1
|
Baucher G, Liabeuf S, Brocard C, Ponz A, Baumstarck K, Troude L, Leone M, Roche PH, Brocard F. The SpasT-SCI-T trial protocol: Investigating calpain-mediated sodium channel fragments as biomarkers for traumatic CNS injuries and spasticity prediction. PLoS One 2025; 20:e0319635. [PMID: 40397864 DOI: 10.1371/journal.pone.0319635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/17/2025] [Indexed: 05/23/2025] Open
Abstract
Spinal cord injury and traumatic brain injury are major causes of long-term disability and are often complicated by spasticity, a motor disorder characterized by increased muscle tone and exaggerated reflexes that significantly impair quality of life. Current diagnostic methods lack the sensitivity needed to accurately predict the severity of injury or the onset and progression of spasticity. Trauma-induced calcium dysregulation activates calpains, a family of proteases that cleave sodium channels, disrupting their inactivation and increasing persistent sodium currents. This cascade drives the overexcitability of motoneurons, contributing to the development of spasticity. Consequently, sodium channel fragments have emerged as promising biomarkers that link injury mechanisms to clinical outcomes. The present SpasT-SCI-T clinical trial protocol aims to evaluate sodium channel fragments as blood biomarkers for assessing the severity of spinal cord and traumatic brain injuries, as well as their potential to predict clinical outcomes, including the development of spasticity. This prospective, multicenter, case-control and cohort study involves 40 participants: 20 individuals with spinal cord injury, 10 individuals with traumatic brain injury, and 10 healthy controls. Blood samples are collected within six hours of injury and at follow-up points over six months. Clinical outcomes, including spasticity (assessed using the Modified Ashworth Scale), neurological recovery (measured by the American Spinal Injury Association Impairment Scale and Glasgow Coma Scale), and quality of life (evaluated using the Short Form-36 Health Survey), are analyzed in correlation with biomarker levels. We anticipate that calpain-mediated sodium channel fragments will transform the management of central nervous system injuries by enabling early diagnosis, improving prognostic accuracy, and guiding personalized therapeutic strategies. The clinical trial is registered on ClinicalTrials.gov (NCT06532760, January 10, 2024), with Assistance Publique-Hôpitaux de Marseille as the sponsor.
Collapse
Affiliation(s)
- Guillaume Baucher
- Institut de Neurosciences de la Timone, Aix-Marseille Université, CNRS, Marseille, France
- AP-HM, Hôpital Universitaire Nord, Neurochirurgie adulte, Marseille, France
| | - Sylvie Liabeuf
- Institut de Neurosciences de la Timone, Aix-Marseille Université, CNRS, Marseille, France
| | - Cécile Brocard
- Institut de Neurosciences de la Timone, Aix-Marseille Université, CNRS, Marseille, France
| | - Aurélie Ponz
- AP-HM, Direction de la Recherche Santé et Maladies Rares, Marseille, France
| | - Karine Baumstarck
- AP-HM, Direction de la Recherche Santé et Maladies Rares, Marseille, France
| | - Lucas Troude
- AP-HM, Hôpital Universitaire Nord, Neurochirurgie adulte, Marseille, France
| | - Marc Leone
- AP-HM, Hôpital Universitaire Nord, Service d'Anesthésie et de Réanimation, Marseille, France
| | - Pierre-Hugues Roche
- Institut de Neurosciences de la Timone, Aix-Marseille Université, CNRS, Marseille, France
- AP-HM, Hôpital Universitaire Nord, Neurochirurgie adulte, Marseille, France
| | - Frédéric Brocard
- Institut de Neurosciences de la Timone, Aix-Marseille Université, CNRS, Marseille, France
| |
Collapse
|
2
|
Arena JD, Smith DH, Diaz Arrastia R, Cullen DK, Xiao R, Fan J, Harris DC, Lynch CE, Johnson VE. The neuropathological basis of elevated serum neurofilament light following experimental concussion. Acta Neuropathol Commun 2024; 12:189. [PMID: 39633506 PMCID: PMC11619522 DOI: 10.1186/s40478-024-01883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion is a substantial health problem globally, with up to 15% of patients experiencing persisting symptoms that can significantly impact quality of life. Currently, the diagnosis of mTBI relies on clinical presentation with ancillary neuroimaging to exclude more severe forms of injury. However, identifying patients at risk for a poor outcome or protracted recovery is challenging, in part due to the lack of early objective tests that reflect the relevant underlying pathology. While the pathophysiology of mTBI is poorly understood, axonal damage caused by rotational forces is now recognized as an important consequence of injury. Moreover, serum measurement of the neurofilament light (NfL) protein has emerged as a potentially promising biomarker of injury. Understanding the pathological processes that determine serum NfL dynamics over time, and the ability of NfL to reflect underlying pathology will be critical for future clinical research aimed at reducing the burden of disability after mild TBI. Using a gyrencephalic model of head rotational acceleration scaled to human concussion, we demonstrate significant elevations in serum NfL, with a peak at 3 days post-injury. Moreover, increased serum NfL was detectable out to 2 weeks post-injury, with some evidence it follows a biphasic course. Subsequent quantitative histological examinations demonstrate that axonal pathology, including in the absence of neuronal somatic degeneration, was the likely source of elevated serum NfL. However, the extent of axonal pathology quantified via multiple markers did not correlate strongly with the extent of serum NfL. Interestingly, the extent of blood-brain barrier (BBB) permeability offered more robust correlations with serum NfL measured at multiple time points, suggesting BBB disruption is an important determinant of serum biomarker dynamics after mTBI. These data provide novel insights to the temporal course and pathological basis of serum NfL measurements that inform its utility as a biomarker in mTBI.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramon Diaz Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rui Xiao
- The Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiaxin Fan
- The Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle C Harris
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cillian E Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Song H, Tomasevich A, Paolini A, Browne KD, Wofford KL, Kelley B, Kantemneni E, Kennedy J, Qiu Y, Schneider ALC, Dolle JP, Cullen DK, Smith DH. Sex differences in the extent of acute axonal pathologies after experimental concussion. Acta Neuropathol 2024; 147:79. [PMID: 38705966 PMCID: PMC11070329 DOI: 10.1007/s00401-024-02735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Although human females appear be at a higher risk of concussion and suffer worse outcomes than males, underlying mechanisms remain unclear. With increasing recognition that damage to white matter axons is a key pathologic substrate of concussion, we used a clinically relevant swine model of concussion to explore potential sex differences in the extent of axonal pathologies. At 24 h post-injury, female swine displayed a greater number of swollen axonal profiles and more widespread loss of axonal sodium channels than males. Axon degeneration for both sexes appeared to be related to individual axon architecture, reflected by a selective loss of small caliber axons after concussion. However, female brains had a higher percentage of small caliber axons, leading to more extensive axon loss after injury compared to males. Accordingly, sexual dimorphism in axonal size is associated with more extensive axonal pathology in females after concussion, which may contribute to worse outcomes.
Collapse
Affiliation(s)
- Hailong Song
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Alexandra Tomasevich
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Andrew Paolini
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Kevin D Browne
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Kathryn L Wofford
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Brian Kelley
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Eashwar Kantemneni
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Justin Kennedy
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Yue Qiu
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Andrea L C Schneider
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean-Pierre Dolle
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Arratia LM, Bermudes-Contreras JD, Juarez-Monroy JA, Romero-Macías EA, Luna-Rojas JC, López-Hidalgo M, Vega AV, Zamorano-Carrillo A. Experimental and computational evidence that Calpain-10 binds to the carboxy terminus of Na V1.2 and Na V1.6. Sci Rep 2024; 14:6761. [PMID: 38514708 PMCID: PMC10957924 DOI: 10.1038/s41598-024-57117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Voltage-gated sodium channels (NaV) are pivotal proteins responsible for initiating and transmitting action potentials. Emerging evidence suggests that proteolytic cleavage of sodium channels by calpains is pivotal in diverse physiological scenarios, including ischemia, brain injury, and neuropathic pain associated with diabetes. Despite this significance, the precise mechanism by which calpains recognize sodium channels, especially given the multiple calpain isoforms expressed in neurons, remains elusive. In this work, we show the interaction of Calpain-10 with NaV's C-terminus through a yeast 2-hybrid assay screening of a mouse brain cDNA library and in vitro by GST-pulldown. Later, we also obtained a structural and dynamic hypothesis of this interaction by modeling, docking, and molecular dynamics simulation. These results indicate that Calpain-10 interacts differentially with the C-terminus of NaV1.2 and NaV1.6. Calpain-10 interacts with NaV1.2 through domains III and T in a stable manner. In contrast, its interaction with NaV1.6 involves domains II and III, which could promote proteolysis through the Cys-catalytic site and C2 motifs.
