1
|
Kim BK, Goncharov T, Archaimbault SA, Roudnicky F, Webster JD, Westenskow PD, Vucic D. RIP1 inhibition protects retinal ganglion cells in glaucoma models of ocular injury. Cell Death Differ 2025; 32:353-368. [PMID: 39448868 PMCID: PMC11802773 DOI: 10.1038/s41418-024-01390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Receptor-interacting protein 1 (RIP1, RIPK1) is a critical mediator of multiple signaling pathways that promote inflammatory responses and cell death. The kinase activity of RIP1 contributes to the pathogenesis of a number of inflammatory and neurodegenerative diseases. However, the role of RIP1 in retinopathies remains unclear. This study demonstrates that RIP1 inhibition protects retinal ganglion cells (RGCs) in preclinical glaucoma models. Genetic inactivation of RIP1 improves RGC survival and preserves retinal function in the preclinical glaucoma models of optic nerve crush (ONC) and ischemia-reperfusion injury (IRI). In addition, the involvement of necroptosis in ONC and IRI glaucoma models was examined by utilizing RIP1 kinase-dead (RIP1-KD), RIP3 knockout (RIP3-KO), and MLKL knockout (MLKL-KO) mice. The number of RGCs, retinal thickness, and visual acuity were rescued in RIP1-kinase-dead (RIP1-KD) mice in both models, while wild-type (WT) mice experienced significant retinal thinning, RGC loss, and vision impairment. RIP3-KO and MLKL-KO mice showed moderate protective effects in the IRI model and limited in the ONC model. Furthermore, we confirmed that a glaucoma causative mutation in optineurin, OPTN-E50K, sensitizes cells to RIP1-mediated inflammatory cell death. RIP1 inhibition reduces RGC death and axonal degeneration following IRI in mice expressing OPTN-WT and OPTN-E50K variant mice. We demonstrate that RIP1 inactivation suppressed microglial infiltration in the RGC layer following glaucomatous damage. Finally, this study highlights that human glaucomatous retinas exhibit elevated levels of TNF and RIP3 mRNA and microglia infiltration, thus demonstrating the role of neuroinflammation in glaucoma pathogenesis. Altogether, these data indicate that RIP1 plays an important role in modulating neuroinflammation and that inhibiting RIP1 activity may provide a neuroprotective therapy for glaucoma.
Collapse
Affiliation(s)
- Bo Kyoung Kim
- Department of Ophthalmology Discovery, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tatiana Goncharov
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Sébastien A Archaimbault
- Department of Ophthalmology Discovery, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Filip Roudnicky
- Therapeutic Modalities, Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Peter D Westenskow
- Department of Ophthalmology Discovery, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Domagoj Vucic
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA, USA.
| |
Collapse
|
2
|
Gibbons L, Doyle S. A Role for SARM1 in Photoreceptor Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:183-187. [PMID: 39930193 DOI: 10.1007/978-3-031-76550-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Photoreceptor cell death is a common feature of many retinal degenerative diseases, leading to incurable vision loss. While there is evidence to support the involvement of cell death pathways such as apoptosis and necroptosis in the degeneration of photoreceptors, the inhibition of these pathways has not been sufficient to rescue photoreceptors and preserve vision in a number of models of disease. Therefore, there is a need to identify other pathways involved in photoreceptor cell death. SARM1 is a TLR adaptor protein with a novel role in the induction of axonal degeneration and neuronal cell death. Our lab and others have demonstrated a role for SARM1 in the induction of photoreceptor cell death in models of retinal degenerative disease. Here, we summarize the current knowledge on SARM1 function and its role in photoreceptor cell death.
Collapse
Affiliation(s)
- Luke Gibbons
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Sarah Doyle
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Depleted Calcium Stores and Increased Calcium Entry in Rod Photoreceptors of the Cacna2d4 Mouse Model of Cone-Rod Dystrophy RCD4. Int J Mol Sci 2022; 23:ijms232113080. [DOI: 10.3390/ijms232113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Unidentified pathogenetic mechanisms and genetic and clinical heterogeneity represent critical factors hindering the development of treatments for inherited retinal dystrophies. Frameshift mutations in Cacna2d4, which codes for an accessory subunit of voltage-gated calcium channels (VGCC), cause cone-rod dystrophy RCD4 in patients, but the underlying mechanisms remain unknown. To define its pathogenetic mechanisms, we investigated the impact of a Cacna2d4 frameshift mutation on the electrophysiological profile and calcium handling of mouse rod photoreceptors by patch-clamp recordings and calcium imaging, respectively. In mutant (MUT) rods, the dysregulation of calcium handling extends beyond the reduction in calcium entry through VGCC and surprisingly involves internal calcium stores’ depletion and upregulation of calcium entry via non-selective cationic channels (CSC). The similar dependence of CSC on basal calcium levels in WT and MUT rods suggests that the primary defect in MUT rods lies in defective calcium stores. Calcium stores’ depletion, leading to upregulated calcium and sodium influx via CSC, represents a novel and, so far, unsuspected consequence of the Cacna2d4 mutation. Blocking CSC may provide a novel strategy to counteract the well-known pathogenetic mechanisms involved in rod demise, such as the reticulum stress response and calcium and sodium overload due to store depletion.
Collapse
|
4
|
Brunet AA, Harvey AR, Carvalho LS. Primary and Secondary Cone Cell Death Mechanisms in Inherited Retinal Diseases and Potential Treatment Options. Int J Mol Sci 2022; 23:ijms23020726. [PMID: 35054919 PMCID: PMC8775779 DOI: 10.3390/ijms23020726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a leading cause of blindness. To date, 260 disease-causing genes have been identified, but there is currently a lack of available and effective treatment options. Cone photoreceptors are responsible for daylight vision but are highly susceptible to disease progression, the loss of cone-mediated vision having the highest impact on the quality of life of IRD patients. Cone degeneration can occur either directly via mutations in cone-specific genes (primary cone death), or indirectly via the primary degeneration of rods followed by subsequent degeneration of cones (secondary cone death). How cones degenerate as a result of pathological mutations remains unclear, hindering the development of effective therapies for IRDs. This review aims to highlight similarities and differences between primary and secondary cone cell death in inherited retinal diseases in order to better define cone death mechanisms and further identify potential treatment options.
Collapse
Affiliation(s)
- Alicia A. Brunet
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Lions Eye Institute Ltd., 2 Verdun St, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-423-359-714
| | - Alan R. Harvey
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA 6009, Australia
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Lions Eye Institute Ltd., 2 Verdun St, Nedlands, WA 6009, Australia
| |
Collapse
|
5
|
Sokolov D, Sechrest ER, Wang Y, Nevin C, Du J, Kolandaivelu S. Nuclear NAD +-biosynthetic enzyme NMNAT1 facilitates development and early survival of retinal neurons. eLife 2021; 10:e71185. [PMID: 34878972 PMCID: PMC8754432 DOI: 10.7554/elife.71185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Despite mounting evidence that the mammalian retina is exceptionally reliant on proper NAD+ homeostasis for health and function, the specific roles of subcellular NAD+ pools in retinal development, maintenance, and disease remain obscure. Here, we show that deletion of the nuclear-localized NAD+ synthase nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1) in the developing murine retina causes early and severe degeneration of photoreceptors and select inner retinal neurons via multiple distinct cell death pathways. This severe phenotype is associated with disruptions to retinal central carbon metabolism, purine nucleotide synthesis, and amino acid pathways. Furthermore, transcriptomic and immunostaining approaches reveal dysregulation of a collection of photoreceptor and synapse-specific genes in NMNAT1 knockout retinas prior to detectable morphological or metabolic alterations. Collectively, our study reveals previously unrecognized complexity in NMNAT1-associated retinal degeneration and suggests a yet-undescribed role for NMNAT1 in gene regulation during photoreceptor terminal differentiation.
