 in OFF settings. All these patients presented severe spasticity at baseline, i.e., NC > 8 N. Modified Ashworth ratings of spasticity and range of motion did not change significantly after stimulation at any frequency. Finally, 75% of participants reported an overall feeling of well-being during stimulation, with 25% patients describing a muscle-relaxing effect on the affected hand and/or foot at both 20 and 30 Hz. Conclusions: The 60 min of electrical stimulation with EXOPULSE Mollii suit did not reduce spasticity consistently in the upper and lower extremities in the chronic phase after stroke. Findings suggest a need for further studies in patients with severe spasticity after stroke including repeated stimulation sessions. Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT04076878, identifier: NCT04076878.
Collapse
Affiliation(s)
- Gaia Valentina Pennati
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
| | - Hanna Bergling
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
| | - Loïc Carment
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Université de Paris, Paris, France
| | - Jörgen Borg
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
| | - Påvel G Lindberg
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden.,Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Université de Paris, Paris, France
| | - Susanne Palmcrantz
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
| |
Collapse
|
26
|
Koseki T, Kudo D, Katagiri N, Nanba S, Nito M, Tanabe S, Yamaguchi T. Electrical stimulation of the common peroneal nerve and its effects on the relationship between corticomuscular coherence and motor control in healthy adults. BMC Neurosci 2021; 22:61. [PMID: 34645385 PMCID: PMC8513252 DOI: 10.1186/s12868-021-00665-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background Sensory input via neuromuscular electrical stimulation (NMES) may contribute to synchronization between motor cortex and spinal motor neurons and motor performance improvement in healthy adults and stroke patients. However, the optimal NMES parameters used to enhance physiological activity and motor performance remain unclear. In this study, we focused on sensory feedback induced by a beta-band frequency NMES (β-NMES) based on corticomuscular coherence (CMC) and investigated the effects of β-NMES on CMC and steady-state of isometric ankle dorsiflexion in healthy volunteers. Twenty-four participants received β-NMES at the peak beta-band CMC or fixed NMES (f-NMES) at 100 Hz on different days. NMES was applied to the right part of the common peroneal nerve for 20 min. The stimulation intensity was 95% of the motor threshold with a pulse width of 1 ms. The beta-band CMC and the coefficient of variation of force (Force CV) were assessed during isometric ankle dorsiflexion for 2 min. In the complementary experiment, we applied β-NMES to 14 participants and assessed beta-band CMC and motor evoked potentials (MEPs) with transcranial magnetic stimulation. Results No significant changes in the means of beta-band CMC, Force CV, and MEPs were observed before and after NMES conditions. Changes in beta-band CMC were correlated to (a) changes in Force CV immediately, at 10 min, and at 20 min after β-NMES (all cases, p < 0.05) and (b) changes in MEPs immediately after β-NMES (p = 0.01). No correlations were found after f-NMES. Conclusions Our results suggest that the sensory input via NMES was inadequate to change the beta-band CMC, corticospinal excitability, and voluntary motor output. Whereas, the β-NMES affects the relationship between changes in beta-band CMC, Force CV, and MEPs. These findings may provide the information to develop NMES parameters for neurorehabilitation in patients with motor dysfunction.
Collapse
Affiliation(s)
- Tadaki Koseki
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Daisuke Kudo
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Natsuki Katagiri
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Shigehiro Nanba
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Mitsuhiro Nito
- Department of Anatomy and Structural Science, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan. .,Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
27
|
Handelzalts S, Ballardini G, Avraham C, Pagano M, Casadio M, Nisky I. Integrating Tactile Feedback Technologies Into Home-Based Telerehabilitation: Opportunities and Challenges in Light of COVID-19 Pandemic. Front Neurorobot 2021; 15:617636. [PMID: 33679364 PMCID: PMC7925397 DOI: 10.3389/fnbot.2021.617636] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for advancing the development and implementation of novel means for home-based telerehabilitation in order to enable remote assessment and training for individuals with disabling conditions in need of therapy. While somatosensory input is essential for motor function, to date, most telerehabilitation therapies and technologies focus on assessing and training motor impairments, while the somatosensorial aspect is largely neglected. The integration of tactile devices into home-based rehabilitation practice has the potential to enhance the recovery of sensorimotor impairments and to promote functional gains through practice in an enriched environment with augmented tactile feedback and haptic interactions. In the current review, we outline the clinical approaches for stimulating somatosensation in home-based telerehabilitation and review the existing technologies for conveying mechanical tactile feedback (i.e., vibration, stretch, pressure, and mid-air stimulations). We focus on tactile feedback technologies that can be integrated into home-based practice due to their relatively low cost, compact size, and lightweight. The advantages and opportunities, as well as the long-term challenges and gaps with regards to implementing these technologies into home-based telerehabilitation, are discussed.