Collapse
Affiliation(s)
- Luis Manuel Arratia
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Juan David Bermudes-Contreras
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Jorge Armando Juarez-Monroy
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Erik Alan Romero-Macías
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico
- Doctorado en Ciencias Biomédicas, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla Edo, Mexico City, Mexico
| | - Julio Cesar Luna-Rojas
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico
- Maestría en Neurobiología, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla Edo, Mexico City, Mexico
| | - Marisol López-Hidalgo
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Ana Victoria Vega
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico.
| | - Absalom Zamorano-Carrillo
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico.
| |
Collapse
|
5
|
Harris AC, Sun J, Jacobs KM. Concussive Head Trauma Deranges Axon Initial Segment Function in Axotomized and Intact Layer 5 Pyramidal Neurons. J Neurotrauma 2024; 41:244-270. [PMID: 37650832 PMCID: PMC11074420 DOI: 10.1089/neu.2022.0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The axon initial segment (AIS) is a critical locus of control of action potential (AP) generation and neuronal information synthesis. Concussive traumatic brain injury gives rise to diffuse axotomy, and the majority of neocortical axonal injury arises at the AIS. Consequently, concussive traumatic brain injury might profoundly disrupt the functional specialization of this region. To investigate this hypothesis, one and two days after mild central fluid percussion injury in Thy1-YFP-H mice, we recorded high-resolution APs from axotomized and adjacent intact layer 5 pyramidal neurons and applied a second derivative (2o) analysis to measure the AIS- and soma-regional contributions to the AP upstroke. All layer 5 pyramidal neurons recorded from sham animals manifested two stark 2o peaks separated by a negative intervening slope. In contrast, within injured mice, we discovered a subset of axotomized layer 5 pyramidal neurons in which the AIS-regional 2o peak was abolished, a functional perturbation associated with diminished excitability, axonal sprouting and distention of the AIS as assessed by staining for ankyrin-G. Our analysis revealed an additional subpopulation of both axotomized and intact layer 5 pyramidal neurons that manifested a melding together of the AIS- and soma-regional 2o peaks, suggesting a more subtle aberration of sodium channel function and/or translocation of the AIS initiation zone closer to the soma. When these experiments were repeated in animals in which cyclophilin-D was knocked out, these effects were ameliorated, suggesting that trauma-induced AIS functional perturbation is associated with mitochondrial calcium dysregulation.
Collapse
Affiliation(s)
- Alan C. Harris
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jianli Sun
- Delaware Center for Neuroscience Research, Delaware State University, Dover, Delaware, USA
| | - Kimberle M. Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
6
|
Krieg JL, Leonard AV, Turner RJ, Corrigan F. Identifying the Phenotypes of Diffuse Axonal Injury Following Traumatic Brain Injury. Brain Sci 2023; 13:1607. [PMID: 38002566 PMCID: PMC10670443 DOI: 10.3390/brainsci13111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Diffuse axonal injury (DAI) is a significant feature of traumatic brain injury (TBI) across all injury severities and is driven by the primary mechanical insult and secondary biochemical injury phases. Axons comprise an outer cell membrane, the axolemma which is anchored to the cytoskeletal network with spectrin tetramers and actin rings. Neurofilaments act as space-filling structural polymers that surround the central core of microtubules, which facilitate axonal transport. TBI has differential effects on these cytoskeletal components, with axons in the same white matter tract showing a range of different cytoskeletal and axolemma alterations with different patterns of temporal evolution. These require different antibodies for detection in post-mortem tissue. Here, a comprehensive discussion of the evolution of axonal injury within different cytoskeletal elements is provided, alongside the most appropriate methods of detection and their temporal profiles. Accumulation of amyloid precursor protein (APP) as a result of disruption of axonal transport due to microtubule failure remains the most sensitive marker of axonal injury, both acutely and chronically. However, a subset of injured axons demonstrate different pathology, which cannot be detected via APP immunoreactivity, including degradation of spectrin and alterations in neurofilaments. Furthermore, recent work has highlighted the node of Ranvier and the axon initial segment as particularly vulnerable sites to axonal injury, with loss of sodium channels persisting beyond the acute phase post-injury in axons without APP pathology. Given the heterogenous response of axons to TBI, further characterization is required in the chronic phase to understand how axonal injury evolves temporally, which may help inform pharmacological interventions.
Collapse
Affiliation(s)
| | | | | | - Frances Corrigan
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (J.L.K.)
| |
Collapse
|
7
|
Yoder MW, Wright NT, Borzok MA. Calpain Regulation and Dysregulation-Its Effects on the Intercalated Disk. Int J Mol Sci 2023; 24:11726. [PMID: 37511485 PMCID: PMC10380737 DOI: 10.3390/ijms241411726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The intercalated disk is a cardiac specific structure composed of three main protein complexes-adherens junctions, desmosomes, and gap junctions-that work in concert to provide mechanical stability and electrical synchronization to the heart. Each substructure is regulated through a variety of mechanisms including proteolysis. Calpain proteases, a class of cysteine proteases dependent on calcium for activation, have recently emerged as important regulators of individual intercalated disk components. In this review, we will examine how calcium homeostasis regulates normal calpain function. We will also explore how calpains modulate gap junctions, desmosomes, and adherens junctions activity by targeting specific proteins, and describe the molecular mechanisms of how calpain dysregulation leads to structural and signaling defects within the heart. We will then examine how changes in calpain activity affects cardiomyocytes, and how such changes underlie various heart diseases.
Collapse
Affiliation(s)
- Micah W Yoder
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, USA
| | - Maegen A Borzok
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| |
Collapse
|
8
|
Garrido JJ. Contribution of Axon Initial Segment Structure and Channels to Brain Pathology. Cells 2023; 12:cells12081210. [PMID: 37190119 DOI: 10.3390/cells12081210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Brain channelopathies are a group of neurological disorders that result from genetic mutations affecting ion channels in the brain. Ion channels are specialized proteins that play a crucial role in the electrical activity of nerve cells by controlling the flow of ions such as sodium, potassium, and calcium. When these channels are not functioning properly, they can cause a wide range of neurological symptoms such as seizures, movement disorders, and cognitive impairment. In this context, the axon initial segment (AIS) is the site of action potential initiation in most neurons. This region is characterized by a high density of voltage-gated sodium channels (VGSCs), which are responsible for the rapid depolarization that occurs when the neuron is stimulated. The AIS is also enriched in other ion channels, such as potassium channels, that play a role in shaping the action potential waveform and determining the firing frequency of the neuron. In addition to ion channels, the AIS contains a complex cytoskeletal structure that helps to anchor the channels in place and regulate their function. Therefore, alterations in this complex structure of ion channels, scaffold proteins, and specialized cytoskeleton may also cause brain channelopathies not necessarily associated with ion channel mutations. This review will focus on how the AISs structure, plasticity, and composition alterations may generate changes in action potentials and neuronal dysfunction leading to brain diseases. AIS function alterations may be the consequence of voltage-gated ion channel mutations, but also may be due to ligand-activated channels and receptors and AIS structural and membrane proteins that support the function of voltage-gated ion channels.
Collapse
Affiliation(s)
- Juan José Garrido
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28002 Madrid, Spain
| |
Collapse
|
9
|
McGonigal R, Cunningham ME, Smyth D, Chou M, Barrie JA, Wilkie A, Campbell C, Saatman KE, Lunn M, Willison HJ. The endogenous calpain inhibitor calpastatin attenuates axon degeneration in murine Guillain-Barré syndrome. J Peripher Nerv Syst 2023; 28:4-16. [PMID: 36335586 PMCID: PMC10947122 DOI: 10.1111/jns.12520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022]
Abstract
Axon degeneration accounts for the poor clinical outcome in Guillain-Barré syndrome (GBS), yet no treatments target this key pathogenic stage. Animal models demonstrate anti-ganglioside antibodies (AGAb) induce axolemmal complement pore formation through which calcium flux activates the intra-axonal calcium-dependent proteases, calpains. We previously showed protection of axonal components using soluble calpain inhibitors in ex vivo GBS mouse models, and herein, we assess the potential of axonally-restricted calpain inhibition as a neuroprotective therapy operating in vivo. Using transgenic mice that over-express the endogenous human calpain inhibitor calpastatin (hCAST) neuronally, we assessed distal motor nerve integrity in our established GBS models. We induced immune-mediated injury with monoclonal AGAb plus a source of human complement. The calpain substrates neurofilament and AnkyrinG, nerve structural proteins, were assessed by immunolabelling and in the case of neurofilament, by single-molecule arrays (Simoa). As the distal intramuscular portion of the phrenic nerve is prominently targeted in our in vivo model, respiratory function was assessed by whole-body plethysmography as the functional output in the acute and extended models. hCAST expression protects distal nerve structural integrity both ex and in vivo, as shown by attenuation of neurofilament breakdown by immunolabelling and Simoa. In an extended in vivo model, while mice still initially undergo respiratory distress owing to acute conduction failure, the recovery phase was accelerated by hCAST expression. Axonal calpain inhibition can protect the axonal integrity of the nerve in an in vivo GBS paradigm and hasten recovery. These studies reinforce the strong justification for developing further animal and human clinical studies using exogenous calpain inhibitors.
Collapse
Affiliation(s)
- Rhona McGonigal
- School of Infection & ImmunityUniversity of GlasgowGlasgowUnited Kingdom
| | | | - Duncan Smyth
- National Hospital for Neurology and Neurosurgery, Centre for Neuromuscular DiseasesUniversity College LondonLondonUnited Kingdom
| | - Michael Chou
- National Hospital for Neurology and Neurosurgery, Centre for Neuromuscular DiseasesUniversity College LondonLondonUnited Kingdom
| | - Jennifer A. Barrie
- School of Infection & ImmunityUniversity of GlasgowGlasgowUnited Kingdom
| | - Andrew Wilkie
- School of Infection & ImmunityUniversity of GlasgowGlasgowUnited Kingdom
| | - Clare Campbell
- School of Infection & ImmunityUniversity of GlasgowGlasgowUnited Kingdom
| | - Kathryn E. Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKYUSA
| | - Michael Lunn
- National Hospital for Neurology and Neurosurgery, Centre for Neuromuscular DiseasesUniversity College LondonLondonUnited Kingdom
| | - Hugh J. Willison
- School of Infection & ImmunityUniversity of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
10
|
Chen Q, Chen X, Xu L, Zhang R, Li Z, Yue X, Qiao D. Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies. Forensic Sci Med Pathol 2022; 18:530-544. [PMID: 36117238 DOI: 10.1007/s12024-022-00522-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) has high morbidity and poor prognosis and imposes a serious socioeconomic burden. Traumatic axonal injury (TAI), which is one of the common pathological changes in the primary injury of TBI, is often caused by the external force to the head that causes the white matter bundles to generate shear stress and tension; resulting in tissue damage and leading to the cytoskeletal disorder. At present, the forensic pathological diagnosis of TAI-caused death is still a difficult problem. Most of the TAI biomarkers studied are used for the prediction, evaluation, and prognosis of TAI in the living state. The research subjects are mainly humans in the living state or model animals, which are not suitable for the postmortem diagnosis of TAI. In addition, there is still a lack of recognized indicators for the autopsy pathological diagnosis of TAI. Different diagnostic methods and markers have their limitations, and there is a lack of systematic research and summary of autopsy diagnostic markers of TAI. Therefore, this study mainly summarizes the pathological mechanism, common methods, techniques of postmortem diagnosis, and corresponding biomarkers of TAI, and puts forward the strategies for postmortem diagnosis of TAI for forensic cases with different survival times, which is of great significance to forensic pathological diagnosis.