Collapse
Affiliation(s)
- David Sokolov
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia UniversityMorgantownUnited States
| | - Emily R Sechrest
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia UniversityMorgantownUnited States
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia UniversityMorgantownUnited States
- Department of Biochemistry, One Medical Center Drive, West Virginia UniversityMorgantownUnited States
| | - Connor Nevin
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia UniversityMorgantownUnited States
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia UniversityMorgantownUnited States
- Department of Biochemistry, One Medical Center Drive, West Virginia UniversityMorgantownUnited States
| | - Saravanan Kolandaivelu
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia UniversityMorgantownUnited States
- Department of Biochemistry, One Medical Center Drive, West Virginia UniversityMorgantownUnited States
| |
Collapse
|
6
|
Yan J, Chen Y, Zhu Y, Paquet-Durand F. Programmed Non-Apoptotic Cell Death in Hereditary Retinal Degeneration: Crosstalk between cGMP-Dependent Pathways and PARthanatos? Int J Mol Sci 2021; 22:10567. [PMID: 34638907 PMCID: PMC8508647 DOI: 10.3390/ijms221910567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) is a highly regulated process that results in the orderly destruction of a cell. Many different forms of PCD may be distinguished, including apoptosis, PARthanatos, and cGMP-dependent cell death. Misregulation of PCD mechanisms may be the underlying cause of neurodegenerative diseases of the retina, including hereditary retinal degeneration (RD). RD relates to a group of diseases that affect photoreceptors and that are triggered by gene mutations that are often well known nowadays. Nevertheless, the cellular mechanisms of PCD triggered by disease-causing mutations are still poorly understood, and RD is mostly still untreatable. While investigations into the neurodegenerative mechanisms of RD have focused on apoptosis in the past two decades, recent evidence suggests a predominance of non-apoptotic processes as causative mechanisms. Research into these mechanisms carries the hope that the knowledge created can eventually be used to design targeted treatments to prevent photoreceptor loss. Hence, in this review, we summarize studies on PCD in RD, including on apoptosis, PARthanatos, and cGMP-dependent cell death. Then, we focus on a possible interplay between these mechanisms, covering cGMP-signaling targets, overactivation of poly(ADP-ribose)polymerase (PARP), energy depletion, Ca2+-permeable channels, and Ca2+-dependent proteases. Finally, an outlook is given into how specific features of cGMP-signaling and PARthanatos may be targeted by therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (J.Y.); (Y.C.); (Y.Z.)
| |
Collapse
|
7
|
The 3D organisation of mitochondria in primate photoreceptors. Sci Rep 2021; 11:18863. [PMID: 34552195 PMCID: PMC8458444 DOI: 10.1038/s41598-021-98409-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/17/2021] [Indexed: 11/08/2022] Open
Abstract
Vertebrate photoreceptors contain large numbers of closely-packed mitochondria which sustain the high metabolic demands of these cells. These mitochondria populations are dynamic and undergo fusion and fission events. This activity serves to maintain the population in a healthy state. In the event of mitochondrial damage, sub-domains, or indeed whole mitochondria, can be degraded and population homeostasis achieved. If this process is overwhelmed cell death may result. Death of photoreceptors contributes to loss of vision in aging individuals and is associated with many eye diseases. In this study we used serial block face scanning electron microscopy of adult Macaca fascicularis retinae to examine the 3D structure of mitochondria in rod and cone photoreceptors. We show that healthy-looking photoreceptors contain mitochondria exhibiting a range of shapes which are associated with different regions of the cell. In some photoreceptors we observe mitochondrial swelling and other changes often associated with cellular stress. In rods and cones that appear stressed we identify elongated domains of mitochondria with densely-packed normal cristae associated with photoreceptor ciliary rootlet bundles. We observe mitochondrial fission and mitochondrion fragments localised to these domains. Swollen mitochondria with few intact cristae are located towards the periphery of the photoreceptor inner-segment in rods, whilst they are found throughout the cell in cones. Swollen mitochondria exhibit sites on the mitochondrial inner membrane which have undergone complex invagination resulting in membranous, electron-dense aggregates. Membrane contact occurs between the mitochondrion and the photoreceptor plasma membrane in the vicinity of these aggregates, and a series of subsequent membrane fusions results in expulsion of the mitochondrial aggregate from the photoreceptor. These events are primarily associated with rods. The potential fate of this purged material and consequences of its clearance by retinal pigment epithelia are discussed.
Collapse
|
8
|
Zhang L, Chen C, Fu J, Lilley B, Berlinicke C, Hansen B, Ding D, Wang G, Wang T, Shou D, Ye Y, Mulligan T, Emmerich K, Saxena MT, Hall KR, Sharrock AV, Brandon C, Park H, Kam TI, Dawson VL, Dawson TM, Shim JS, Hanes J, Ji H, Liu JO, Qian J, Ackerley DF, Rohrer B, Zack DJ, Mumm JS. Large-scale phenotypic drug screen identifies neuroprotectants in zebrafish and mouse models of retinitis pigmentosa. eLife 2021; 10:e57245. [PMID: 34184634 PMCID: PMC8425951 DOI: 10.7554/elife.57245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Retinitis pigmentosa (RP) and associated inherited retinal diseases (IRDs) are caused by rod photoreceptor degeneration, necessitating therapeutics promoting rod photoreceptor survival. To address this, we tested compounds for neuroprotective effects in multiple zebrafish and mouse RP models, reasoning drugs effective across species and/or independent of disease mutation may translate better clinically. We first performed a large-scale phenotypic drug screen for compounds promoting rod cell survival in a larval zebrafish model of inducible RP. We tested 2934 compounds, mostly human-approved drugs, across six concentrations, resulting in 113 compounds being identified as hits. Secondary tests of 42 high-priority hits confirmed eleven lead candidates. Leads were then evaluated in a series of mouse RP models in an effort to identify compounds effective across species and RP models, that is, potential pan-disease therapeutics. Nine of 11 leads exhibited neuroprotective effects in mouse primary photoreceptor cultures, and three promoted photoreceptor survival in mouse rd1 retinal explants. Both shared and complementary mechanisms of action were implicated across leads. Shared target tests implicated parp1-dependent cell death in our zebrafish RP model. Complementation tests revealed enhanced and additive/synergistic neuroprotective effects of paired drug combinations in mouse photoreceptor cultures and zebrafish, respectively. These results highlight the value of cross-species/multi-model phenotypic drug discovery and suggest combinatorial drug therapies may provide enhanced therapeutic benefits for RP patients.
Collapse
Affiliation(s)
- Liyun Zhang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Conan Chen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Jie Fu
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Brendan Lilley
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Baranda Hansen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Guohua Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Tao Wang
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- School of Chemistry, Xuzhou College of Industrial TechnologyXuzhouChina
- College of Light Industry and Food Engineering, Nanjing Forestry UniversityNanjingChina
| | - Daniel Shou
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ying Ye
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Timothy Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kelsi R Hall
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Abigail V Sharrock
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Hyejin Park
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Tae-In Kam
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Valina L Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, TaipaMacauChina
| | - Justin Hanes
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Department of Oncology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - David F Ackerley
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
9
|
Abdulhussein D, Kanda M, Aamir A, Manzar H, Yap TE, Cordeiro MF. Apoptosis in health and diseases of the eye and brain. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:279-306. [PMID: 34090617 DOI: 10.1016/bs.apcsb.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is a form of programmed cell death (PCD) and enables the immunologically silent disposal of senescent or unwanted cells, causing minimal damage to the surrounding environment. Apoptosis can occur via intrinsic or extrinsic pathways that initiate a series of intracellular and extracellular signaling events. This ultimately leads to the clearance of the cell by phagocytes. This normal physiological mechanism may be accelerated in several diseases including those involving the eyes and brain, leading to loss of structure and function. This review presents the role of PCD in the health of the eyes and brain, and the evidence presented for its aberrant role in disease.