Collapse
Affiliation(s)
- Shirley Handelzalts
- Department of Physical Therapy, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
| | - Giulia Ballardini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Chen Avraham
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Mattia Pagano
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Maura Casadio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Ilana Nisky
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
28
|
Nakajima T, Suzuki S, Zehr EP, Komiyama T. Long-lasting changes in muscle activation and step cycle variables induced by repetitive sensory stimulation to discrete areas of the foot sole during walking. J Neurophysiol 2020; 125:331-343. [PMID: 33326346 DOI: 10.1152/jn.00376.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether repetitive electrical stimulation to discrete foot sole regions that are phase-locked to the step cycle modulates activity patterns of ankle muscles and induces neuronal adaptation during human walking. Nonnoxious repetitive foot sole stimulation (STIM; 67 pulses at 333 Hz) was given to the medial forefoot (f-M) or heel (HL) regions at 1) the stance-to-swing transition, 2) swing-to-stance transition, or 3) midstance, during every step cycle for 10 min. Stance, but not swing, durations were prolonged with f-M STIM delivered at stance-to-swing transition, and these changes remained for up to 20-30 min after the intervention. Electromyographic (EMG) burst durations and amplitudes in the ankle extensors were also prolonged and persisted for 20 min after the intervention. Interestingly, STIM to HL was ineffective at inducing modulation, suggesting stimulation location-specific adaptation. In contrast, STIM to HL (but not f-M), at the swing-to-stance phase transition, shortened the step cycle by premature termination of swing. Furthermore, the onset of EMG bursts in the ankle extensors appeared earlier than in the control condition. STIM delivered during the midstance phase was ineffective at modulating the step cycle, highlighting phase-dependent adaptation. These effects were absent when STIM was applied while mimicking static postures for each walking phase during standing. Our findings suggest that the combination of walking-related neuronal activity with repetitive sensory inputs from the foot can generate short-term adaptation that is phase-dependent and localized to the site of STIM.NEW & NOTEWORTHY Repetitive (∼10 min) long (200 ms) trains of sensory stimulation to discrete areas of the foot sole produce persistent changes in muscle activity and cycle timing during walking. Interactions between the delivery phase and stimulus location determine the expression of the adaptations. These observations bear striking similarities to those in decerebrate cat experiments and may be usefully translated to improving locomotor function after neurotrauma.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Shinya Suzuki
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka, Japan.,Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, School of Exercise Science, University of Victoria, Victoria, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Tomoyoshi Komiyama
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Koganei, Japan.,Division of Health and Sports Scieces, Faculty of Education, Chiba University, Chiba, Japan
| |
Collapse
|
29
|
Milosevic M, Marquez-Chin C, Masani K, Hirata M, Nomura T, Popovic MR, Nakazawa K. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomed Eng Online 2020; 19:81. [PMID: 33148270 PMCID: PMC7641791 DOI: 10.1186/s12938-020-00824-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.
Collapse
Affiliation(s)
- Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan.
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
30
|
Motor point stimulation primarily activates motor nerve. Neurosci Lett 2020; 736:135246. [PMID: 32673689 DOI: 10.1016/j.neulet.2020.135246] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
Electrical stimulation for inducing muscle contraction can be divided into peripheral nerve stimulation (PNS) and motor point stimulation (MPS). Although the neural pathways activated by PNS have been well studied, those by MPS are still unclear. Here we investigated whether MPS activates Ia-sensory nerves and induces antidromic firing of motor nerves. Ten able-bodied males and females participated in this study. We confirmed that soleus MPS did not induce the H-reflex while soleus PNS did. Furthermore, MPS of the tibialis anterior muscle did not induce the reciprocal inhibition of soleus muscle while PNS did. For testing the effect of MPS on motor neuron excitability, we examined the H-reflex modulation by soleus MPS. When the conditioning and test interval was under 100-ms and the conditioning stimulus intensity was above 30-mA, soleus MPS induced the H-reflex inhibition. This suggests that soleus MPS produces antidromic firing that can induce after-hyperpolarization. These results suggest that MPS predominantly activates the motor nerve without depolarizing the Ia-sensory nerve. Since MPS is applicable to larger number of muscles compared to PNS, utilizing MPS can lead to more versatile neuromodulation of the spinal cord.
Collapse
|
31
|
Hirabayashi R, Kojima S, Edama M, Onishi H. Activation of the Supplementary Motor Areas Enhances Spinal Reciprocal Inhibition in Healthy Individuals. Brain Sci 2020; 10:brainsci10090587. [PMID: 32847117 PMCID: PMC7565304 DOI: 10.3390/brainsci10090587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 02/02/2023] Open
Abstract
The supplementary motor area (SMA) may modulate spinal reciprocal inhibition (RI) because the descending input from the SMA is coupled to interneurons in the spinal cord via the reticulospinal tract. Our study aimed to verify whether the anodal transcranial direct current stimulation (anodal-tDCS) of the SMA enhances RI. Two tDCS conditions were used: the anodal stimulation (anodal-tDCS) and sham stimulation (sham-tDCS) conditions. To measure RI, there were two conditions: one with the test stimulus (alone) and the other with the conditioning-test stimulation intervals (CTIs), including 2 ms and 20 ms. RI was calculated at multiple time points: before the tDCS intervention (Pre); at 5 (Int 5) and 10 min; and immediately after (Post 0); and at 5, 10 (Post 10), 15, and 20 min after the intervention. In anodal-tDCS, the amplitude values of H-reflex were significantly reduced for a CTI of 2 ms at Int 5 to Post 0, and a CTI of 20 ms at Int 5 to Pot 10 compared with Pre. Stimulation of the SMA with anodal-tDCS for 15 min activated inhibitory interneurons in RIs by descending input from the reticulospinal tract via cortico–reticulospinal projections. The results showed that 15 min of anodal-tDCS in the SMA enhanced and sustained RI in healthy individuals.