Collapse
Affiliation(s)
- Qianling Chen
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Xuebing Chen
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Rui Zhang
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Zhigang Li
- Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Guangzhou, 510442, China.
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China.
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
11
|
Song H, McEwan PP, Ameen-Ali KE, Tomasevich A, Kennedy-Dietrich C, Palma A, Arroyo EJ, Dolle JP, Johnson VE, Stewart W, Smith DH. Concussion leads to widespread axonal sodium channel loss and disruption of the node of Ranvier. Acta Neuropathol 2022; 144:967-985. [PMID: 36107227 PMCID: PMC9547928 DOI: 10.1007/s00401-022-02498-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
Despite being a major health concern, little is known about the pathophysiological changes that underly concussion. Nonetheless, emerging evidence suggests that selective damage to white matter axons, or diffuse axonal injury (DAI), disrupts brain network connectivity and function. While voltage-gated sodium channels (NaChs) and their anchoring proteins at the nodes of Ranvier (NOR) on axons are key elements of the brain's network signaling machinery, changes in their integrity have not been studied in context with DAI. Here, we utilized a clinically relevant swine model of concussion that induces evolving axonal pathology, demonstrated by accumulation of amyloid precursor protein (APP) across the white matter. Over a two-week follow-up post-concussion with this model, we found widespread loss of NaCh isoform 1.6 (Nav1.6), progressive increases in NOR length, the appearance of void and heminodes and loss of βIV-spectrin, ankyrin G, and neurofascin 186 or their collective diffusion into the paranode. Notably, these changes were in close proximity, yet distinct from APP-immunoreactive swollen axonal profiles, potentially representing a unique, newfound phenotype of axonal pathology in DAI. Since concussion in humans is non-fatal, the clinical relevance of these findings was determined through examination of post-mortem brain tissue from humans with higher levels of acute traumatic brain injury. Here, a similar loss of Nav1.6 and changes in NOR structures in brain white matter were observed as found in the swine model of concussion. Collectively, this widespread and progressive disruption of NaChs and NOR appears to be a form of sodium channelopathy, which may represent an important substrate underlying brain network dysfunction after concussion.
Collapse
Affiliation(s)
- Hailong Song
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Przemyslaw P McEwan
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Kamar E Ameen-Ali
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alexandra Tomasevich
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | | | - Alexander Palma
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Edgardo J Arroyo
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Jean-Pierre Dolle
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Victoria E Johnson
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - William Stewart
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Hanna ME, Pfister BJ. Advancements in in vitro models of traumatic brain injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
McGonigal R, Campbell CI, Barrie JA, Yao D, Cunningham ME, Crawford CL, Rinaldi S, Rowan EG, Willison HJ. Schwann cell nodal membrane disruption triggers bystander axonal degeneration in a Guillain-Barré syndrome mouse model. J Clin Invest 2022; 132:158524. [PMID: 35671105 PMCID: PMC9282931 DOI: 10.1172/jci158524] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
In Guillain-Barré syndrome (GBS), both axonal and demyelinating variants can be mediated by complement-fixing anti-GM1 ganglioside autoantibodies that target peripheral nerve axonal and Schwann cell (SC) membranes, respectively. Critically, the extent of axonal degeneration in both variants dictates long-term outcome. The differing pathomechanisms underlying direct axonal injury and the secondary bystander axonal degeneration following SC injury are unresolved. To investigate this, we generated glycosyltransferase-disrupted transgenic mice that express GM1 ganglioside either exclusively in neurons [GalNAcT-/--Tg(neuronal)] or glia [GalNAcT-/--Tg(glial)], thereby allowing anti-GM1 antibodies to solely target GM1 in either axonal or SC membranes, respectively. Myelinated-axon integrity in distal motor nerves was studied in transgenic mice exposed to anti-GM1 antibody and complement in ex vivo and in vivo injury paradigms. Axonal targeting induced catastrophic acute axonal disruption, as expected. When mice with GM1 in SC membranes were targeted, acute disruption of perisynaptic glia and SC membranes at nodes of Ranvier (NoRs) occurred. Following glial injury, axonal disruption at NoRs also developed subacutely, progressing to secondary axonal degeneration. These models differentiate the distinctly different axonopathic pathways under axonal and glial membrane targeting conditions, and provide insights into primary and secondary axonal injury, currently a major unsolved area in GBS research.
Collapse
Affiliation(s)
- Rhona McGonigal
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Clare I. Campbell
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer A. Barrie
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Denggao Yao
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Madeleine E. Cunningham
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Colin L. Crawford
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Hugh J. Willison
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Wu YH, Rosset S, Lee TR, Dragunow M, Park T, Shim V. In Vitro Models of Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2021; 38:2336-2372. [PMID: 33563092 DOI: 10.1089/neu.2020.7402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health challenge that is also the third leading cause of death worldwide. It is also the leading cause of long-term disability in children and young adults worldwide. Despite a large body of research using predominantly in vivo and in vitro rodent models of brain injury, there is no medication that can reduce brain damage or promote brain repair mainly due to our lack of understanding in the mechanisms and pathophysiology of the TBI. The aim of this review is to examine in vitro TBI studies conducted from 2008-2018 to better understand the TBI in vitro model available in the literature. Specifically, our focus was to perform a detailed analysis of the in vitro experimental protocols used and their subsequent biological findings. Our review showed that the uniaxial stretch is the most frequently used way of load application, accounting for more than two-thirds of the studies reviewed. The rate and magnitude of the loading were varied significantly from study to study but can generally be categorized into mild, moderate, and severe injuries. The in vitro studies reviewed here examined key processes in TBI pathophysiology such as membrane disruptions leading to ionic dysregulation, inflammation, and the subsequent damages to the microtubules and axons, as well as cell death. Overall, the studies examined in this review contributed to the betterment of our understanding of TBI as a disease process. Yet, our review also revealed the areas where more work needs to be done such as: 1) diversification of load application methods that will include complex loading that mimics in vivo head impacts; 2) more widespread use of human brain cells, especially patient-matched human cells in the experimental set-up; and 3) need for building a more high-throughput system to be able to discover effective therapeutic targets for TBI.
Collapse
Affiliation(s)
- Yi-Han Wu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Tae-Rin Lee
- Advanced Institute of Convergence Technology, Seoul National University, Seoul, Korea
| | - Mike Dragunow
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Thomas Park
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Meng C, Zeng W, Lv J, Wang Y, Gao M, Chang R, Li Q, Wang X. 1,8-cineole ameliorates ischaemic brain damage via TRPC6/CREB pathways in rats. J Pharm Pharmacol 2021; 73:979-985. [PMID: 33877307 DOI: 10.1093/jpp/rgab035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/12/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES A previous in vitro study reported that the monoterpene oxide 1,8-cineole (cineole) attenuates neuronal caused by oxygen-glucose deprivation/reoxygenation in culture. However, to date, there is no in vivo evidence showing neuroprotective effects of cineole against stroke. This study aimed to investigate whether cineole attenuates cerebral ischaemic damage in rats. METHODS A rat model of middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion was applied. Male rats were treated with oral cineole (100 mg/kg) for 7 consecutive days, then subjected to MCAO surgery. Infarct volume, neurologic deficits, apoptosis and expression levels of all-spectrin breakdown products of 145 kDa (SBDP145), transient receptor potential canonical (subtype) 6 (TRPC6) and phosphorylated CREB (p-CREB) were measured in ischaemic brain tissues. KEY FINDINGS Cineole treatment significantly reduced infarct volume, neurological dysfunction, neuronal apoptosis, SBDP145 formation and TRPC6 degradation and enhanced p-CREB expression in MCAO rats compared with vehicle treatment. These neuroprotective effects were markedly suppressed by pharmacological inhibition of MEK or CaMKIV signalling. CONCLUSIONS Our study provides in vivo evidence demonstrating that cineole pretreatment attenuates ischaemic stroke-induced brain damage, mainly through blocking calpain-induced TRPC6 degradation and activating CREB via MEK/CREB and CaMKIV/CREB signalling pathways.