Collapse
Affiliation(s)
- Dalia Abdulhussein
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - Mumta Kanda
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom
| | - Abdullah Aamir
- Whipps Cross Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Haider Manzar
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - Timothy E Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom; The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - M Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom; The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom; Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, United Kingdom.
| |
Collapse
|
10
|
Sheet S, Krishnamoorthy S, Park W, Lim D, Park JE, Ko M, Choi BH. Mechanistic insight into the progressive retinal atrophy disease in dogs via pathway-based genome-wide association analysis. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:765-776. [PMID: 33987558 PMCID: PMC7721568 DOI: 10.5187/jast.2020.62.6.765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023]
Abstract
The retinal degenerative disease, progressive retinal atrophy (PRA) is a major
reason of vision impairment in canine population. Canine PRA signifies an
inherently dissimilar category of retinal dystrophies which has solid
resemblances to human retinis pigmentosa. Even though much is known about the
biology of PRA, the knowledge about the intricate connection among genetic loci,
genes and pathways associated to this disease in dogs are still remain unknown.
Therefore, we have performed a genome wide association study (GWAS) to identify
susceptibility single nucleotide polymorphisms (SNPs) of PRA. The GWAS was
performed using a case–control based association analysis method on PRA
dataset of 129 dogs and 135,553 markers. Further, the gene-set and pathway
analysis were conducted in this study. A total of 1,114 markers associations
with PRA trait at p < 0.01 were extracted and mapped to
640 unique genes, and then selected significant (p <
0.05) enriched 35 gene ontology (GO) terms and 5 Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways contain these genes. In particular, apoptosis process,
homophilic cell adhesion, calcium ion binding, and endoplasmic reticulum GO
terms as well as pathways related to focal adhesion, cyclic guanosine
monophosphate)-protein kinase G signaling, and axon guidance were more likely
associated to the PRA disease in dogs. These data could provide new insight for
further research on identification of potential genes and causative pathways for
PRA in dogs.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Srikanth Krishnamoorthy
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minjeong Ko
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
11
|
Peng JJ, Song WT, Yao F, Zhang X, Peng J, Luo XJ, Xia XB. Involvement of regulated necrosis in blinding diseases: Focus on necroptosis and ferroptosis. Exp Eye Res 2020; 191:107922. [PMID: 31923413 DOI: 10.1016/j.exer.2020.107922] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
Besides apoptosis, necrosis can also occur in a highly regulated and genetically controlled manner, defined as regulated necrosis, which is characterized by a loss of cell membrane integrity and release of cytoplasmic content. Depending on the involvement of its signal pathway, regulated necrosis can be further classified as necroptosis, ferroptosis, pyroptosis and parthanatos. Numerous studies have demonstrated that regulated necrosis is involved in the pathogenesis of many diseases covering almost all organs including the brain, heart, liver, kidney, intestine, blood vessel, eye and skin, particularly myocardial infarction and stroke. Most recently, growing evidence suggests that multiple types of regulated necrosis contribute to the degeneration of retinal ganglion cells, retinal pigment epithelial cells or photoreceptor cells, which are the main pathologic features for glaucoma, age-related macular degeneration or retinitis pigmentosa, respectively. This review focuses on the involvement of necroptosis and ferroptosis in these blinding diseases.
Collapse
Affiliation(s)
- Jing-Jie Peng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China; Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Wei-Tao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fei Yao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xuan Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Xiao-Bo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
12
|
Kutluer M, Huang L, Marigo V. Targeting molecular pathways for the treatment of inherited retinal degeneration. Neural Regen Res 2020; 15:1784-1791. [PMID: 32246618 PMCID: PMC7513962 DOI: 10.4103/1673-5374.280303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inherited retinal degeneration is a major cause of incurable blindness characterized by loss of retinal photoreceptor cells. Inherited retinal degeneration is characterized by high genetic and phenotypic heterogeneity with several genes mutated in patients affected by these genetic diseases. The high genetic heterogeneity of these diseases hampers the development of effective therapeutic interventions for the cure of a large cohort of patients. Common cell demise mechanisms can be envisioned as targets to treat patients regardless the specific mutation. One of these targets is the increase of intracellular calcium ions, that has been detected in several murine models of inherited retinal degeneration. Recently, neurotrophic factors that favor the efflux of calcium ions to concentrations below toxic levels have been identified as promising molecules that should be evaluated as new treatments for retinal degeneration. Here, we discuss therapeutic options for inherited retinal degeneration and we will focus on neuroprotective approaches, such as the neuroprotective activity of the Pigment epithelium-derived factor. The characterization of specific targets for neuroprotection opens new perspectives together with many questions that require deep analyses to take advantage of this knowledge and develop new therapeutic approaches. We believe that minimizing cell demise by neuroprotection may represent a promising treatment strategy for retinal degeneration.
Collapse
Affiliation(s)
- Meltem Kutluer
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Li Huang
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
Comitato A, Schiroli D, Montanari M, Marigo V. Calpain Activation Is the Major Cause of Cell Death in Photoreceptors Expressing a Rhodopsin Misfolding Mutation. Mol Neurobiol 2019; 57:589-599. [PMID: 31401765 DOI: 10.1007/s12035-019-01723-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
The majority of mutations in rhodopsin (RHO) cause misfolding of the protein and has been linked to degeneration of photoreceptor cells in the retina. A lot of attention has been set on targeting ER stress for the development of new therapies for inherited retinal degeneration caused by mutations in the RHO gene. Nevertheless, the cell death pathway activated by RHO misfolded protein is still debated. In this study, we analyzed the retina of the knock-in mouse expressing the P23H misfolded mutant RHO. We found persistent unfolded protein response (UPR) during degeneration. Interestingly, long-term stimulation of the PERK branch of ER stress had a protective effect by phosphorylating nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, associated with antioxidant responses. Otherwise, we provide evidence that increased intracellular calcium and activation of calpains strongly correlated with rod photoreceptor cell death. By blocking calpain activity, we significantly decreased the activation of caspase-7 and apoptosis-inducing factor (AIF), two cell death effectors, and cell demise, and effectively protected the retina from degeneration caused by the P23H dominant mutation in RHO.
Collapse
Affiliation(s)
- Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy
| | - Davide Schiroli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy
| | - Monica Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy.
| |
Collapse
|
14
|
Involvement of Innate Immune System in Late Stages of Inherited Photoreceptor Degeneration. Sci Rep 2017; 7:17897. [PMID: 29263354 PMCID: PMC5738376 DOI: 10.1038/s41598-017-18236-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/05/2017] [Indexed: 01/10/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal degenerations that lead to progressive vision loss. Many mutations in 60 different genes have been shown to cause RP. Given the diversity of genes and mutations that cause RP, corrective gene therapy approaches currently in development may prove both time-consuming and cost-prohibitive for treatment of all forms of RP. An alternative approach is to find common biological pathways that cause retinal degeneration in various forms of RP, and identify new molecular targets. With this goal, we analyzed the retinal transcriptome of two non-allelic forms of RP in dogs, rcd1 and xlpra2, at clinically relevant advanced stages of the two diseases. Both diseases showed very similar trends in changes in gene expression compared to control normal dogs. Pathway analysis revealed upregulation of various components of the innate immune system in both diseases, including inflammasome and complement pathways. Our results show that the retinal transcriptome at advanced stages of RP is very similar to that of other retinal degenerative diseases such as age-related macular degeneration and diabetic retinopathy. Thus, drugs and therapeutics already in development for targeting these retinopathies may also prove useful for the treatment of many forms of RP.
Collapse
|
15
|
Iribarne M, Masai I. Neurotoxicity of cGMP in the vertebrate retina: from the initial research on rd mutant mice to zebrafish genetic approaches. J Neurogenet 2017; 31:88-101. [PMID: 28812418 DOI: 10.1080/01677063.2017.1358268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Zebrafish are an excellent animal model for research on vertebrate development and human diseases. Sophisticated genetic tools including large-scale mutagenesis methodology make zebrafish useful for studying neuronal degenerative diseases. Here, we review zebrafish models of inherited ophthalmic diseases, focusing on cGMP metabolism in photoreceptors. cGMP is the second messenger of phototransduction, and abnormal cGMP levels are associated with photoreceptor death. cGMP concentration represents a balance between cGMP phosphodiesterase 6 (PDE6) and guanylate cyclase (GC) activities in photoreceptors. Various zebrafish cGMP metabolism mutants were used to clarify molecular mechanisms by which dysfunctions in this pathway trigger photoreceptor degeneration. Here, we review the history of research on the retinal degeneration (rd) mutant mouse, which carries a genetic mutation of PDE6b, and we also highlight recent research in photoreceptor degeneration using zebrafish models. Several recent discoveries that provide insight into cGMP toxicity in photoreceptors are discussed.