Collapse
|
32
|
Palmcrantz S, Pennati GV, Bergling H, Borg J. Feasibility and potential effects of using the electro-dress Mollii on spasticity and functioning in chronic stroke. J Neuroeng Rehabil 2020; 17:109. [PMID: 32778118 PMCID: PMC7419224 DOI: 10.1186/s12984-020-00740-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Spasticity after lesions of central motor pathways may be disabling and there is a need for new, cost-effective treatment methods. One novel approach is offered by the electro-dress Mollii®, primarily designed to enhance reciprocal inhibition of spastic muscles by multifocal, transcutaneous antagonist stimulation. Methods The Mollii® suit was set individually for 20 participants living with spasticity and hemiplegia after stroke and used in the home setting for 6 weeks. Usability and perceived effects were monitored by weekly telephone interviews. Outcome was assessed by use of the NeuroFlexor™ method for quantification of the neural component (NC) of resistance to passive stretch (spasticity), and the modified Ashworth scale (MAS) for total resistance, Fugl-Meyer Assessment of motor recovery for sensorimotor function in upper (FM-UE) and lower extremities (FM-LE), activity performance with the Action Research Arm Test (ARAT), Berg balance scale, 10 m and 6 min walk tests, and perceived functioning with the Stroke Impact Scale. Results Compliance was high (mean 19.25 of 21 sessions). Perceived positive effects were reported by 60% and most commonly related to decreased muscle tone (n = 9), improved gait pattern function (n = 7) and voluntary movement in the upper extremity (n = 6). On a group level, the NC decreased significantly in the wrist flexors of the affected hand (p = 0.023) and significant improvements according to FM-UE (p = 0.000) and FM-LE (p = 0.003) were seen after the intervention. No significant difference was detected with MAS or assessed activity performance, except for the ARAT (p = 0.000). FM-UE score change correlated significantly and fairly with the perceived effect in the upper extremity (r 0.498 p = 0.025) and in the corresponding analysis for the FM-LE and perceived effect in the lower extremity (r = 0.469 p = 0.037). Conclusion This study indicates that the Mollii® method is feasible when used in the home setting to decrease spasticity and improve sensorimotor function. The results may guide a larger controlled study combined with rehabilitation interventions to enhance effects on activity and participation domains. Trial registration NCT04076878. Registered 2 September 2019 - Retrospectively registered
Collapse
Affiliation(s)
- Susanne Palmcrantz
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Entrévagen 8, SE-182 88, Stockholm, Sweden.
| | - Gaia Valentina Pennati
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Entrévagen 8, SE-182 88, Stockholm, Sweden
| | - Hanna Bergling
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Entrévagen 8, SE-182 88, Stockholm, Sweden
| | - Jörgen Borg
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Entrévagen 8, SE-182 88, Stockholm, Sweden
| |
Collapse
|
33
|
Hirabayashi R, Edama M, Kojima S, Miyaguchi S, Onishi H. Enhancement of spinal reciprocal inhibition depends on the movement speed and range of repetitive passive movement. Eur J Neurosci 2020; 52:3929-3943. [DOI: 10.1111/ejn.14855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| |
Collapse
|
34
|
Pearcey GEP, Zehr EP. Repeated and patterned stimulation of cutaneous reflex pathways amplifies spinal cord excitability. J Neurophysiol 2020; 124:342-351. [PMID: 32579412 DOI: 10.1152/jn.00072.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Priming with patterned stimulation of antagonist muscle afferents induces modulation of spinal cord excitability as evidenced by changes in group Ia reciprocal inhibition. When assessed transiently with a condition-test pulse paradigm, stimulating cutaneous afferents innervating the foot reduces Ia presynaptic inhibition and facilitates soleus Hoffmann (H)-reflex amplitudes. Modulatory effects (i.e., priming) of longer lasting sensory stimulation of cutaneous afferents innervating the foot have yet to be examined. As a first step, we examined how priming with 20 min of patterned and alternating stimulation between the left and right foot affects spinal cord excitability. During priming, stimulus trains (550 ms; consisting of twenty-eight 1-ms pulses at 51 Hz, 1.2 times the radiating threshold) were applied simultaneously to the sural and plantar nerves of the ankle. Stimulation to the left and right ankle was out of phase by 500 ms. We evoked soleus H-reflexes and muscle compound action potentials (M waves) before and following priming stimulation to provide a proxy measure of spinal cord excitability. H-reflex and M-wave recruitment curves were recorded at rest, during brief (<2 min) arm cycling, and with sural conditioning [train of five 1-ms pulses at 2 times the radiating threshold (RT) with a condition-test interval (C-T) = 80 ms]. Data indicate an increase in H-reflex excitability following priming via patterned sensory stimulation. Transient sural conditioning was less effective following priming, indicating that the increased excitability of the H-reflex is partially attributable to reductions in group Ia presynaptic inhibition. Sensory stimulation to cutaneous afferents, which enhances spinal cord excitability, may prove useful in both rehabilitation and performance settings.NEW & NOTEWORTHY Priming via patterned stimulation of the nervous system induces neuroplasticity. Yet, accessing previously known cutaneous reflex pathways to alter muscle reflex excitability has not yet been examined. Here, we show that sensory stimulation of the cutaneous afferents that innervate the foot sole can amplify spinal cord excitability, which, in this case, is attributed to reductions in presynaptic inhibition.