Collapse
Affiliation(s)
- Chen Meng
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenjing Zeng
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jing Lv
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Meiling Gao
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ruijie Chang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qing Li
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xianyu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
16
|
Jamjoom AAB, Rhodes J, Andrews PJD, Grant SGN. The synapse in traumatic brain injury. Brain 2021; 144:18-31. [PMID: 33186462 PMCID: PMC7880663 DOI: 10.1093/brain/awaa321] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide and is a risk factor for dementia later in life. Research into the pathophysiology of TBI has focused on the impact of injury on the neuron. However, recent advances have shown that TBI has a major impact on synapse structure and function through a combination of the immediate mechanical insult and the ensuing secondary injury processes, leading to synapse loss. In this review, we highlight the role of the synapse in TBI pathophysiology with a focus on the confluence of multiple secondary injury processes including excitotoxicity, inflammation and oxidative stress. The primary insult triggers a cascade of events in each of these secondary processes and we discuss the complex interplay that occurs at the synapse. We also examine how the synapse is impacted by traumatic axonal injury and the role it may play in the spread of tau after TBI. We propose that astrocytes play a crucial role by mediating both synapse loss and recovery. Finally, we highlight recent developments in the field including synapse molecular imaging, fluid biomarkers and therapeutics. In particular, we discuss advances in our understanding of synapse diversity and suggest that the new technology of synaptome mapping may prove useful in identifying synapses that are vulnerable or resistant to TBI.
Collapse
Affiliation(s)
- Aimun A B Jamjoom
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Jonathan Rhodes
- Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Edinburgh EH16 4SA, UK
| | - Peter J D Andrews
- Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Edinburgh EH16 4SA, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
17
|
Bruggeman GF, Haitsma IK, Dirven CMF, Volovici V. Traumatic axonal injury (TAI): definitions, pathophysiology and imaging-a narrative review. Acta Neurochir (Wien) 2021; 163:31-44. [PMID: 33006648 PMCID: PMC7778615 DOI: 10.1007/s00701-020-04594-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Introduction Traumatic axonal injury (TAI) is a condition defined as multiple, scattered, small hemorrhagic, and/or non-hemorrhagic lesions, alongside brain swelling, in a more confined white matter distribution on imaging studies, together with impaired axoplasmic transport, axonal swelling, and disconnection after traumatic brain injury (TBI). Ever since its description in the 1980s and the grading system by Adams et al., our understanding of the processes behind this entity has increased. Methods We performed a scoping systematic, narrative review by interrogating Ovid MEDLINE, Embase, and Google Scholar on the pathophysiology, biomarkers, and diagnostic tools of TAI patients until July 2020. Results We underline the misuse of the Adams classification on MRI without proper validation studies, and highlight the hiatus in the scientific literature and areas needing more research. In the past, the theory behind the pathophysiology relied on the inertial force exerted on the brain matter after severe TBI inducing a primary axotomy. This theory has now been partially abandoned in favor of a more refined theory involving biochemical processes such as protein cleavage and DNA breakdown, ultimately leading to an inflammation cascade and cell apoptosis, a process now described as secondary axotomy. Conclusion The difference in TAI definitions makes the comparison of studies that report outcomes, treatments, and prognostic factors a daunting task. An even more difficult task is isolating the outcomes of isolated TAI from the outcomes of severe TBI in general. Targeted bench-to-bedside studies are required in order to uncover further pathways involved in the pathophysiology of TAI and, ideally, new treatments.
Collapse
Affiliation(s)
- Gavin F Bruggeman
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Iain K Haitsma
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Victor Volovici
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Scimone MT, Cramer HC, Hopkins P, Estrada JB, Franck C. Application of mild hypothermia successfully mitigates neural injury in a 3D in-vitro model of traumatic brain injury. PLoS One 2020; 15:e0229520. [PMID: 32236105 PMCID: PMC7112206 DOI: 10.1371/journal.pone.0229520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic hypothermia (TH) is an attractive target for mild traumatic brain injury (mTBI) treatment, yet significant gaps in our mechanistic understanding of TH, especially at the cellular level, remain and need to be addressed for significant forward progress to be made. Using a recently-established 3D in-vitro neural hydrogel model for mTBI we investigated the efficacy of TH after compressive impact injury and established critical treatment parameters including target cooling temperature, and time windows for application and maintenance of TH. Across four temperatures evaluated (31.5, 33, 35, and 37°C), 33°C was found to be most neuroprotective after 24 and 48 hours post-injury. Assessment of TH administration onset time and duration showed that TH should be administered within 4 hours post-injury and be maintained for at least 6 hours for achieving maximum viability. Cellular imaging showed TH reduced the percentage of cells positive for caspases 3/7 and increased the expression of calpastatin, an endogenous neuroprotectant. These findings provide significant new insight into the biological parameter space that renders TH effective in mitigating the deleterious effects of cellular mTBI and provides a quantitative foundation for the future development of animal and preclinical treatment protocols.
Collapse
Affiliation(s)
- Mark T. Scimone
- School of Engineering, Brown University, Providence, RI, United States of America
- Center for Biomedical Engineering, Brown University, Providence, RI, United States of America
| | - Harry C. Cramer
- School of Engineering, Brown University, Providence, RI, United States of America
- Center for Biomedical Engineering, Brown University, Providence, RI, United States of America
| | - Paul Hopkins
- School of Engineering, Brown University, Providence, RI, United States of America
- Center for Biomedical Engineering, Brown University, Providence, RI, United States of America
| | - Jonathan B. Estrada
- Department of Mechanical Engineering, University of Michigan—Ann Arbor, Ann Arbor, MI, United States of America
| | - Christian Franck
- Mechanical Engineering, University of Wisconsin–Madison, Madison, WI, United States of America
| |
Collapse
|
19
|
Plantier V, Sanchez-Brualla I, Dingu N, Brocard C, Liabeuf S, Gackière F, Brocard F. Calpain fosters the hyperexcitability of motoneurons after spinal cord injury and leads to spasticity. eLife 2019; 8:e51404. [PMID: 31815668 PMCID: PMC6927741 DOI: 10.7554/elife.51404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
Up-regulation of the persistent sodium current (INaP) and down-regulation of the potassium/chloride extruder KCC2 lead to spasticity after spinal cord injury (SCI). We here identified calpain as the driver of the up- and down-regulation of INaP and KCC2, respectively, in neonatal rat lumbar motoneurons. Few days after SCI, neonatal rats developed behavioral signs of spasticity with the emergence of both hyperreflexia and abnormal involuntary muscle contractions on hindlimbs. At the same time, in vitro isolated lumbar spinal cords became hyperreflexive and displayed numerous spontaneous motor outputs. Calpain-I expression paralleled with a proteolysis of voltage-gated sodium (Nav) channels and KCC2. Acute inhibition of calpains reduced this proteolysis, restored the motoneuronal expression of Nav and KCC2, normalized INaP and KCC2 function, and curtailed spasticity. In sum, by up- and down-regulating INaP and KCC2, the calpain-mediated proteolysis of Nav and KCC2 drives the hyperexcitability of motoneurons which leads to spasticity after SCI.
Collapse
Affiliation(s)
- Vanessa Plantier
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Irene Sanchez-Brualla
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Nejada Dingu
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Cécile Brocard
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Sylvie Liabeuf
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Florian Gackière
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Frédéric Brocard
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| |
Collapse
|
20
|
Griggs RB, Yermakov LM, Drouet DE, Nguyen DVM, Susuki K. Methylglyoxal Disrupts Paranodal Axoglial Junctions via Calpain Activation. ASN Neuro 2019; 10:1759091418766175. [PMID: 29673258 PMCID: PMC5944142 DOI: 10.1177/1759091418766175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nodes of Ranvier and associated paranodal and juxtaparanodal domains along myelinated axons are essential for normal function of the peripheral and central nervous systems. Disruption of these domains as well as increases in the reactive carbonyl species methylglyoxal are implicated as a pathophysiology common to a wide variety of neurological diseases. Here, using an ex vivo nerve exposure model, we show that increasing methylglyoxal produces paranodal disruption, evidenced by disorganized immunostaining of axoglial cell-adhesion proteins, in both sciatic and optic nerves from wild-type mice. Consistent with previous studies showing that increase of methylglyoxal can alter intracellular calcium homeostasis, we found upregulated activity of the calcium-activated protease calpain in sciatic nerves after methylglyoxal exposure. Methylglyoxal exposure altered clusters of proteins that are known as calpain substrates: ezrin in Schwann cell microvilli at the perinodal area and zonula occludens 1 in Schwann cell autotypic junctions at paranodes. Finally, treatment with the calpain inhibitor calpeptin ameliorated methylglyoxal-evoked ezrin loss and paranodal disruption in both sciatic and optic nerves. Our findings strongly suggest that elevated methylglyoxal levels and subsequent calpain activation contribute to the disruption of specialized axoglial domains along myelinated nerve fibers in neurological diseases.
Collapse
Affiliation(s)
- Ryan B Griggs
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Leonid M Yermakov
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Domenica E Drouet
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Duc V M Nguyen
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Keiichiro Susuki
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
21
|
Hoffe B, Holahan MR. The Use of Pigs as a Translational Model for Studying Neurodegenerative Diseases. Front Physiol 2019; 10:838. [PMID: 31354509 PMCID: PMC6635594 DOI: 10.3389/fphys.2019.00838] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, the move to study neurodegenerative disease using larger animal models with brains that are more similar to humans has gained interest. While pigs have been used for various biomedical applications and research, it has only been recently that they have been used to study neurodegenerative diseases due to their neuroanatomically similar gyrencephalic brains and similar neurophysiological processes as seen in humans. This review focuses on the use of pigs in the study of Alzheimer’s disease (AD) and traumatic brain injury (TBI). AD is considered the most common neurodegenerative disease in elderly populations. Head impacts from falls are the most common form of injury in the elderly and recent literature has shown an association between repetitive head impacts and the development of AD. This review summarizes research into the pathological mechanisms underlying AD and TBI as well as the advantages and disadvantages of using pigs in the neuroscientific study of these disease processes. With the lack of successful therapeutics for neurodegenerative diseases, and an increasing elderly population, the use of pigs may provide a better translational model for understanding and treating these diseases.