Collapse
Affiliation(s)
- Maria Iribarne
- a Okinawa Institute of Science and Technology Graduate University , Onna, Okinawa , Japan
| | - Ichiro Masai
- a Okinawa Institute of Science and Technology Graduate University , Onna, Okinawa , Japan
| |
Collapse
|
16
|
Suzuki T, Akimoto M, Imai H, Ueda Y, Mandai M, Yoshimura N, Swaroop A, Takahashi M. Chondroitinase ABC Treatment Enhances Synaptogenesis between Transplant and Host Neurons in Model of Retinal Degeneration. Cell Transplant 2017; 16:493-503. [PMID: 17708339 DOI: 10.3727/000000007783464966] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although recent studies revealed chondroitinase ABC (ChABC), an enzyme that degrades chondroitin sulfate proteoglycans, promotes CNS regeneration in vivo, the usefulness of its application for transplantation is not clear. We investigated if treatment with ChABC can promote synapse formation between graft and host neurons following retinal transplantation. Dissociated retinal cells were prepared from neonatal Nrl-GFP transgenic mice in which rod photoreceptors and their progenitor cells are labeled with GFP. Each cell suspension with or without ChABC (Nrl/ChABC group and Nrl group, respectively) was injected subretinally into the eyes of mice following chemically induced photoreceptor degeneration. The survival and functional integration of the transplanted photoreceptors were examined by histologically and electrophysio-logically. Up to 4 weeks after transplantation, almost all the grafted GFP+ photoreceptor cells were widely distributed at the outer margin of the host retina where the photoreceptor layer was located originally. In the Nrl/ChABC group, 33.6% of the GFP+ photoreceptors elaborated neurites horizontally or vertically, and 4.6% elaborated neurites toward the retina. These neurites extended over the glial seal at the graft–host interface, and established synaptic contacts with neurons in the host retina as determined by confocal microscopy and three-dimensional analysis. Although 30.7% cells (p = 0.68) elaborated neurites in the Nrl group, only 1.2% cells (p < 0.05) projected neurites towards the host tissue and synaptic contacts were rare. Our results illustrate the potential utility of ChABC for enhancing synaptogenesis between transplanted neurons and host retina.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Opthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhu Y, Zhao Q, Gao H, Peng X, Wen Y, Dai G. Lycium barbarum polysaccharides attenuates N-methy-N-nitrosourea-induced photoreceptor cell apoptosis in rats through regulation of poly (ADP-ribose) polymerase and caspase expression. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:125-134. [PMID: 27208869 DOI: 10.1016/j.jep.2016.05.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/10/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lycium barbarum L., popularly known as "Goji berry", a classic of Traditional Chinese Medicine has long been used to treat ocular diseases and cardiovascular diseases. Recently, the photoreceptor cell protection of Lycium barbarum polysaccharides (LBP), a water extract from Lycium barbarum L. has received more attention. The present study was designed to investigate the effect of LBP on N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell apoptosis, and the involvement of the poly (ADP-ribose) polymerase (PARP) and caspase. MATERIALS AND METHODS Photoreceptor cell injury was induced in male Sprague-Dawley rats by an intraperitoneal injection of MNU 60mg/kg. Seven days prior to MNU injection, LBP were intragastrical administered daily, rats were sacrificed at 24h and 7 days after MNU injection. Retinal morphologies, photoreceptor cells apoptosis, and protein expression were evaluated at 24h and 7 days after MNU injection. RESULTS Morphologically, the outer nuclear layer was well preserved in the LBP-treated rat retinas throughout the experimental period. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-digoxigenin nick-end labeling (TUNEL) assays showed that LBP could significantly suppress the loss of photoreceptor cells, as determined by the photoreceptor cell ratio at the central retina 24h and 7 days after MNU administration. Western-blot analysis demonstrated the expression levels of procaspase-9, -7, -3 and cleaved caspase-9, -7, -3 were upregulated, and PARP were downregulated both 24h and 7 days after MNU injection. LBP treatment significantly decreased protein levels of procaspase and cleaved caspase, increased the level of PARP and cleaved PARP on 24h and 7 days. CONCLUSIONS LBP inhibits MNU-induced rat photoreceptor cell apoptosis and protects retinal structure via the regulation of the expressions of PARP and caspase.
Collapse
Affiliation(s)
- Yafei Zhu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China; Key laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China; Key laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Hua Gao
- Departments of Pharmacy, General Hospital of Ningxia Medical University, 803 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Xiaodong Peng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China; Key laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Youmin Wen
- Departments of Pharmacy, General Hospital of Ningxia Medical University, 803 Shengli Street, Yinchuan, Ningxia 750004, PR China.
| | - Guidong Dai
- Department of Pharmaceutical Engineering, School of Chemical and Materials Engineering, Kaili University, Kaiyuan Road, Kaili, Guizhou 556011, PR China.
| |
Collapse
|
18
|
Cho KI, Haney V, Yoon D, Hao Y, Ferreira PA. Uncoupling phototoxicity-elicited neural dysmorphology and death by insidious function and selective impairment of Ran-binding protein 2 (Ranbp2). FEBS Lett 2015; 589:3959-68. [PMID: 26632511 DOI: 10.1016/j.febslet.2015.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/06/2015] [Accepted: 11/20/2015] [Indexed: 01/27/2023]
Abstract
Morphological disintegration of neurons is coupled invariably to neural death. In particular, disruption of outer segments of photoreceptor neurons triggers photoreceptor death regardless of the pathological stressors. We show that Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) mice with mutations in SUMO-binding motif (SBM) of cyclophilin-like domain (CLD) of Ran-binding protein 2 (Ranbp2) expressed in a null Ranbp2 background lack untoward effects in photoreceptors in the absence of light-stress. However, compared to wild type photoreceptors, light-stress elicits profound disintegration of outer segments of Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) with paradoxical age-dependent resistance of photoreceptors to death and genotype-independent activation of caspases. Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) exhibit photoreceptor death-independent changes in ubiquitin-proteasome system (UPS), but death-dependent increase of ubiquitin carrier protein 9(ubc9) levels. Hence, insidious functional impairment of SBM of Ranbp2's CLD promotes neuroprotection and uncoupling of photoreceptor degeneration and death against phototoxicity.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Victoria Haney
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Dosuk Yoon
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yin Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States; Department of Pathology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
19
|
Hisano S, Koriyama Y, Ogai K, Sugitani K, Kato S. Nitric Oxide Synthase Activation as a Trigger of N-methyl-N-nitrosourea-Induced Photoreceptor Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 854:379-84. [DOI: 10.1007/978-3-319-17121-0_50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
20
|
Guo X, Wang SB, Xu H, Ribic A, Mohns EJ, Zhou Y, Zhu X, Biederer T, Crair MC, Chen B. A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nat Commun 2015; 6:8005. [PMID: 26272629 PMCID: PMC4538705 DOI: 10.1038/ncomms9005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 11/09/2022] Open
Abstract
Retinitis pigmentosa is a leading cause of inherited blindness, with no effective treatment currently available. Mutations primarily in genes expressed in rod photoreceptors lead to early rod death, followed by a slower phase of cone photoreceptor death. Rd1 mice provide an invaluable animal model to evaluate therapies for the disease. We previously reported that overexpression of histone deacetylase 4 (HDAC4) prolongs rod survival in rd1 mice. Here we report a key role of a short N-terminal domain of HDAC4 in photoreceptor protection. Expression of this domain suppresses multiple cell death pathways in photoreceptor degeneration, and preserves even more rd1 rods than the full-length HDAC4 protein. Expression of a short N-terminal domain of HDAC4 as a transgene in mice carrying the rd1 mutation also prolongs the survival of cone photoreceptors, and partially restores visual function. Our results may facilitate the design of a small protein therapy for some forms of retinitis pigmentosa.