Collapse
Affiliation(s)
- Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
35
|
Fujiwara T. The role of spinal reciprocal inhibition and intracortical inhibition in functional recovery from stroke. Exp Brain Res 2020; 238:1701-1705. [PMID: 32556426 DOI: 10.1007/s00221-020-05849-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/09/2020] [Indexed: 11/28/2022]
Abstract
Spinal reciprocal inhibition (RI) and intracortical inhibition are important physiological mechanisms for voluntary movement control and functional recovery of voluntary movement in patients with stroke. Spasticity, which impairs motor performance, is one of the major manifestations of stroke. RI may be involved in reducing spasticity. This might allow finger extension, and, therefore, better hand function by reducing co-contraction with finger extensors. One potential mechanism of functional reorganization of the motor cortex is that pre-existing masking pathways are unmasked by decreased intracortical inhibition. The inhibitory neurotransmitter GABA plays an important role in this process. Changes in RI might be mediated through unmasking of cortical pathways through decreased inhibition, with the neurotransmitter GABA. These changes can be assessed using short-latency intracortical inhibition (SICI) and RI. Functional recovery in the chronic phase of stroke induced by rehabilitation was accompanied by SICI and spinal RI changes. Cortical reorganization and spinal plasticity might play important roles in functional recovery induced by rehabilitation, even in patients with chronic severe hemiparesis. This review aims to provide a focused overview of neuroplasticity of spinal RI and intracortical inhibition associated with functional motor recovery from stroke.
Collapse
Affiliation(s)
- Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| |
Collapse
|
36
|
Nakagawa K, Tomoi M, Higashi K, Utsumi S, Kawano R, Tanaka E, Kurisu K, Yuge L. Short-term effect of a close-fitting type of walking assistive device on spinal cord reciprocal inhibition. J Clin Neurosci 2020; 77:142-147. [PMID: 32386864 DOI: 10.1016/j.jocn.2020.04.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
Abstract
One of the major problems with walking encountered by patients with spastic hemiplegia is diminished toe clearance due to spasticity of their leg muscles. To improve their walking, a specialized robot assist for ankle movements (RE-Gait) has been utilized. The present study examined the neurophysiological effects whether spinal cord reciprocal Ia inhibition (RI) in the leg was altered by using RE-Gait. Sixteen patients with a clinical diagnosis of stroke were divided into the two groups, RE-Gait walking group (Group R) and normal (controlled) walking group (Group C). In each group, they walked on a flat floor for 15 min with or without RE-Gait. The depression of soleus (Sol) H-reflexes conditioned by common peroneal nerve stimuli with the conditioning-test (C-T) intervals of 1, 2, 3, and 4 ms were assessed before and immediately after each walking session. After the intervention, the LSM (SE) of Sol H-reflex amplitude with 1, 2 and 3 ms C-T interval conditions were significantly decreased in group R (1 ms: 88.15 (4.60), 2 ms: 86.37 (4.60), 3 ms: 89.68 (4.62)) compared to group C (1 ms: 105.57 (4.56), 2 ms: 100.89 (4.58), 3 ms: 107.72 (4.58)) [1 ms: p = 0.012, 2 ms: p = 0.035, 3 ms: p = 0.011]. Walking assistive robot that targets ankle movements might be a new rehabilitation tool for regulating spinal cord excitability.
Collapse
Affiliation(s)
- Kei Nakagawa
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Tomoi
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keita Higashi
- Department of Rehabilitation, Innoshima Medical Association Hospital, Onomichi, Japan
| | - Sho Utsumi
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Reo Kawano
- Center for Integrated Medical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Eiichiro Tanaka
- Graduate School of Information, Production and Systems, Faculty of Science and Engineering, Waseda University, Kita-Kyushu, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
37
|
Vasanthan LT, Nehrujee A, Solomon J, Tilak M. Electrical stimulation for people with spinal cord injury. Cochrane Database Syst Rev 2019; 2019:CD013481. [PMCID: PMC6872956 DOI: 10.1002/14651858.cd013481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To assess the: therapeutic and functional efficacy of electrical stimulation in people with spinal cord injury safety of providing electrical stimulation to people with spinal cord injury.