Collapse
Affiliation(s)
- Brendan Hoffe
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
22
|
Physiology of Myelinated Nerve Conduction and Pathophysiology of Demyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:85-106. [DOI: 10.1007/978-981-32-9636-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Yermakov LM, Hong LA, Drouet DE, Griggs RB, Susuki K. Functional Domains in Myelinated Axons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:65-83. [PMID: 31760639 DOI: 10.1007/978-981-32-9636-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Propagation of action potentials along axons is optimized through interactions between neurons and myelinating glial cells. Myelination drives division of the axons into distinct molecular domains including nodes of Ranvier. The high density of voltage-gated sodium channels at nodes generates action potentials allowing for rapid and efficient saltatory nerve conduction. At paranodes flanking both sides of the nodes, myelinating glial cells interact with axons, forming junctions that are essential for node formation and maintenance. Recent studies indicate that the disruption of these specialized axonal domains is involved in the pathophysiology of various neurological diseases. Loss of paranodal axoglial junctions due to genetic mutations or autoimmune attack against the paranodal proteins leads to nerve conduction failure and neurological symptoms. Breakdown of nodal and paranodal proteins by calpains, the calcium-dependent cysteine proteases, may be a common mechanism involved in various nervous system diseases and injuries. This chapter reviews recent progress in neurobiology and pathophysiology of specialized axonal domains along myelinated nerve fibers.
Collapse
Affiliation(s)
- Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Lulu A Hong
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Domenica E Drouet
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ryan B Griggs
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.
| |
Collapse
|
24
|
Weber MT, Arena JD, Xiao R, Wolf JA, Johnson VE. CLARITY reveals a more protracted temporal course of axon swelling and disconnection than previously described following traumatic brain injury. Brain Pathol 2018; 29:437-450. [PMID: 30444552 DOI: 10.1111/bpa.12677] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 11/30/2022] Open
Abstract
Diffuse axonal injury (DAI) is an important consequence of traumatic brain injury (TBI). At the moment of trauma, axons rarely disconnect, but undergo cytoskeletal disruption and transport interruption leading to protein accumulation within swellings. The amyloid precursor protein (APP) accumulates rapidly and the standard histological evaluation of axonal pathology relies upon its detection. APP+ swellings first appear as varicosities along intact axons, which can ultimately undergo secondary disconnection to leave a terminal "axon bulb" at the disconnected, proximal end. However, sites of disconnection are difficult to determine with certainty using standard, thin tissue sections, thus limiting the comprehensive evaluation of axon degeneration. The tissue-clearing technique, CLARITY, permits three-dimensional visualization of axons that would otherwise be out of plane in standard tissue sections. Here, we examined the morphology and connection status of APP+ swellings using CLARITY at 6 h, 24 h, 1 week and 1 month following the controlled cortical impact (CCI) model of TBI in mice. Remarkably, many APP+ swellings that appeared as terminal bulbs when viewed in standard 8-µm-thick regions of tissue were instead revealed to be varicose swellings along intact axons when three dimensions were fully visible. Moreover, the percentage of these potentially viable axon swellings differed with survival from injury and may represent the delayed onset of distinct mechanisms of degeneration. Even at 1-month post-CCI, ~10% of apparently terminal bulbs were revealed as connected by CLARITY and are thus potentially salvageable. Intriguingly, the diameter of swellings decreased with survival, including varicosities along intact axons, and may reflect reversal of, or reduced, axonal transport interruption in the chronic setting. These data indicate that APP immunohistochemistry on standard thickness tissue sections overestimates axon disconnection, particularly acutely post-injury. Evaluating cleared tissue demonstrates a surprisingly delayed process of axon disconnection and thus longer window of therapeutic opportunity than previously appreciated. Intriguingly, a subset of axon swellings may also be capable of recovery.
Collapse
Affiliation(s)
- Maura T Weber
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rui Xiao
- The Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA
| | - John A Wolf
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
Hastings MH, Qiu A, Zha C, Farah CA, Mahdid Y, Ferguson L, Sossin WS. The zinc fingers of the small optic lobes calpain bind polyubiquitin. J Neurochem 2018; 146:429-445. [PMID: 29808476 DOI: 10.1111/jnc.14473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022]
Abstract
The small optic lobes (SOL) calpain is a highly conserved member of the calpain family expressed in the nervous system. A dominant negative form of the SOL calpain inhibited consolidation of one form of synaptic plasticity, non-associative facilitation, in sensory-motor neuronal cultures in Aplysia, presumably by inhibiting cleavage of protein kinase Cs (PKCs) into constitutively active protein kinase Ms (PKMs) (Hu et al. 2017a). SOL calpains have a conserved set of 5-6 N-terminal zinc fingers. Bioinformatic analysis suggests that these zinc fingers could bind to ubiquitin. In this study, we show that both the Aplysia and mouse SOL calpain (also known as Calpain 15) zinc fingers bind ubiquitinated proteins, and we confirm that Aplysia SOL binds poly- but not mono- or diubiquitin. No specific zinc finger is required for polyubiquitin binding. Neither polyubiquitin nor calcium was sufficient to induce purified Aplysia SOL calpain to autolyse or to cleave the atypical PKC to PKM in vitro. In Aplysia, over-expression of the atypical PKC in sensory neurons leads to an activity-dependent cleavage event and an increase in nuclear ubiquitin staining. Activity-dependent cleavage is partially blocked by a dominant negative SOL calpain, but not by a dominant negative classical calpain. The cleaved PKM was stabilized by the dominant negative classical calpain and destabilized by a dominant negative form of the PKM stabilizing protein KIdney/BRAin protein. These studies provide new insight into SOL calpain's function and regulation. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.
Collapse
Affiliation(s)
- Margaret H Hastings
- Department of Psychology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alvin Qiu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Congyao Zha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yacine Mahdid
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S Sossin
- Department of Psychology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Onwuli DO, Yañez-Bisbe L, Pinsach-Abuin ML, Tarradas A, Brugada R, Greenman J, Pagans S, Beltran-Alvarez P. Do sodium channel proteolytic fragments regulate sodium channel expression? Channels (Austin) 2017; 11:476-481. [PMID: 28718687 DOI: 10.1080/19336950.2017.1355663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The cardiac voltage-gated sodium channel (gene: SCN5A, protein: NaV1.5) is responsible for the sodium current that initiates the cardiomyocyte action potential. Research into the mechanisms of SCN5A gene expression has gained momentum over the last few years. We have recently described the transcriptional regulation of SCN5A by GATA4 transcription factor. In this addendum to our study, we report our observations that 1) the linker between domains I and II (LDI-DII) of NaV1.5 contains a nuclear localization signal (residues 474-481) that is necessary to localize LDI-DII into the nucleus, and 2) nuclear LDI-DII activates the SCN5A promoter in gene reporter assays using cardiac-like H9c2 cells. Given that voltage-gated sodium channels are known targets of proteases such as calpain, we speculate that NaV1.5 degradation is signaled to the cell transcriptional machinery via nuclear localization of LDI-DII and subsequent stimulation of the SCN5A promoter.
Collapse
Affiliation(s)
- Donatus O Onwuli
- a Biomedical Sciences , School of Life Sciences, University of Hull , Kingston upon Hull , UK
| | - Laia Yañez-Bisbe
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain
| | - Mel Lina Pinsach-Abuin
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain
| | - Anna Tarradas
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain
| | - Ramon Brugada
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain.,e Cardiology Service , Hospital Josep Trueta , Girona , Spain
| | - John Greenman
- a Biomedical Sciences , School of Life Sciences, University of Hull , Kingston upon Hull , UK
| | - Sara Pagans
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain
| | - Pedro Beltran-Alvarez
- a Biomedical Sciences , School of Life Sciences, University of Hull , Kingston upon Hull , UK
| |
Collapse
|
27
|
|
28
|
Abstract
Concussion is a significant issue in medicine and the media today. With growing interest on the long-term effects of sports participation, it is important to understand what occurs in the brain after an impact of any degree. While some of the basic pathophysiology has been elucidated, much is still unknown about what happens in the brain after traumatic brain injury, particularly with milder injuries where no damage can be seen at the structural level on standard neuroimaging. Understanding the chain of events from a cellular level using studies investigating more severe injuries can help to drive research efforts in understanding the symptomatology that is seen in the acute phase after concussion, as well as point to mechanisms that may underlie persistent post-concussive symptoms. This review discusses the basic neuropathology that occurs after traumatic brain injury at the cellular level. We also present the pathology of chronic traumatic encephalopathy and its similarities to other neurodegenerative diseases. We conclude with recent imaging and biomarker findings looking at changes that may occur after repeated subconcussive blows, which may help to guide efforts in understanding if cumulative subconcussive mechanical forces upon the brain are detrimental in the long term or if concussive symptoms mark the threshold for brain injury.