Collapse
Affiliation(s)
- Xinzheng Guo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA
| | - Shao-Bin Wang
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA
| | - Hongping Xu
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Adema Ribic
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Ethan J Mohns
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Yu Zhou
- 1] Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China [2] Hospital of University of Electronic Science and Technology of China (UESTC) &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Xianjun Zhu
- 1] Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China [2] Hospital of University of Electronic Science and Technology of China (UESTC) &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Michael C Crair
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Bo Chen
- 1] Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA [2] Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| |
Collapse
|
21
|
Multiple programmed cell death pathways are involved in N-methyl-N-nitrosourea-induced photoreceptor degeneration. Graefes Arch Clin Exp Ophthalmol 2015; 253:721-31. [PMID: 25875043 DOI: 10.1007/s00417-014-2906-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/05/2014] [Accepted: 12/16/2014] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To identify programmed cell death (PCD) pathways involved in N-methyl-N-nitrosourea (MNU)-induced photoreceptor (PR) degeneration. METHODS Adult C57BL/6 mice received a single MNU i.p. injection (60 mg/kg bodyweight), and were observed over a period of 7 days. Degeneration was visualized by H&E overview staining and electron microscopy. PR cell death was measured by quantifying TUNEL-positive cells in the outer nuclear layer (ONL). Activity measurements of key PCD enzymes (calpain, caspases) were used to identify the involved cell death pathways. Furthermore, the expression level of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), key players in endoplasmic reticulum (ER) stress-induced apoptosis, was analyzed using quantitative real-time PCR. RESULTS A decrease in ONL thickness and the appearance of apoptotic PR nuclei could be detected beginning 3 days post-injection (PI). This was accompanied by an increase of TUNEL-positive cells. Significant upregulation of activated caspases (3, 9, 12) was found at different time periods after MNU injection. Additionally, several other players of nonconventional PCD pathways were also upregulated. Consequently, calpain activity increased in the ONL, with a maximum on day 7 PI and an upregulation of CHOP and GRP78 expression beginning on day 1 PI was found. CONCLUSIONS The data indicate that regular apoptosis is the major cause of MNU-induced PR cell death. However, alternative PCD pathways, including ER stress and calpain activation, are also involved. Knowledge about the mechanisms involved in this mouse model of PR degeneration could facilitate the design of putative combinatory therapeutic approaches.
Collapse
|
22
|
Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ 2014; 22:476-87. [PMID: 25501597 DOI: 10.1038/cdd.2014.203] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 01/13/2023] Open
Abstract
Retinitis pigmentosa is a group of hereditary retinal dystrophies that normally result in photoreceptor cell death and vision loss both in animal models and in affected patients. The rd10 mouse, which carries a missense mutation in the Pde6b gene, has been used to characterize the underlying pathophysiology and develop therapies for this devastating and incurable disease. Here we show that increased photoreceptor cell death in the rd10 mouse retina is associated with calcium overload and calpain activation, both of which are observed before the appearance of signs of cell degeneration. These changes are accompanied by an increase in the activity of the lysosomal protease cathepsin B in the cytoplasm of photoreceptor cells, and a reduced colocalization of cathepsin B with lysosomal markers, suggesting that lysosomal membrane permeabilization occurs before the peak of cell death. Moreover, expression of the autophagosomal marker LC3-II (lipidated form of LC3) is reduced and autophagy flux is blocked in rd10 retinas before the onset of photoreceptor cell death. Interestingly, we found that cell death is increased by the induction of autophagy with rapamycin and inhibited by calpain and cathepsin inhibitors, both ex vivo and in vivo. Taken together, these data suggest that calpain-mediated lysosomal membrane permeabilization underlies the lysosomal dysfunction and downregulation of autophagy associated with photoreceptor cell death.
Collapse
|
23
|
Arango-Gonzalez B, Trifunović D, Sahaboglu A, Kranz K, Michalakis S, Farinelli P, Koch S, Koch F, Cottet S, Janssen-Bienhold U, Dedek K, Biel M, Zrenner E, Euler T, Ekström P, Ueffing M, Paquet-Durand F. Identification of a common non-apoptotic cell death mechanism in hereditary retinal degeneration. PLoS One 2014; 9:e112142. [PMID: 25392995 PMCID: PMC4230983 DOI: 10.1371/journal.pone.0112142] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/13/2014] [Indexed: 01/10/2023] Open
Abstract
Cell death in neurodegenerative diseases is often thought to be governed by apoptosis; however, an increasing body of evidence suggests the involvement of alternative cell death mechanisms in neuronal degeneration. We studied retinal neurodegeneration using 10 different animal models, covering all major groups of hereditary human blindness (rd1, rd2, rd10, Cngb1 KO, Rho KO, S334ter, P23H, Cnga3 KO, cpfl1, Rpe65 KO), by investigating metabolic processes relevant for different forms of cell death. We show that apoptosis plays only a minor role in the inherited forms of retinal neurodegeneration studied, where instead, a non-apoptotic degenerative mechanism common to all mutants is of major importance. Hallmark features of this pathway are activation of histone deacetylase, poly-ADP-ribose-polymerase, and calpain, as well as accumulation of cyclic guanosine monophosphate and poly-ADP-ribose. Our work thus demonstrates the prevalence of alternative cell death mechanisms in inherited retinal degeneration and provides a rational basis for the design of mutation-independent treatments.
Collapse
Affiliation(s)
| | - Dragana Trifunović
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Ayse Sahaboglu
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Katharina Kranz
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pietro Farinelli
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Division of Ophthalmology, Department of Clinical Sciences, University of Lund, Lund, Sweden
| | - Susanne Koch
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fred Koch
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sandra Cottet
- Institute for Research in Ophthalmology, Sion, Switzerland
| | | | - Karin Dedek
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Centre for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Centre for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Per Ekström
- Division of Ophthalmology, Department of Clinical Sciences, University of Lund, Lund, Sweden
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
24
|
Yang X, Wang F, Lau WB, Zhang S, Zhang S, Liu H, Ma XL. Autoantibodies isolated from preeclamptic patients induce endothelial dysfunction via interaction with the angiotensin II AT1 receptor. Cardiovasc Toxicol 2014; 14:21-9. [PMID: 24122090 DOI: 10.1007/s12012-013-9229-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complete understanding of the etiology underlying endothelial damage in preeclampsia (PE) remains deficient. Recent studies suggest that autoantibodies against angiotensin II AT1 receptors (AT1-AA) may affect vascular endothelial integrity. However, direct evidence demonstrating association between AT1-AA from preeclamptic patients and vascular endothelial injury is lacking. The current study determined the effects of AT1-AA isolated from preeclamptic patients (Pre-IgG) upon the endothelium and attempted to elucidate the underlying mechanisms of injury. Pre-IgG markedly induced dose-dependent vasoconstriction in aortic vascular rings, an effect blocked by AT1 receptor antagonist losartan. Pre-IgG-induced vasoconstriction was increased in the absence of intact endothelium (1.59 ± 0.04 g vs. 1.63 ± 0.08 g, P < 0.05). Additionally, Pre-IgG incubation with human umbilical vein endothelial cells significantly increased lactate dehydrogenase release in a time-dependent manner (0.84 ± 0.07 vs. 3.50 ± 0.09, 24 vs. 72-h exposure group, P < 0.01) and increased caspase-3 and -8 activities (peaking at 48 h), but did not affect caspase-9 activity. Taken together, these results support the contribution of AT1-AA to endothelial cell injury and dysfunction in PE.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Reproductive Center, Taiyuan Central Hospital, Taiyuan, 030001, Shanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Significant advances have been made over the last decade or two in the elucidation of the molecular pathogenesis of inherited ocular disorders. In particular, remarkable successes have been achieved in exploration of gene-based medicines for these conditions, both in preclinical and in clinical studies. Progress in the development of gene therapies targeted toward correcting the primary genetic defect or focused on modulating secondary effects associated with retinal pathologies are discussed in the review. Likewise, the recent utilization of genes encoding light-sensing molecules to provide new functions to residual retinal cells in the degenerating retina is discussed. While a great deal has been learned over the last two decades, the next decade should result in an increasing number of preclinical studies progressing to human clinical trial, an exciting prospect for patients, those active in research and development and bystanders alike.