Collapse
Affiliation(s)
- Lenny T Vasanthan
- Christian Medical CollegePhysiotherapy Unit, Department of Physical Medicine and RehabilitationVelloreIndia
| | - Arun Nehrujee
- New York UniversityDepartment of Physical TherapyNew YorkUSA
| | - John Solomon
- MCOAHS, Manipal UniversityDepartment of Physiotherapy2nd Floor, AHS buildingMadhav NagarManipalIndia576104
| | - Merlyn Tilak
- Christian Medical CollegePhysiotherapy Unit, Department of Physical Medicine and RehabilitationVelloreIndia
| |
Collapse
|
38
|
Effects of repetitive passive movement on ankle joint on spinal reciprocal inhibition. Exp Brain Res 2019; 237:3409-3417. [DOI: 10.1007/s00221-019-05689-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
|
39
|
Hofstoetter US, Freundl B, Danner SM, Krenn MJ, Mayr W, Binder H, Minassian K. Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. J Neurotrauma 2019; 37:481-493. [PMID: 31333064 DOI: 10.1089/neu.2019.6588] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidural spinal cord stimulation (SCS) is currently regarded as a breakthrough procedure for enabling movement after spinal cord injury (SCI), yet one of its original applications was for spinal spasticity. An emergent method that activates similar target neural structures non-invasively is transcutaneous SCS. Its clinical value for spasticity control would depend on inducing carry-over effects, because the surface-electrode-based approach cannot be applied chronically. We evaluated single-session effects of transcutaneous lumbar SCS in 12 individuals with SCI by a test-battery approach, before, immediately after and 2 h after intervention. Stimulation was applied for 30 min at 50 Hz with an intensity sub-threshold for eliciting reflexes in lower extremity muscles. The tests included evaluations of stretch-induced spasticity (Modified Ashworth Scale [MAS] sum score, pendulum test, electromyography-based evaluation of tonic stretch reflexes), clonus, cutaneous-input-evoked spasms, and the timed 10 m walk test. Across participants, the MAS sum score, clonus, and spasms were significantly reduced immediately after SCS, and all spasticity measures were improved 2 h post-intervention, with large effect sizes and including clinically meaningful improvements. The effect on walking speed varied across individuals. We further conducted a single-case multi-session study over 6 weeks to explore the applicability of transcutaneous SCS as a home-based therapy. Self-application of the intervention was successful; weekly evaluations suggested progressively improving therapeutic effects during the active period and carry-over effects for 7 days. Our results suggest that transcutaneous SCS can be a viable non-pharmacological option for managing spasticity, likely working through enhancing pre- and post-synaptic spinal inhibitory mechanisms, and may additionally serve to identify responders to treatments with epidural SCS.
Collapse
Affiliation(s)
- Ursula S Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Brigitta Freundl
- Neurological Center, SMZ Baumgartner Hoehe, Otto-Wagner-Hospital, Vienna, Austria
| | - Simon M Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Matthias J Krenn
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, Mississippi
| | - Winfried Mayr
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Heinrich Binder
- Neurological Center, SMZ Baumgartner Hoehe, Otto-Wagner-Hospital, Vienna, Austria
| | - Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Cho N, Squair JW, Bloch J, Courtine G. Neurorestorative interventions involving bioelectronic implants after spinal cord injury. Bioelectron Med 2019; 5:10. [PMID: 32232100 PMCID: PMC7098222 DOI: 10.1186/s42234-019-0027-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
In the absence of approved treatments to repair damage to the central nervous system, the role of neurosurgeons after spinal cord injury (SCI) often remains confined to spinal cord decompression and vertebral fracture stabilization. However, recent advances in bioelectronic medicine are changing this landscape. Multiple neuromodulation therapies that target circuits located in the brain, midbrain, or spinal cord have been able to improve motor and autonomic functions. The spectrum of implantable brain-computer interface technologies is also expanding at a fast pace, and all these neurotechnologies are being progressively embedded within rehabilitation programs in order to augment plasticity of spared circuits and residual projections with training. Here, we summarize the impending arrival of bioelectronic medicine in the field of SCI. We also discuss the new role of functional neurosurgeons in neurorestorative interventional medicine, a new discipline at the intersection of neurosurgery, neuro-engineering, and neurorehabilitation.