Collapse
Affiliation(s)
- Meeryo C Choe
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, 22-474 MDCC, 10833 LeConte Avenue, Los Angeles, CA, 90095-1752, USA.
| |
Collapse
|
29
|
Griggs RB, Yermakov LM, Susuki K. Formation and disruption of functional domains in myelinated CNS axons. Neurosci Res 2016; 116:77-87. [PMID: 27717670 DOI: 10.1016/j.neures.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022]
Abstract
Communication in the central nervous system (CNS) occurs through initiation and propagation of action potentials at excitable domains along axons. Action potentials generated at the axon initial segment (AIS) are regenerated at nodes of Ranvier through the process of saltatory conduction. Proper formation and maintenance of the molecular structure at the AIS and nodes are required for sustaining conduction fidelity. In myelinated CNS axons, paranodal junctions between the axolemma and myelinating oligodendrocytes delineate nodes of Ranvier and regulate the distribution and localization of specialized functional elements, such as voltage-gated sodium channels and mitochondria. Disruption of excitable domains and altered distribution of functional elements in CNS axons is associated with demyelinating diseases such as multiple sclerosis, and is likely a mechanism common to other neurological disorders. This review will provide a brief overview of the molecular structure of the AIS and nodes of Ranvier, as well as the distribution of mitochondria in myelinated axons. In addition, this review highlights important structural and functional changes within myelinated CNS axons that are associated with neurological dysfunction.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.
| |
Collapse
|
30
|
Brocard C, Plantier V, Boulenguez P, Liabeuf S, Bouhadfane M, Viallat-Lieutaud A, Vinay L, Brocard F. Cleavage of Na+ channels by calpain increases persistent Na+ current and promotes spasticity after spinal cord injury. Nat Med 2016; 22:404-11. [DOI: 10.1038/nm.4061] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
|
31
|
Stoler O, Fleidervish IA. Functional implications of axon initial segment cytoskeletal disruption in stroke. Acta Pharmacol Sin 2016; 37:75-81. [PMID: 26687934 DOI: 10.1038/aps.2015.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022]
Abstract
Axon initial segment (AIS) is the proximal part of the axon, which is not covered with a myelin sheath and possesses a distinctive, specialized assembly of voltage-gated ion channels and associated proteins. AIS plays critical roles in synaptic integration and action potential generation in central neurons. Recent evidence shows that stroke causes rapid, irreversible calpain-mediated proteolysis of the AIS cytoskeleton of neurons surrounding the ischemic necrotic core. A better understanding of the molecular mechanisms underlying this "non-lethal" neuronal damage might provide new therapeutic strategies for improving stroke outcome. Here, we present a brief overview of the structure and function of the AIS. We then discuss possible mechanisms underlying stroke-induced AIS damage, including the roles of calpains and possible sources of Ca(2+) ions, which are necessary for the activation of calpains. Finally, we discuss the potential functional implications of the loss of the AIS cytoskeleton and ion channel clusters for neuronal excitability.
Collapse
|
32
|
SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol 2016; 131:115-35. [PMID: 26589592 DOI: 10.1007/s00401-015-1506-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 11/27/2022]
Abstract
Diffuse axonal injury (DAI) is a common feature of severe traumatic brain injury (TBI) and may also be a predominant pathology in mild TBI or "concussion". The rapid deformation of white matter at the instant of trauma can lead to mechanical failure and calcium-dependent proteolysis of the axonal cytoskeleton in association with axonal transport interruption. Recently, a proteolytic fragment of alpha-II spectrin, "SNTF", was detected in serum acutely following mild TBI in patients and was prognostic for poor clinical outcome. However, direct evidence that this fragment is a marker of DAI has yet to be demonstrated in either humans following TBI or in models of mild TBI. Here, we used immunohistochemistry (IHC) to examine for SNTF in brain tissue following both severe and mild TBI. Human severe TBI cases (survival <7d; n = 18) were compared to age-matched controls (n = 16) from the Glasgow TBI archive. We also examined brains from an established model of mild TBI at 6, 48 and 72 h post-injury versus shams. IHC specific for SNTF was compared to that of amyloid precursor protein (APP), the current standard for DAI diagnosis, and other known markers of axonal pathology including non-phosphorylated neurofilament-H (SMI-32), neurofilament-68 (NF-68) and compacted neurofilament-medium (RMO-14) using double and triple immunofluorescent labeling. Supporting its use as a biomarker of DAI, SNTF immunoreactive axons were observed at all time points following both human severe TBI and in the model of mild TBI. Interestingly, SNTF revealed a subpopulation of degenerating axons, undetected by the gold-standard marker of transport interruption, APP. While there was greater axonal co-localization between SNTF and APP after severe TBI in humans, a subset of SNTF positive axons displayed no APP accumulation. Notably, some co-localization was observed between SNTF and the less abundant neurofilament subtype markers. Other SNTF positive axons, however, did not co-localize with any other markers. Similarly, RMO-14 and NF-68 positive axonal pathology existed independent of SNTF and APP. These data demonstrate that multiple pathological axonal phenotypes exist post-TBI and provide insight into a more comprehensive approach to the neuropathological assessment of DAI.
Collapse
|
33
|
Onwuli DO, Beltran-Alvarez P. An update on transcriptional and post-translational regulation of brain voltage-gated sodium channels. Amino Acids 2015; 48:641-651. [PMID: 26503606 PMCID: PMC4752963 DOI: 10.1007/s00726-015-2122-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022]
Abstract
Voltage-gated sodium channels are essential proteins in brain physiology, as they generate the sodium currents that initiate neuronal action potentials. Voltage-gated sodium channels expression, localisation and function are regulated by a range of transcriptional and post-translational mechanisms. Here, we review our understanding of regulation of brain voltage-gated sodium channels, in particular SCN1A (NaV1.1), SCN2A (NaV1.2), SCN3A (NaV1.3) and SCN8A (NaV1.6), by transcription factors, by alternative splicing, and by post-translational modifications. Our focus is strongly centred on recent research lines, and newly generated knowledge.
Collapse
Affiliation(s)
- Donatus O Onwuli
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building Cottingham Road, Hull, HU6 7RX, UK
| | - Pedro Beltran-Alvarez
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
34
|
Kharatmal SB, Singh JN, Sharma SS. Calpain inhibitor, MDL 28170 confer electrophysiological, nociceptive and biochemical improvement in diabetic neuropathy. Neuropharmacology 2015; 97:113-21. [DOI: 10.1016/j.neuropharm.2015.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/14/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
35
|
Abstract
Neurons are extremely polarized cells. Axon lengths often exceed the dimension of the neuronal cell body by several orders of magnitude. These extreme axonal lengths imply that neurons have mastered efficient mechanisms for long distance signaling between soma and synaptic terminal. These elaborate mechanisms are required for neuronal development and maintenance of the nervous system. Neurons can fine-tune long distance signaling through calcium wave propagation and bidirectional transport of proteins, vesicles, and mRNAs along microtubules. The signal transmission over extreme lengths also ensures that information about axon injury is communicated to the soma and allows for repair mechanisms to be engaged. This review focuses on the different mechanisms employed by neurons to signal over long axonal distances and how signals are interpreted in the soma, with an emphasis on proteomic studies. We also discuss how proteomic approaches could help further deciphering the signaling mechanisms operating over long distance in axons.
Collapse
Affiliation(s)
- Atsushi Saito
- From the ‡Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St Louis, 63110, Missouri
| | - Valeria Cavalli
- From the ‡Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St Louis, 63110, Missouri.
| |
Collapse
|
36
|
Magou GC, Pfister BJ, Berlin JR. Effect of acute stretch injury on action potential and network activity of rat neocortical neurons in culture. Brain Res 2015; 1624:525-535. [PMID: 26296661 DOI: 10.1016/j.brainres.2015.07.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 01/21/2023]
Abstract
The basis for acute seizures following traumatic brain injury (TBI) remains unclear. Animal models of TBI have revealed acute hyperexcitablility in cortical neurons that could underlie seizure activity, but studying initiating events causing hyperexcitability is difficult in these models. In vitro models of stretch injury with cultured cortical neurons, a surrogate for TBI, allow facile investigation of cellular changes after injury but they have only demonstrated post-injury hypoexcitability. The goal of this study was to determine if neuronal hyperexcitability could be triggered by in vitro stretch injury. Controlled uniaxial stretch injury was delivered to a spatially delimited region of a spontaneously active network of cultured rat cortical neurons, yielding a region of stretch-injured neurons and adjacent regions of non-stretched neurons that did not directly experience stretch injury. Spontaneous electrical activity was measured in non-stretched and stretch-injured neurons, and in control neuronal networks not subjected to stretch injury. Non-stretched neurons in stretch-injured cultures displayed a three-fold increase in action potential firing rate and bursting activity 30-60 min post-injury. Stretch-injured neurons, however, displayed dramatically lower rates of action potential firing and bursting. These results demonstrate that acute hyperexcitability can be observed in non-stretched neurons located in regions adjacent to the site of stretch injury, consistent with reports that seizure activity can arise from regions surrounding the site of localized brain injury. Thus, this in vitro procedure for localized neuronal stretch injury may provide a model to study the earliest cellular changes in neuronal function associated with acute post-traumatic seizures.
Collapse
Affiliation(s)
- George C Magou
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Bryan J Pfister
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| | - Joshua R Berlin
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
37
|
Abstract
With a growing interest in how the brain responds and remodels itself following a traumatic injury, this chapter outlines the major organizing principles of how to study these injuries in the laboratory and extend these findings back into the clinic. A new repertoire of models is available to examine the response of isolated circuits of the brain in vitro, and to study precisely how mechanical forces applied to even small regions of these circuits can disrupt the entire circuit dysfunction. We review the existing knowledge garnered from these models and our current understanding of mechanically sensitive receptors and channels activated immediately following trauma. In turn, we point to the emergence of in silico models of network function that will lead to an improved understanding of the principles for the remodeling of circuit structure after traumatic, possibly pointing out new biological rules for circuit reassembly that would help guide new therapies for reconstructing brain circuits after trauma.