Collapse
|
26
|
|
27
|
|
28
|
|
29
|
Wahlin KJ, Enke RA, Fuller JA, Kalesnykas G, Zack DJ, Merbs SL. Epigenetics and cell death: DNA hypermethylation in programmed retinal cell death. PLoS One 2013; 8:e79140. [PMID: 24244436 PMCID: PMC3823652 DOI: 10.1371/journal.pone.0079140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/17/2013] [Indexed: 12/01/2022] Open
Abstract
Background Vertebrate genomes undergo epigenetic reprogramming during development and disease. Emerging evidence suggests that DNA methylation plays a key role in cell fate determination in the retina. Despite extensive studies of the programmed cell death that occurs during retinal development and degeneration, little is known about how DNA methylation might regulate neuronal cell death in the retina. Methods The developing chicken retina and the rd1 and rhodopsin-GFP mouse models of retinal degeneration were used to investigate programmed cell death during retinal development and degeneration. Changes in DNA methylation were determined by immunohistochemistry using antibodies against 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Results Punctate patterns of hypermethylation paralleled patterns of caspase3-dependent apoptotic cell death previously reported to occur during development in the chicken retina. Degenerating rd1 mouse retinas, at time points corresponding to the peak of rod cell death, showed elevated signals for 5mC and 5hmC in photoreceptors throughout the retina, with the most intense staining observed in the peripheral retina. Hypermethylation of photoreceptors in rd1 mice was associated with TUNEL and PAR staining and appeared to be cCaspase3-independent. After peak rod degeneration, during the period of cone death, occasional hypermethylation was observed in the outer nuclear layer. Conclusion The finding that cell-specific increases of 5mC and 5hmC immunostaining are associated with the death of retinal neurons during both development and degeneration suggests that changes in DNA methylation may play a role in modulating gene expression during the process of retinal degeneration. During retinal development, hypermethylation of retinal neurons associates with classical caspase-dependent apoptosis as well as caspase-3 independent cell death, while hypermethylation in the rd1 mouse photoreceptors is primarily associated with caspase-3 independent programmed cell death. These findings suggest a previously unrecognized role for epigenetic mechanisms in the onset and/or progression of programed cell death in the retina.
Collapse
Affiliation(s)
- Karl J. Wahlin
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Raymond A. Enke
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - John A. Fuller
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Giedrius Kalesnykas
- Department of Ophthalmology, Clinical Research Unit, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Donald J. Zack
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute de la Vision, Université Pierre et Marie Curie, Paris, France
| | - Shannath L. Merbs
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ramos de Carvalho JE, Verbraak FD, Aalders MC, van Noorden CJ, Schlingemann RO. Recent advances in ophthalmic molecular imaging. Surv Ophthalmol 2013; 59:393-413. [PMID: 24529711 DOI: 10.1016/j.survophthal.2013.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/30/2022]
Abstract
The aim of molecular imaging techniques is the visualization of molecular processes and functional changes in living animals and human patients before morphological changes occur at the cellular and tissue level. Ophthalmic molecular imaging is still in its infancy and has mainly been used in small animals for pre-clinical research. The goal of most of these pre-clinical studies is their translation into ophthalmic molecular imaging techniques in clinical care. We discuss various molecular imaging techniques and their applications in ophthalmology.
Collapse
Affiliation(s)
- J Emanuel Ramos de Carvalho
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Frank D Verbraak
- Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice C Aalders
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, Vavvas DG. Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res 2013; 37:114-40. [PMID: 23994436 DOI: 10.1016/j.preteyeres.2013.08.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/08/2013] [Accepted: 08/10/2013] [Indexed: 02/08/2023]
Abstract
Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss.
Collapse
Affiliation(s)
- Yusuke Murakami
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Cho KI, Haque M, Wang J, Yu M, Hao Y, Qiu S, Pillai ICL, Peachey NS, Ferreira PA. Distinct and atypical intrinsic and extrinsic cell death pathways between photoreceptor cell types upon specific ablation of Ranbp2 in cone photoreceptors. PLoS Genet 2013; 9:e1003555. [PMID: 23818861 PMCID: PMC3688534 DOI: 10.1371/journal.pgen.1003555] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/23/2013] [Indexed: 12/26/2022] Open
Abstract
Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2), a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+-apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct retinal spatial signatures as well as with other etiologically distinct neurodegenerative disorders. The secondary demise of healthy neurons upon the degeneration of neurons harboring primary genetic defect(s) is hallmark to neurodegenerative diseases. However, the factors and mechanisms driving these cell-death processes are not understood, a severe limitation which has hampered the therapeutic development of neuroprotective approaches. The neuroretina is comprised of two main types of photoreceptor neurons, rods and cones. These undergo degeneration upon heterogeneous mutations or environmental stressors and the underlying diseases present conspicuous spatiotemporal pathological signatures whose molecular bases are not understood. We employed the multifunctional protein, Ran-binding protein-2 (Ranbp2), which is implicated in cell-type and stress-dependent clinical manifestations, to examine its role(s) in primary and secondary photoreceptor death mechanisms upon its specific loss in cones. Contrary to prior findings, we found that dying cones can trigger the loss of healthy rods. This process arises by the immediate activation of novel Ranbp2-responsive factors and downstream cascade events in cones that promote extrinsically the demise of rods. The mechanisms of rod and cone demise are molecularly distinct. Collectively, the data uncover distinct Ranbp2 roles in intrinsic and extrinsic cell-death and will likely contribute to our understanding of the spatiotemporal onset and progression of diseases affecting photoreceptor mosaics and other neural networks.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - MdEmdadul Haque
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jessica Wang
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sunny Qiu
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Indulekha C. L. Pillai
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Martínez-Fernández de la Cámara C, Sequedo MD, Gómez-Pinedo U, Jaijo T, Aller E, García-Tárraga P, García-Verdugo JM, Millán JM, Rodrigo R. Phosphodiesterase inhibition induces retinal degeneration, oxidative stress and inflammation in cone-enriched cultures of porcine retina. Exp Eye Res 2013; 111:122-33. [PMID: 23578797 DOI: 10.1016/j.exer.2013.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
Inherited retinal degenerations affecting both rod and cone photoreceptors constitute one of the causes of incurable blindness in the developed world. Cyclic guanosine monophosphate (cGMP) is crucial in the phototransduction and, mutations in genes related to its metabolism are responsible for different retinal dystrophies. cGMP-degrading phosphodiesterase 6 (PDE6) mutations cause around 4-5% of the retinitis pigmentosa, a rare form of retinal degeneration. The aim of this study was to evaluate whether pharmacological PDE6 inhibition induced retinal degeneration in cone-enriched cultures of porcine retina similar to that found in murine models. PDE6 inhibition was induced in cone-enriched retinal explants from pigs by Zaprinast. PDE6 inhibition induced cGMP accumulation and triggered retinal degeneration, as determined by TUNEL assay. Western blot analysis and immunostaining indicated that degeneration was accompanied by caspase-3, calpain-2 activation and poly (ADP-ribose) accumulation. Oxidative stress markers, total antioxidant capacity, thiobarbituric acid reactive substances (TBARS) and nitric oxide measurements revealed the presence of oxidative damage. Elevated TNF-alpha and IL-6, as determined by enzyme immunoassay, were also found in cone-enriched retinal explants treated with Zaprinast. Our study suggests that this ex vivo model of retinal degeneration in porcine retina could be an alternative model for therapeutic research into the mechanisms of photoreceptor death in cone-related diseases, thus replacing or reducing animal experiments.