Collapse
Affiliation(s)
- Newton Cho
- École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Center for Neuroprosthetics and Brain Mind Institute, 1202 Genève, Switzerland.,2Department of Neurosurgery, University of Toronto, Toronto, Ontario Canada
| | - Jordan W Squair
- École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Center for Neuroprosthetics and Brain Mind Institute, 1202 Genève, Switzerland.,3Cumming School of Medicine, University of Calgary, Calgary, Canada.,4MD/PhD Training Program, University of British Columbia, Vancouver, Canada
| | - Jocelyne Bloch
- 5Department of Neurosurgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,6Defitech Center for Interventional Neurotherapies, EPFL / CHUV, Lausanne, Switzerland
| | - Grégoire Courtine
- École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Center for Neuroprosthetics and Brain Mind Institute, 1202 Genève, Switzerland.,5Department of Neurosurgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,6Defitech Center for Interventional Neurotherapies, EPFL / CHUV, Lausanne, Switzerland
| |
Collapse
|
41
|
Takahashi Y, Kawakami M, Yamaguchi T, Idogawa Y, Tanabe S, Kondo K, Liu M. Effects of Leg Motor Imagery Combined With Electrical Stimulation on Plasticity of Corticospinal Excitability and Spinal Reciprocal Inhibition. Front Neurosci 2019; 13:149. [PMID: 30846928 PMCID: PMC6393385 DOI: 10.3389/fnins.2019.00149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
Motor imagery (MI) combined with electrical stimulation (ES) enhances upper-limb corticospinal excitability. However, its after-effects on both lower limb corticospinal excitability and spinal reciprocal inhibition remain unknown. We aimed to investigate the effects of MI combined with peripheral nerve ES (MI + ES) on the plasticity of lower limb corticospinal excitability and spinal reciprocal inhibition. Seventeen healthy individuals performed the following three tasks on different days, in a random order: (1) MI alone; (2) ES alone; and (3) MI + ES. The MI task consisted of repetitive right ankle dorsiflexion for 20 min. ES was percutaneously applied to the common peroneal nerve at a frequency of 100 Hz and intensity of 120% of the sensory threshold of the tibialis anterior (TA) muscle. We examined changes in motor-evoked potential (MEP) of the TA (task-related muscle) and soleus muscle (SOL; task-unrelated muscle). We also examined disynaptic reciprocal inhibition before, immediately after, and 10, 20, and 30 min after the task. MI + ES significantly increased TA MEPs immediately and 10 min after the task compared with baseline, but did not change the task-unrelated muscle (SOL) MEPs. MI + ES resulted in a significant increase in the magnitude of reciprocal inhibition immediately and 10 min after the task compared with baseline. MI and ES alone did not affect TA MEPs or reciprocal inhibition. MI combined with ES is effective in inducing plastic changes in lower limb corticospinal excitability and reciprocal Ia inhibition.
Collapse
Affiliation(s)
- Yoko Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomofumi Yamaguchi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | | | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | | | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Effect of electrical stimulation on muscle atrophy and spasticity in patients with spinal cord injury – a systematic review with meta-analysis. Spinal Cord 2019; 57:258-266. [DOI: 10.1038/s41393-019-0250-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 11/09/2022]
|
43
|
Short-term inhibition of spinal reflexes in multiple lower limb muscles after neuromuscular electrical stimulation of ankle plantar flexors. Exp Brain Res 2018; 237:467-476. [DOI: 10.1007/s00221-018-5437-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
|
44
|
Rocchi L, Suppa A, Leodori G, Celletti C, Camerota F, Rothwell J, Berardelli A. Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration. Front Neurol 2018; 9:935. [PMID: 30450077 PMCID: PMC6225532 DOI: 10.3389/fneur.2018.00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
The spinal cord spinal cord has in the past been considered a hardwired system which responds to inputs in a stereotyped way. A growing body of data have instead demonstrated its ability to retain information and modify its effector capabilities, showing activity-dependent plasticity. Whereas, plasticity in the spinal cord is well documented after different forms of physical exercise, whether exogenous stimulation can induce similar changes is still a matter of debate. This issue is both of scientific and clinical relevance, since at least one form of stimulation, i.e., focal muscle vibration (fMV), is currently used as a treatment for spasticity. The aim of the present study was to assess whether fMV can induce plasticity at the SC level when applied to different muscles of the upper limb. Changes in different electrophysiological measures, such as H-reflex testing homonymous and heteronymous pathways, reciprocal inhibition and somatosensory evoked potentials were used as outcomes. We found that fMV was able to induce long-term depression-like plasticity in specific spinal cord circuits depending on the muscle vibrated. These findings helped understand the basic mechanisms underlying the effects of fMV and might help to develop more advanced stimulation protocols.