Collapse
Affiliation(s)
- David F Meaney
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| | - Douglas H Smith
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Shimizu N, Sato N, Kikuchi T, Ishizaki T, Kobayashi K, Kita K, Takimoto K. A sustained increase in the intracellular Ca²⁺ concentration induces proteolytic cleavage of EAG2 channel. Int J Biochem Cell Biol 2014; 59:126-34. [PMID: 25542181 DOI: 10.1016/j.biocel.2014.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/19/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
Voltage-gated EAG2 channel is abundant in the brain and enhances cancer cell growth by controlling cell volume. The channel contains a cyclic nucleotide-binding homology (CNBH) domain and multiple calmodulin-binding motifs. Here we show that a raised intracellular Ca(2+) concentration causes proteolytic digestion of heterologously expressed and native EAG2 channels. A treatment of EAG2-expressing cells with the Ca(2+) ionophore A23187 for 1h reduces the full-length protein by ∼80% with a concomitant appearance of 30-35-kDa peptides. Similarly, a treatment with the Ca(2+)-ATPase inhibitor thapsigargin for 3h removes 30-35-kDa peptides from ∼1/3 of the channel protein. Moreover, an incubation of the isolated rat brain membrane with CaCl2 leads to the generation of fragments with similar sizes. This Ca(2+)-induced digestion is not seen with EAG1. Mutations in a C-terminal calmodulin-binding motif alter the degrees and positions of the cleavage. Truncated channels that mimic the digested proteins exhibit a reduced current density and altered channel gating. In particular, these shorter channels lack a rapid activation typical in EAG channels with more than 20-mV positive shifts in voltage dependence of activation. The truncation also eliminates the ability of EAG2 channel to reduce cell volume. These results suggest that a sustained increase in the intracellular Ca(2+) concentration leads to proteolytic cleavage at the C-terminal cytosolic region following the CNBH domain by altering its interaction with calmodulin. The observed Ca(2+)-induced proteolytic cleavage of EAG2 channel may act as an adaptive response under physiological and/or pathological conditions.
Collapse
Affiliation(s)
- Nobuhiro Shimizu
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Natsumi Sato
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Teppei Kikuchi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Takuro Ishizaki
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Kazuto Kobayashi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Kaori Kita
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Koichi Takimoto
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
39
|
Zyskind JW, Wang Y, Cho G, Ting JH, Kolson DL, Lynch DR, Jordan-Sciutto KL. E2F1 in neurons is cleaved by calpain in an NMDA receptor-dependent manner in a model of HIV-induced neurotoxicity. J Neurochem 2014; 132:742-55. [PMID: 25279448 DOI: 10.1111/jnc.12956] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/18/2014] [Indexed: 02/07/2023]
Abstract
The transcription factor E2F1 activates gene targets required for G1 -S phase progression and for apoptosis, and exhibits increased expression levels in neurons in several CNS diseases including HIV encephalitis, Alzheimer disease, and Parkinson's Disease. While E2F1 is known to regulate cell viability through activation of caspases, here we present evidence supporting the involvement of E2F1 in N-methyl-d-aspartate (NMDA) receptor-dependent, HIV-induced neuronal death mediated by calpains. Using an in vitro model of HIV-induced neurotoxicity that is dependent on NMDA receptor and calpain activation, we have shown that cortical neurons lacking functional E2F1 are less susceptible to neuronal death. In addition, we report that neuronal E2F1 is cleaved by calpain to a stable 55-kiloDalton fragment following NR2B-dependent NMDA receptor stimulation. This cleavage of E2F1 is protein conformation-dependent and involves at least two cleavage events, one at each terminus of the protein. Intriguingly, the stabilized E2F1 cleavage product is produced in post-mitotic neurons of all ages, but fails to be stabilized in cycling cells. Finally, we show that a matching E2F1 cleavage product is produced in human fetal neurons, suggesting that calpain cleavage of E2F1 may be produced in human cortical tissue. These results suggest neuronal E2F1 is processed in a novel manner in response to NMDA receptor-mediated toxicity, a mechanism implicated in HIV-associated neurocognitive disorders pathogenesis as well as several other diseases of the CNS. After crossing the blood-brain barrier, HIV-infected monocytes differentiate into macrophages and release excitotoxins and inflammatory factors including glutamate into the brain parenchyma (1). These factors stimulate neuronal N-Methyl-d-aspartate (NMDA) receptors (2), causing calcium influx (3) and subsequent activation of the cysteine protease calpain (4). Activated calpain cleaves multiple substrates including E2F1, producing a stabilized protein fragment with truncations at the N- and C-terminus (5). Calpain-cleaved E2F1 may contribute to calpain-mediated neuronal damage observed in NMDA receptor-mediated neurotoxicity (6).
Collapse
Affiliation(s)
- Jacob W Zyskind
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Magby JP, Richardson JR. Role of calcium and calpain in the downregulation of voltage-gated sodium channel expression by the pyrethroid pesticide deltamethrin. J Biochem Mol Toxicol 2014; 29:129-34. [PMID: 25358543 DOI: 10.1002/jbt.21676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022]
Abstract
Voltage-gated sodium channels (Na(v)) are essential for initiation and propagation of action potentials. Previous in vitro studies reported that exposure to the Na(v) toxins veratridine and α scorpion toxin cause persistent downregulation of Na(v) mRNA in vitro. However the mechanism of this downregulation is not well characterized. Here, we report that the type-II pyrethroid deltamethrin, which has a similar mechanism as these toxins, elicited an approximate 25% reduction in Na(v) 1.2 and Na(v) 1.3 mRNA in SK-N-AS cells. Deltamethrin-induced decreases of Na(v) mRNA were blocked with the Na(v) antagonist tetrodotoxin, demonstrating a primary role for interaction with Na(v). Pre-treatment with the intracellular calcium chelator BAPTA-AM and the calpain inhibitor PD-150606 also prevented these decreases, identifying a role for intracellular calcium and calpain activation. Because alterations in Na(v) expression and function can result in neurotoxicity, additional studies are warranted to determine whether or not such effects occur in vivo.
Collapse
Affiliation(s)
- Jason P Magby
- Environmental and Occupational Health Sciences Institute and Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| | | |
Collapse
|
41
|
Volman V, Ng LJ. Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury. J Comput Neurosci 2014; 37:439-57. [PMID: 24986633 DOI: 10.1007/s10827-014-0515-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023]
Abstract
Neurological sequelae of mild traumatic brain injury are associated with the damage to white matter myelinated axons. In vitro models of axonal injury suggest that the progression to pathological ruin is initiated by the mechanical damage to tetrodotoxin-sensitive voltage-gated sodium channels that breaches the ion balance through alteration in kinetic properties of these channels. In myelinated axons, sodium channels are concentrated at nodes of Ranvier, making these sites vulnerable to mechanical injury. Nodal damage can also be inflicted by injury-induced partial demyelination of paranode/juxtaparanode compartments that flank the nodes and contain high density of voltage-gated potassium channels. Demyelination-induced potassium deregulation can further aggravate axonal damage; however, the role of paranode/juxtaparanode demyelination in immediate impairment of axonal function, and its contribution to the development of axonal depolarization remain elusive. A biophysically realistic computational model of myelinated axon that incorporates ion exchange mechanisms and nodal/paranodal/juxtaparanodal organization was developed and used to study the impact of injury-induced demyelination on axonal signal transmission. Injured axons showed alterations in signal propagation that were consistent with the experimental findings and with the notion of reduced axonal excitability immediately post trauma. Injury-induced demyelination strongly modulated the rate of axonal depolarization, suggesting that trauma-induced damage to paranode myelin can affect axonal transition to degradation. Results of these studies clarify the contribution of paranode demyelination to immediate post trauma alterations in axonal function and suggest that partial paranode demyelination should be considered as another "injury parameter" that is likely to determine the stability of axonal function.
Collapse
Affiliation(s)
- Vladislav Volman
- L-3 Applied Technologies/Simulation, Engineering, & Testing, 10770 Wateridge Circle, Suite 200, San Diego, CA, 92121, USA,
| | | |
Collapse
|
42
|
Del Puerto A, Fronzaroli-Molinieres L, Perez-Alvarez MJ, Giraud P, Carlier E, Wandosell F, Debanne D, Garrido JJ. ATP-P2X7 Receptor Modulates Axon Initial Segment Composition and Function in Physiological Conditions and Brain Injury. Cereb Cortex 2014; 25:2282-94. [PMID: 24610121 DOI: 10.1093/cercor/bhu035] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Axon properties, including action potential initiation and modulation, depend on both AIS integrity and the regulation of ion channel expression in the AIS. Alteration of the axon initial segment (AIS) has been implicated in neurodegenerative, psychiatric, and brain trauma diseases, thus identification of the physiological mechanisms that regulate the AIS is required to understand and circumvent AIS alterations in pathological conditions. Here, we show that the purinergic P2X7 receptor and its agonist, adenosine triphosphate (ATP), modulate both structural proteins and ion channel density at the AIS in cultured neurons and brain slices. In cultured hippocampal neurons, an increment of extracellular ATP concentration or P2X7-green fluorescent protein (GFP) expression reduced the density of ankyrin G and voltage-gated sodium channels at the AIS. This effect is mediated by P2X7-regulated calcium influx and calpain activation, and impaired by P2X7 inhibition with Brilliant Blue G (BBG), or P2X7 suppression. Electrophysiological studies in brain slices showed that P2X7-GFP transfection decreased both sodium current amplitude and intrinsic neuronal excitability, while P2X7 inhibition had the opposite effect. Finally, inhibition of P2X7 with BBG prevented AIS disruption after ischemia/reperfusion in rats. In conclusion, our study demonstrates an involvement of P2X7 receptors in the regulation of AIS mediated neuronal excitability in physiological and pathological conditions.