Collapse
|
34
|
Brantley MA, Sternberg P. Mechanisms of Oxidative Stress in Retinal Injury. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
|
36
|
Lee J. Drosophila mosaic screen identifies diehard mutants as norpA P24 suppressors. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration. Proc Natl Acad Sci U S A 2012; 109:14598-603. [PMID: 22908283 DOI: 10.1073/pnas.1206937109] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Retinitis pigmentosa comprises a group of inherited retinal photoreceptor degenerations that lead to progressive loss of vision. Although in most cases rods, but not cones, harbor the deleterious gene mutations, cones do die in this disease, usually after the main phase of rod cell loss. Rod photoreceptor death is characterized by apoptotic features. In contrast, the mechanisms and features of subsequent nonautonomous cone cell death remain largely unknown. In this study, we show that receptor-interacting protein (RIP) kinase mediates necrotic cone cell death in rd10 mice, a mouse model of retinitis pigmentosa caused by a mutation in a rod-specific gene. The expression of RIP3, a key regulator of programmed necrosis, was elevated in rd10 mouse retinas in the phase of cone but not rod degeneration. Although rd10 mice lacking Rip3 developed comparable rod degeneration to control rd10 mice, they displayed a significant preservation of cone cells. Ultrastructural analysis of rd10 mouse retinas revealed that a substantial fraction of dying cones exhibited necrotic morphology, which was rescued by Rip3 deficiency. Additionally, pharmacologic treatment with a RIP kinase inhibitor attenuated histological and functional deficits of cones in rd10 mice. Thus, necrotic mechanisms involving RIP kinase are crucial in cone cell death in inherited retinal degeneration, suggesting the RIP kinase pathway as a potential target to protect cone-mediated central and peripheral vision loss in patients with retinitis pigementosa.
Collapse
|
38
|
Abstract
NSP 5a3a is a novel structural protein found to be over-expressed in certain cancer cell lines in-vitro such as Hela, Saos-2, and MCF-7 while barely detectable levels in normal body tissues except for Testis. This particular isoform has been known to interact with cyto- nuclear proteins B23, known to be involved in multi-faceted cellular processes such as cell division, apoptosis, ribosome biogenesis, and rRNA processing, as well as with hnRNP-L, known to be involved with RNA metabolism and rRNA processing. A previous preliminary investigation of NSP 5a3a as a potential target in Head and Neck Carcinoma revealed a novel p73 dependent mechanism through which NSP 5a3a induced apoptosis in Head and Neck cell lines when over-expressed in-vitro. Our present investigation further elucidated a novel dual axis signaling point by which NSP 5a3a induces apoptosis in Head and Neck cell line HN30 through p73-DAXX and TRAF2-TRADD. Interestingly, this novel mechanism appears independent of canonical caspases involved in the intrinsic mitochondrial pathway as well as those in the death receptor pathway thru TRAF2 and TRADD.
Collapse
|
39
|
Thapa A, Morris L, Xu J, Ma H, Michalakis S, Biel M, Ding XQ. Endoplasmic reticulum stress-associated cone photoreceptor degeneration in cyclic nucleotide-gated channel deficiency. J Biol Chem 2012; 287:18018-29. [PMID: 22493484 DOI: 10.1074/jbc.m112.342220] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 account for >70% of all known cases of achromatopsia. Cones degenerate in achromatopsia patients and in CNGA3(-/-) and CNGB3(-/-) mice. This work investigates the molecular basis of cone degeneration in CNG channel deficiency. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we generated mouse lines with CNG channel deficiency on a cone-dominant background, i.e. CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) mice. The retinal phenotype and potential cell death pathways were examined by functional, biochemical, and immunohistochemical approaches. CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) mice showed impaired cone function, opsin mislocalization, and cone degeneration similar to that in the single knock-out mice. The endoplasmic reticulum stress marker proteins, including Grp78/Bip, phospho-eIF2α, phospho-IP(3)R, and CCAAT/enhancer-binding protein homologous protein, were elevated significantly in CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) retinas, compared with the age-matched (postnatal 30 days) Nrl(-/-) controls. Along with these, up-regulation of the cysteine protease calpains and cleavage of caspase-12 and caspase-7 were found in the channel-deficient retinas, suggesting an endoplasmic reticulum stress-associated apoptosis. In addition, we observed a nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G in CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) retinas, implying a mitochondrial insult in the endoplasmic reticulum stress-activated cell death process. Taken together, our findings suggest a crucial role of endoplasmic reticulum stress in cone degeneration associated with CNG channel deficiency.
Collapse
Affiliation(s)
- Arjun Thapa
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Shinde VM, Sizova OS, Lin JH, LaVail MM, Gorbatyuk MS. ER stress in retinal degeneration in S334ter Rho rats. PLoS One 2012; 7:e33266. [PMID: 22432009 PMCID: PMC3303830 DOI: 10.1371/journal.pone.0033266] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/06/2012] [Indexed: 11/18/2022] Open
Abstract
The S334ter rhodopsin (Rho) rat (line 4) bears the rhodopsin gene with an early termination codon at residue 334 that is a model for several such mutations found in human patients with autosomal dominant retinitis pigmentosa (ADRP). The Unfolded Protein Response (UPR) is implicated in the pathophysiology of several retinal disorders including ADRP in P23H Rho rats. The aim of this study was to examine the onset of UPR gene expression in S334ter Rho retinas to determine if UPR is activated in ADRP animal models and to investigate how the activation of UPR molecules leads to the final demise of S334ter Rho photoreceptors. RT-PCR was performed to evaluate the gene expression profiles for the P10, P12, P15, and P21 stages of the development and progression of ADRP in S334ter Rho photoreceptors. We determined that during the P12–P15 period, ER stress-related genes are strongly upregulated in transgenic retinas, resulting in the activation of the UPR that was confirmed using western blot analysis and RT-PCR. The activation of UPR was associated with the increased expression of JNK, Bik, Bim, Bid, Noxa, and Puma genes and cleavage of caspase-12 that together with activated calpains presumably compromise the integrity of the mitochondrial MPTP, leading to the release of pro-apoptotic AIF1 into the cytosol of S334ter Rho photoreceptor cells. Therefore, two major cross-talking pathways, the UPR and mitochondrial MPTP occur in S334ter-4 Rho retina concomitantly and eventually promote the death of the photoreceptor cells.
Collapse
Affiliation(s)
- Vishal M Shinde
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, North Texas Eye Research Institute, Fort Worth, Texas, United States of America
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Tsuruma K, Yamauchi M, Inokuchi Y, Sugitani S, Shimazawa M, Hara H. Role of oxidative stress in retinal photoreceptor cell death in N-methyl-N-nitrosourea-treated mice. J Pharmacol Sci 2012; 118:351-62. [PMID: 22362184 DOI: 10.1254/jphs.11110fp] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
This study aimed to investigate whether oxidative stress contributes to retinal cell death in a mouse model of photoreceptor degeneration induced by N-methyl-N-nitrosourea (MNU). We measured in vitro MNU-induced radical production in retinal cell cultures of murine 661W photoreceptor-derived cells; RGC-5, a mouse ganglion cell line; and primary retinal cells. The addition of MNU induced oxidative radical generation in 661W and primary retinal cells, but not in RGC-5 cells. Edaravone, a free radical scavenger, at 1 µM reduced MNU-induced radical production in 661W and primary retinal cells. To induce in vivo retinal photoreceptor degeneration in mice, we administered 60 mg/kg MNU by intraperitoneal injection. We intravenously administered 1 mg/kg edaravone immediately and at 6 h after the MNU injection. Retinal photoreceptor degeneration was evaluated by measuring the thickness of the outer nuclear layer (ONL) by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and by oxidative stress markers. MNU caused photoreceptor cell loss at 7 days after administration. Edaravone inhibited ONL thinning and reduced TUNEL-positive cells and the oxidative stress markers. These findings indicate that MNU leads to selective photoreceptor degradation via oxidative stress in vitro and in vivo and may help to understand the pathogenic mechanism of retinitis pigmentosa.