Collapse
Affiliation(s)
- Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Clinical Neurophysiology, IRCCS Neuromed Institute, Pozzilli, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Clinical Neurophysiology, IRCCS Neuromed Institute, Pozzilli, Italy
| | - Claudia Celletti
- Physical Medicine and Rehabilitation Division, Sapienza University of Rome, Rome, Italy
| | - Filippo Camerota
- Physical Medicine and Rehabilitation Division, Sapienza University of Rome, Rome, Italy
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Clinical Neurophysiology, IRCCS Neuromed Institute, Pozzilli, Italy
| |
Collapse
|
45
|
Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 2018; 563:65-71. [DOI: 10.1038/s41586-018-0649-2] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|
46
|
Okuyama K, Ogura M, Kawakami M, Tsujimoto K, Okada K, Miwa K, Takahashi Y, Abe K, Tanabe S, Yamaguchi T, Liu M. Effect of the combination of motor imagery and electrical stimulation on upper extremity motor function in patients with chronic stroke: preliminary results. Ther Adv Neurol Disord 2018; 11:1756286418804785. [PMID: 30327684 PMCID: PMC6178123 DOI: 10.1177/1756286418804785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Background The combination of motor imagery (MI) and afferent input with electrical stimulation (ES) enhances the excitability of the corticospinal tract compared with motor imagery alone or electrical stimulation alone. However, its therapeutic effect is unknown in patients with hemiparetic stroke. We performed a preliminary examination of the therapeutic effects of MI + ES on upper extremity (UE) motor function in patients with chronic stroke. Methods A total of 10 patients with chronic stroke demonstrating severe hemiparesis participated. The imagined task was extension of the affected finger. Peripheral nerve electrical stimulation was applied to the radial nerve at the spiral groove. MI + ES intervention was conducted for 10 days. UE motor function as assessed with the Fugl-Meyer assessment UE motor score (FMA-UE), the amount of the affected UE use in daily life as assessed with a Motor Activity Log (MAL-AOU), and the degree of hypertonia in flexor muscles as assessed with the Modified Ashworth Scale (MAS) were evaluated before and after intervention. To assess the change in spinal neural circuits, reciprocal inhibition between forearm extensor and flexor muscles with the H reflex conditioning-test paradigm at interstimulus intervals (ISIs) of 0, 20, and 100 ms were measured before and after intervention. Results UE motor function, the amount of the affected UE use, and muscle hypertonia in flexor muscles were significantly improved after MI + ES intervention (FMA-UE: p < 0.01, MAL-AOU: p < 0.01, MAS: p = 0.02). Neurophysiologically, the intervention induced restoration of reciprocal inhibition from the forearm extensor to the flexor muscles (ISI at 0 ms: p = 0.03, ISI at 20 ms: p = 0.03, ISI at 100 ms: p = 0.01). Conclusion MI + ES intervention was effective for improving UE motor function in patients with severe paralysis.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Miho Ogura
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kengo Tsujimoto
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kohsuke Okada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuma Miwa
- Department of Rehabilitation Medicine, Keio University Hospital, Tokyo, Japan
| | - Yoko Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Abe
- Department of Rehabilitation Medicine, Keio University Hospital, Tokyo, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake-shi, Aichi, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata-shi, Yamagata, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Takahashi Y, Fujiwara T, Yamaguchi T, Matsunaga H, Kawakami M, Honaga K, Mizuno K, Liu M. Voluntary contraction enhances spinal reciprocal inhibition induced by patterned electrical stimulation in patients with stroke. Restor Neurol Neurosci 2018; 36:99-105. [PMID: 29439361 DOI: 10.3233/rnn-170759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Reciprocal inhibition (RI) may be important for recovering locomotion after stroke. Patterned electrical stimulation (PES) can modulate RI in a manner that could be enhanced by voluntary muscle contraction (VC). OBJECTIVE To investigate whether VC enhances the PES-induced spinal RI in patients with stroke. METHODS Twelve patients with chronic stroke underwent three 20 min tasks, each on different days: (1) PES (10 pulses, 100 Hz every 2 s) applied to the common peroneal nerve; (2) VC consisting of isometric contraction of the affected-side tibialis anterior muscle; (3) PES combined with VC (PES + VC). RI from the tibialis anterior to the soleus muscle was assessed before, immediately after, and 10, 20, and 30 min after the task. RESULTS Compared to the baseline, PES + VC significantly increased the changes in reciprocal inhibition at immediately after and 10 min after the task. PES alone significantly increased this change immediately after the task, while VC alone showed no significant increase. CONCLUSION VC enhanced the PES-induced plastic changes in RI in patients with stroke. This effect can potentially increase the success rate of newer neurorehabilitative approaches in achieving functional recovery after stroke.