Collapse
Affiliation(s)
- Ana Del Puerto
- Instituto Cajal, CSIC, Department of Cellular, Molecular and Developmental Neurobiology, Madrid 28002, Spain Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laure Fronzaroli-Molinieres
- Institut National de la Santé et de la Recherche Médicale, U1072, Marseille F-13344 France Aix-Marseille Université, Faculté de Médecine Secteur Nord, Marseille F-13344 France
| | - María José Perez-Alvarez
- Departamento de Biología (Unidad Docente Fisiología Animal), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Pierre Giraud
- Institut National de la Santé et de la Recherche Médicale, U1072, Marseille F-13344 France Aix-Marseille Université, Faculté de Médecine Secteur Nord, Marseille F-13344 France
| | - Edmond Carlier
- Institut National de la Santé et de la Recherche Médicale, U1072, Marseille F-13344 France Aix-Marseille Université, Faculté de Médecine Secteur Nord, Marseille F-13344 France
| | - Francisco Wandosell
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Centro de Biología Molecular, CSIC-UAM, Madrid 28049 Spain
| | - Dominique Debanne
- Institut National de la Santé et de la Recherche Médicale, U1072, Marseille F-13344 France Aix-Marseille Université, Faculté de Médecine Secteur Nord, Marseille F-13344 France
| | - Juan José Garrido
- Instituto Cajal, CSIC, Department of Cellular, Molecular and Developmental Neurobiology, Madrid 28002, Spain Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
43
|
Abstract
The extensive lengths of neuronal processes necessitate efficient mechanisms for communication with the cell body. Neuronal regeneration after nerve injury requires new transcription; thus, long-distance retrograde signalling from axonal lesion sites to the soma and nucleus is required. In recent years, considerable progress has been made in elucidating the mechanistic basis of this system. This has included the discovery of a priming role for early calcium waves; confirmation of central roles for mitogen-activated protein kinase signalling effectors, the importin family of nucleocytoplasmic transport factors and molecular motors such as dynein; and demonstration of the importance of local translation as a key regulatory mechanism. These recent findings provide a coherent mechanistic framework for axon-soma communication in the injured nerve and shed light on the integration of cytoplasmic and nuclear transport in all eukaryotic cells.
Collapse
Affiliation(s)
- Ida Rishal
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
44
|
Huang XJ, Li WP, Lin Y, Feng JF, Jia F, Mao Q, Jiang JY. Blockage of the upregulation of voltage-gated sodium channel nav1.3 improves outcomes after experimental traumatic brain injury. J Neurotrauma 2013; 31:346-57. [PMID: 24313291 DOI: 10.1089/neu.2013.2899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive active voltage-gated sodium channels are responsible for the cellular abnormalities associated with secondary brain injury following traumatic brain injury (TBI). We previously presented evidence that significant upregulation of Nav1.3 expression occurs in the rat cortex at 2 h and 12 h post-TBI and is correlated with TBI severity. In our current study, we tested the hypothesis that blocking upregulation of Nav1.3 expression in vivo in the acute stage post-TBI attenuates the secondary brain injury associated with TBI. We administered either antisense oligodeoxynucleotides (ODN) targeting Nav1.3 or artificial cerebrospinal fluid (aCSF) at 2 h, 4 h, 6 h, and 8 h following TBI. Control sham animals received aCSF administration at the same time points. At 12 h post-TBI, Nav1.3 messenger ribonucleic acid (mRNA) levels in bilateral hippocampi of the aCSF group were significantly elevated, compared with the sham and ODN groups (p<0.01). However, the Nav1.3 mRNA levels in the uninjured contralateral hippocampus of the ODN group were significantly lowered, compared with the sham group (p<0.01). Treatment with antisense ODN significantly decreased the number of degenerating neurons in the ipsilateral hippocampal CA3 and hilar region (p<0.01). A set of left-to-right ratio value analyzed by magnetic resonance imaging T2 image on one day, three days, and seven days post-TBI showed marked edema in the ipsilateral hemisphere of the aCSF group, compared with that of the ODN group (p<0.05). The Morris water maze memory retention test showed that both the aCSF and ODN groups took longer to find a hidden platform, compared with the sham group (p<0.01). However, latency in the aCSF group was significantly higher than in the ODN group (p<0.05). Our in vivo Nav1.3 inhibition studies suggest that therapeutic strategies to block upregulation of Nav1.3 expression in the brain may improve outcomes following TBI.
Collapse
Affiliation(s)
- Xian-Jian Huang
- 1 Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Ma M. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. Neurobiol Dis 2013; 60:61-79. [PMID: 23969238 PMCID: PMC3882011 DOI: 10.1016/j.nbd.2013.08.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/17/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed.
Collapse
Affiliation(s)
- Marek Ma
- Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Resuscitation Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Franssen H, Straver DC. Pathophysiology of immune-mediated demyelinating neuropathies-part I: Neuroscience. Muscle Nerve 2013; 48:851-64. [DOI: 10.1002/mus.24070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Hessel Franssen
- Department of Neurology, Section Neuromuscular Disorders, F02.230, Rudolf Magnus Institute for Neuroscience; University Medical Center Utrecht; Heidelberglaan 100, 3584 CX Utrecht The Netherlands
| | - Dirk C.G. Straver
- Department of Neurology, Section Neuromuscular Disorders, F02.230, Rudolf Magnus Institute for Neuroscience; University Medical Center Utrecht; Heidelberglaan 100, 3584 CX Utrecht The Netherlands
| |
Collapse
|
47
|
Damage to myelin and oligodendrocytes: a role in chronic outcomes following traumatic brain injury? Brain Sci 2013; 3:1374-94. [PMID: 24961533 PMCID: PMC4061868 DOI: 10.3390/brainsci3031374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/23/2013] [Accepted: 09/02/2013] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence in the experimental and clinical traumatic brain injury (TBI) literature that loss of central myelinated nerve fibers continues over the chronic post-traumatic phase after injury. However, the biomechanism(s) of continued loss of axons is obscure. Stretch-injury to optic nerve fibers in adult guinea-pigs was used to test the hypothesis that damage to the myelin sheath and oligodendrocytes of the optic nerve fibers may contribute to, or facilitate, the continuance of axonal loss. Myelin dislocations occur within internodal myelin of larger axons within 1–2 h of TBI. The myelin dislocations contain elevated levels of free calcium. The volume of myelin dislocations increase with greater survival and are associated with disruption of the axonal cytoskeleton leading to secondary axotomy. Waves of Ca2+ depolarization or spreading depression extend from the initial locus injury for perhaps hundreds of microns after TBI. As astrocytes and oligodendrocytes are connected via gap junctions, it is hypothesized that spreading depression results in depolarization of central glia, disrupt axonal ionic homeostasis, injure axonal mitochondria and allow the onset of axonal degeneration throughout an increasing volume of brain tissue; and contribute toward post-traumatic continued loss of white matter.
Collapse
|
48
|
Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol 2013; 246:35-43. [PMID: 22285252 PMCID: PMC3979341 DOI: 10.1016/j.expneurol.2012.01.013] [Citation(s) in RCA: 857] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/22/2011] [Accepted: 01/10/2012] [Indexed: 12/11/2022]
Abstract
Over the past 70years, diffuse axonal injury (DAI) has emerged as one of the most common and important pathological features of traumatic brain injury (TBI). Axons in the white matter appear to be especially vulnerable to injury due to the mechanical loading of the brain during TBI. As such, DAI has been found in all severities of TBI and may represent a key pathologic substrate of mild TBI (concussion). Pathologically, DAI encompasses a spectrum of abnormalities from primary mechanical breaking of the axonal cytoskeleton, to transport interruption, swelling and proteolysis, through secondary physiological changes. Depending on the severity and extent of injury, these changes can manifest acutely as immediate loss of consciousness or confusion and persist as coma and/or cognitive dysfunction. In addition, recent evidence suggests that TBI may induce long-term neurodegenerative processes, such as insidiously progressive axonal pathology. Indeed, axonal degeneration has been found to continue even years after injury in humans, and appears to play a role in the development of Alzheimer's disease-like pathological changes. Here we review the current understanding of DAI as a uniquely mechanical injury, its histopathological identification, and its acute and chronic pathogenesis following TBI.
Collapse
Affiliation(s)
- Victoria E. Johnson
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - William Stewart
- Department of Neuropathology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - Douglas H. Smith
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
49
|
Tsutsui S, Stys PK. Metabolic injury to axons and myelin. Exp Neurol 2013; 246:26-34. [DOI: 10.1016/j.expneurol.2012.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/20/2012] [Accepted: 04/23/2012] [Indexed: 12/31/2022]
|
50
|
Mild traumatic brain injury in the mouse induces axotomy primarily within the axon initial segment. Acta Neuropathol 2013; 126:59-74. [PMID: 23595276 DOI: 10.1007/s00401-013-1119-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 10/27/2022]
Abstract
Traumatic axonal injury (TAI) is a consistent component of traumatic brain injury (TBI), and is associated with much of its morbidity. Increasingly, it has also been recognized as a major pathology of mild TBI (mTBI). In terms of its pathogenesis, numerous studies have investigated the susceptibility of the nodes of Ranvier, the paranode and internodal regions to TAI. The nodes of Ranvier, with their unique composition and concentration of ion channels, have been suggested as the primary site of injury, initiating a cascade of abnormalities in the related paranodal and internodal domains that lead to local axonal swellings and detachment. No investigation, however, has determined the effect of TAI upon the axon initial segment (AIS), a segment critical to regulating polarity and excitability. The current study sought to identify the susceptibility of these different axon domains to TAI within the neocortex, where each axonal domain could be simultaneously assessed. Utilizing a mouse model of mTBI, a temporal and spatial heterogeneity of axonal injury was found within the neocortical gray matter. Although axonal swellings were found in all domains along myelinated neocortical axons, the majority of TAI occurred within the AIS, which progressed without overt structural disruption of the AIS itself. The finding of primary AIS involvement has important implications regarding neuronal polarity and the fate of axotomized processes, while also raising therapeutic implications, as the mechanisms underlying such axonal injury in the AIS may be distinct from those described for nodal/paranodal injury.
Collapse
|