Collapse
Affiliation(s)
- Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Doonan F, Groeger G, Cotter TG. Preventing retinal apoptosis--is there a common therapeutic theme? Exp Cell Res 2012; 318:1278-84. [PMID: 22366479 DOI: 10.1016/j.yexcr.2012.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/16/2022]
Abstract
There is an urgent need for therapies for retinal diseases; retinitis pigmentosa sufferers have no treatment options available and those targeted at other retinopathies have shown limited effectiveness. The process of programmed cell death or apoptosis although complex, remains a possible target for the treatment of retinal diseases. Having identified apoptosis in the vertebrate retina in populations of immature neurons as an essential part of development it was proposed that re-activation of these developmental cell death pathways might provide insight into the death mechanisms operating in retinal diseases. However, the discovery that numerous factors initiate and mediate the apoptotic cascade in mature photoreceptors has resulted in a relatively untargeted approach to examining and arresting apoptosis in the retina. In the last 5 years, mouse models have been treated with a diverse range of drugs or factors including anti-oxidants, growth factors, steroid hormones, calcium/calpain inhibitors and tetracycline antibiotics. Therefore to draw a unifying theme from these broad research areas is challenging. However, this review focusses on two targets which are currently under investigation, reactive oxygen species and mammalian target of rapamycin, drawing together the common themes of these research areas.
Collapse
Affiliation(s)
- Francesca Doonan
- Biochemistry Department, Biosciences Research Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
44
|
Lim SK, Park MJ, Lim JC, Kim JC, Han HJ, Kim GY, Cravatt BF, Woo CH, Ma SJ, Yoon KC, Park SH. Hyperglycemia induces apoptosis via CB1 activation through the decrease of FAAH 1 in retinal pigment epithelial cells. J Cell Physiol 2012; 227:569-77. [PMID: 21442624 DOI: 10.1002/jcp.22756] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the main endocannabinoid, anandamide, and related fatty acid amides, has emerged as a regulator of endocannabinoid signaling. Retinal pigment epithelial (RPE) cells are believed to be important cells in the pathogenesis of diabetic retinopathy. However, the pathophysiology of FAAH in diabetic retinopathy has not been determined. Thus, we examined the effect of high glucose (HG) on the expression of FAAH and CB(1)R in the ARPE-19 human RPE cells. We found that HG downregulated the expression of FAAH 1 mRNA and protein in ARPE-19 cells. In contrast, it upregulated the expression of CB(1)R mRNA and protein. HG-induced internalization of CB(1)R in HEK 293 cells and ARPE-19 cells was blocked by overexpression of FAAH 1 and treatment with the CB(1)R blocker, AM 251. HG-induced generation of reactive oxygen species and lipid peroxide formation were blocked by the overexpression of FAAH 1. FAAH 1 overexpression also blocked HG-induced expression of CB(1)R in the cytosolic fraction. We also investigated whether the overexpression of FAAH 1 protected against HG-induced apoptosis. High glucose increased the Bax/Bcl-2 ratio and levels of cleaved PARP, cleaved caspase-9 and caspase-3, and reduced cell viability. HG-induced apoptotic effects were reduced by the overexpression of FAAH 1, treatment with the CB(1)R-specific antagonist AM 251 and CB(1)R siRNA transfection. In conclusion, HG-induced apoptosis in ARPE-19 cells by inducing CB(1)R expression through the downregulation of FAAH 1 expression. Our results provide evidence that CB(1)R blockade through the recovery of FAAH 1 expression may be a potential anti-diabetic therapy for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Seul Ki Lim
- Bio-Therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Retinal degeneration and cellular suicide. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:207-14. [PMID: 22183335 DOI: 10.1007/978-1-4614-0631-0_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Nguyen ATH, Campbell M, Kenna PF, Kiang AS, Tam L, Humphries MM, Humphries P. Calpain and photoreceptor apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:547-52. [PMID: 22183376 DOI: 10.1007/978-1-4614-0631-0_69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Anh T H Nguyen
- The Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
47
|
Caprara C, Grimm C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 2011; 31:89-119. [PMID: 22108059 DOI: 10.1016/j.preteyeres.2011.11.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/20/2022]
Abstract
Photoreceptors and other cells of the retina consume large quantities of energy to efficiently convert light information into a neuronal signal understandable by the brain. The necessary energy is mainly provided by the oxygen-dependent generation of ATP in the numerous mitochondria of retinal cells. To secure the availability of sufficient oxygen for this process, the retina requires constant blood flow through the vasculature of the retina and the choroid. Inefficient supply of oxygen and nutrients, as it may occur in conditions of disturbed hemodynamics or vascular defects, results in tissue ischemia or hypoxia. This has profound consequences on retinal function and cell survival, requiring an adaptational response by cells to cope with the reduced oxygen tension. Central to this response are hypoxia inducible factors, transcription factors that accumulate under hypoxic conditions and drive the expression of a large variety of target genes involved in angiogenesis, cell survival and metabolism. Prominent among these factors are vascular endothelial growth factor and erythropoietin, which may contribute to normal angiogenesis during development, but may also cause neovascularization and vascular leakage under pathologically reduced oxygen levels. Since ischemia and hypoxia may have a role in various retinal diseases such as diabetic retinopathy and retinopathy of prematurity, studying the cellular and molecular response to reduced tissue oxygenation is of high relevance. In addition, the concept of preconditioning with ischemia or hypoxia demonstrates the capacity of the retina to activate endogenous survival mechanisms, which may protect cells against a following noxious insult. Part of these mechanisms is the local production of protective factors such as erythropoietin. Due to its plethora of effects in the retina including neuro- and vaso-protective activities, erythropoietin has gained strong interest as potential therapeutic factor for retinal degenerative diseases.
Collapse
Affiliation(s)
- Christian Caprara
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
48
|
Murakami Y, Miller JW, Vavvas DG. RIP kinase-mediated necrosis as an alternative mechanisms of photoreceptor death. Oncotarget 2011; 2:497-509. [PMID: 21670490 PMCID: PMC3248194 DOI: 10.18632/oncotarget.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Photoreceptor cell death is the terminal event in a variety of retinal disorders including age-related macular degeneration, retinitis pigmentosa, and retinal detachment. Apoptosis has been thought to be the major form of cell death in these diseases, however accumulating evidence suggests that another pathway, programmed necrosis is also important. Recent studies have shown that, when caspase pathways are blocked, receptor interacting protein (RIP) kinases promote necrosis and overcome apoptosis inhibition. Therefore, targeting of both caspase and RIP kinase pathways are required for effective photoreceptor protection. Here, we summarize the current knowledge of RIP kinase-mediated necrotic signaling and its contribution to photoreceptor death.
Collapse
Affiliation(s)
- Yusuke Murakami
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
49
|
Doonan F, O’Driscoll C, Kenna P, Cotter TG. Enhancing survival of photoreceptor cells in vivo using the synthetic progestin Norgestrel. J Neurochem 2011; 118:915-27. [DOI: 10.1111/j.1471-4159.2011.07354.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
O'Driscoll C, Doonan F, Sanvicens N, Messeguer A, Cotter TG. A novel free radical scavenger rescues retinal cells in vivo. Exp Eye Res 2011; 93:65-74. [PMID: 21635890 DOI: 10.1016/j.exer.2011.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/16/2011] [Accepted: 04/12/2011] [Indexed: 01/03/2023]
Abstract
The benzopyran BP (3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran) is a free radical scavenger that is structurally similar to alpha-tocopherol and has provided neuro-protection in a number of disease models where oxidative stress is a causative factor. A novel derivative of BP with improved lipid solubility, which we have designated BP3, was synthesized and its neuro-protective efficacy subsequently analyzed in three mouse models of retinal disease in vivo. In the acute light damage model, balb/c mice received a single intra-peritoneal injection (200 mg/kg) of BP3 one hour prior to phototoxicity, reducing photoreceptor degeneration for up to 48 h post insult. In the rd10/rd10 mouse, a chronic model of inherited retinal degeneration, systemic dosing with BP3 on alternate days between post-natal day 18 and 25 preserved rod photoreceptor numbers and cone photoreceptor morphology. Finally, NMDA induced toxicity in retinal ganglion cells was diminished for at least 72 h after the initial insult by a single dose of BP3. In each disease model, BP3 alleviated cellular oxidative burden as MDA levels were markedly reduced. These results demonstrate that systemically administered BP3 has potent free radical scavenging capacity in the retina and may represent a single therapeutic strategy applicable across several retinopathies.
Collapse
Affiliation(s)
- Carolyn O'Driscoll
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland.
| | | | | | | | | |
Collapse
|