Collapse
Affiliation(s)
- Yoko Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomofumi Yamaguchi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan.,JSPS Overseas Research Fellow.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Honaga
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Katsuhiro Mizuno
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Patellar Tendon Reflex and Vastus Medialis Hoffmann Reflex Are Down Regulated and Correlated in Women With Patellofemoral Pain. Arch Phys Med Rehabil 2018; 100:514-519. [PMID: 30059658 DOI: 10.1016/j.apmr.2018.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The aims of this study were threefold: (1) to compare the amplitude of patellar tendon reflex (T-reflex) between women with patellofemoral pain (PFP) and pain-free controls; (2) to compare the amplitude of vastus medialis Hoffmann reflex (VM H-reflex) between women with PFP and pain-free controls; (3) to investigate the association between the amplitude of patellar T-reflex and VM H-reflex in women with PFP and pain-free controls. DESIGN Cross-sectional observational study. SETTING Laboratory of biomechanics and motor control. PARTICIPANTS Thirty women with PFP and 30 pain-free women aged 18 to 35 years (N=60). MAIN OUTCOME MEASURES Peak-to-peak amplitudes of maximal VM H-reflex (elicited via electrical stimulation on the femoral nerve) and patellar T-reflex (elicited via mechanical percussion on the patellar tendon) were estimated. RESULTS Women with PFP had significant lower amplitude of patellar T-reflex (mean difference=0.086; 95% confidence interval=0.020 to 0.151; P=.010; moderate effect) and VM H-reflex (mean difference=0.150; 95% confidence interval =0.073 to 0.227; P<.001; large effect) compared to pain-free controls. The VM H-reflex was strongly correlated with patellar T-reflex in both PFP group (r=0.66; P<.001) and control group (r=0.72; P<.001). CONCLUSIONS As the T-reflex is easier to perform than H-reflex assessments in a clinical setting, it represents a feasible option to assess the impaired excitability of the stretch reflex pathway associated with PFP.
Collapse
|
49
|
Yamaguchi T, Fujiwara T, Lin SC, Takahashi Y, Hatori K, Liu M, Huang YZ. Priming With Intermittent Theta Burst Transcranial Magnetic Stimulation Promotes Spinal Plasticity Induced by Peripheral Patterned Electrical Stimulation. Front Neurosci 2018; 12:508. [PMID: 30087593 PMCID: PMC6066516 DOI: 10.3389/fnins.2018.00508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/05/2018] [Indexed: 01/04/2023] Open
Abstract
This study explored the effect of corticospinal activity on spinal plasticity by examining the interactions between intermittent theta burst transcranial magnetic stimulation (iTBS) of the motor cortex and peripheral patterned electrical stimulation (PES) of the common peroneal nerve (CPN). Healthy volunteers (n = 10) received iTBS to the tibialis anterior (TA) muscle zone of the motor cortex and PES of the CPN in three separate sessions: (1) iTBS-before-PES, (2) iTBS-after-PES, and (3) sham iTBS-before-PES. The PES protocol used 10 100-Hz pulses every 2 s for 20 min. Reciprocal inhibition (RI) from the TA to soleus muscle and motor cortical excitability of the TA and soleus muscles were assessed at baseline, before PES, and 0, 15, 30, and 45 min after PES. When compared to the other protocols, iTBS-before-PES significantly increased changes in disynaptic RI for 15 min and altered long-loop presynaptic inhibition immediately after PES. Moreover, the iTBS-induced cortical excitability changes in the TA before PES were correlated with the enhancement of disynaptic RI immediately after PES. These results demonstrate that spinal plasticity can be modified by altering cortical excitability. This study provides insight into the interactions between modulation of corticospinal excitability and spinal RI, which may help in developing new rehabilitation strategies.
Collapse
Affiliation(s)
- Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan.,Department of Rehabilitation Medicine, Keio University School of Medicine, Keio University, Tokyo, Japan.,Postdoctoral Fellow for Research Abroad (JSPS), Tokyo, Japan.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Su-Chuan Lin
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yoko Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Keio University, Tokyo, Japan
| | - Kozo Hatori
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Keio University, Tokyo, Japan
| | - Ying-Zu Huang
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| |
Collapse
|
50
|
Springer S, Kozol Z, Reznic Z. Ulnar Nerve Conduction Block Using Surface Kilohertz Frequency Alternating Current: A Feasibility Study. Artif Organs 2018. [PMID: 29517147 DOI: 10.1111/aor.13119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of this study was to test the effects of kilohertz frequency alternating current (KHFAC) surface stimulation applied to the ulnar nerve on force and myoelectrical activity of the abductor digiti minimi (ADM) muscle. Eighteen healthy volunteers (age: 27.6 ± 7.9 years; 10 males, 8 females) were included in the study. Each subject participated in one session during which a biphasic 7 kHz rectangular pulse was delivered above the medial epicondyle of the humerus to induce ulnar nerve blocking. ADM electromyographic (EMG) activity and contraction force were measured before (Pre), immediately after, and following 5 and 10 min post stimulation (post 1, post 2). The results showed that EMG activity decreased immediately after stimulation compared to prestimulation, it returned to the level of prestimulation at 5 min (post 1), and decreased again at 10 min (post 2). Furthermore, analysis of compound adjusted z-score indicated significant decrease of force and myoelectrical activity immediately, and 10 min post stimulation. The findings, which demonstrate that KHFAC surface stimulation of the ulnar nerve may decrease the motor activity of intrinsic hand muscle, can help to develop future methods of neuromodulation to treat hand spasticity.
Collapse
Affiliation(s)
- Shmuel Springer
- Department of Physiotherapy, Ariel University, Ariel, Israel
| | - Zvi Kozol
- Department of Physiotherapy, Ariel University, Ariel, Israel
| | - Zvi Reznic
- Spotlight Technologies, Tel Aviv, Israel
| |
Collapse
|