1
|
Chen Y, Bai J, Shi N, Jiang Y, Chen X, Ku Y, Gao X. Intermodulation frequency components in steady-state visual evoked potentials: Generation, characteristics and applications. Neuroimage 2024; 303:120937. [PMID: 39550056 DOI: 10.1016/j.neuroimage.2024.120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
The steady-state visual evoked potentials (SSVEPs), evoked by dual-frequency or multi-frequency stimulation, likely contains intermodulation frequency components (IMs). Visual IMs are products of nonlinear integration of neural signals and can be evoked by various paradigms that induce neural interaction. IMs have demonstrated many interesting and important characteristics in cognitive psychology, clinical neuroscience, brain-computer interface and other fields, and possess substantial research potential. In this paper, we first review the definition of IMs and summarize the stimulation paradigms capable of inducing them, along with the possible neural origins of IMs. Subsequently, we describe the characteristics and derived applications of IMs in previous studies, and then introduced three signal processing methods favored by researchers to enhance the signal-to-noise ratio of IMs. Finally, we summarize the characteristics of IMs, and propose several potential future research directions related to IMs.
Collapse
Affiliation(s)
- Yuzhen Chen
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| | - Jiawen Bai
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| | - Nanlin Shi
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| | - Yunpeng Jiang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.
| | - Xiaorong Gao
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Gagsch F, Valuch C, Albrecht T. Measuring attentional selection of object categories using hierarchical frequency tagging. J Vis 2024; 24:8. [PMID: 38990066 PMCID: PMC11246098 DOI: 10.1167/jov.24.7.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
In the present study, we used Hierarchical Frequency Tagging (Gordon et al., 2017) to investigate in electroencephalography how different levels of the neural processing hierarchy interact with category-selective attention during visual object recognition. We constructed stimulus sequences of cyclic wavelet scrambled face and house stimuli at two different frequencies (f1 = 0.8 Hz and f2 = 1 Hz). For each trial, two stimulus sequences of different frequencies were superimposed and additionally augmented by a sinusoidal contrast modulation with f3 = 12.5 Hz. This allowed us to simultaneously assess higher level processing using semantic wavelet-induced frequency-tagging (SWIFT) and processing in earlier visual levels using steady-state visually evoked potentials (SSVEPs), along with their intermodulation (IM) components. To investigate the category specificity of the SWIFT signal, we manipulated the category congruence between target and distractor by superimposing two sequences containing stimuli from the same or different object categories. Participants attended to one stimulus (target) and ignored the other (distractor). Our results showed successful tagging of different levels of the cortical hierarchy. Using linear mixed-effects modeling, we detected different attentional modulation effects on lower versus higher processing levels. SWIFT and IM components were substantially increased for target versus distractor stimuli, reflecting attentional selection of the target stimuli. In addition, distractor stimuli from the same category as targets elicited stronger SWIFT signals than distractor stimuli from a different category indicating category-selective attention. In contrast, for IM components, this category-selective attention effect was largely absent, indicating that IM components probably reflect more stimulus-specific processing.
Collapse
Affiliation(s)
- Florian Gagsch
- Georg-Elias-Müller Institute for Psychology, Georg-August University, Göttingen, Germany
| | - Christian Valuch
- Georg-Elias-Müller Institute for Psychology, Georg-August University, Göttingen, Germany
| | - Thorsten Albrecht
- Georg-Elias-Müller Institute for Psychology, Georg-August University, Göttingen, Germany
| |
Collapse
|
3
|
Lapenta OM, Keller PE, Nozaradan S, Varlet M. Spatial and temporal (non)binding of audiovisual rhythms in sensorimotor synchronisation. Exp Brain Res 2023; 241:875-887. [PMID: 36788141 PMCID: PMC9985575 DOI: 10.1007/s00221-023-06569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
Human movement synchronisation with moving objects strongly relies on visual input. However, auditory information also plays an important role, since real environments are intrinsically multimodal. We used electroencephalography (EEG) frequency tagging to investigate the selective neural processing and integration of visual and auditory information during motor tracking and tested the effects of spatial and temporal congruency between audiovisual modalities. EEG was recorded while participants tracked with their index finger a red flickering (rate fV = 15 Hz) dot oscillating horizontally on a screen. The simultaneous auditory stimulus was modulated in pitch (rate fA = 32 Hz) and lateralised between left and right audio channels to induce perception of a periodic displacement of the sound source. Audiovisual congruency was manipulated in terms of space in Experiment 1 (no motion, same direction or opposite direction), and timing in Experiment 2 (no delay, medium delay or large delay). For both experiments, significant EEG responses were elicited at fV and fA tagging frequencies. It was also hypothesised that intermodulation products corresponding to the nonlinear integration of visual and auditory stimuli at frequencies fV ± fA would be elicited, due to audiovisual integration, especially in Congruent conditions. However, these components were not observed. Moreover, synchronisation and EEG results were not influenced by congruency manipulations, which invites further exploration of the conditions which may modulate audiovisual processing and the motor tracking of moving objects.
Collapse
Affiliation(s)
- Olivia Morgan Lapenta
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia.
- Psychological Neuroscience Lab, Center for Investigation in Psychology, University of Minho, Rua da Universidade, 4710-057, Braga, Portugal.
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sylvie Nozaradan
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
- Institute of Neuroscience, Université Catholique de Louvain, Woluwe-Saint-Lambert, Belgium
| | - Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
- School of Psychology, Western Sydney University, Penrith, Australia
| |
Collapse
|
4
|
Chen J, Meng X, Liu Z, Shang B, Chang C, Ku Y. Decoding semantics from intermodulation responses in frequency-tagged stereotactic EEG. J Neurosci Methods 2022; 382:109727. [PMID: 36241018 DOI: 10.1016/j.jneumeth.2022.109727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Humans perform object recognition using holistic processing, which is different from computers. Intermodulation responses in the steady-state visual evoked potential (SSVEP) of scalp electroencephalography (EEG) have recently been used as an objective label for holistic processing. NEW METHOD Using stereotactic EEG (sEEG) to record SSVEP directly from inside of the brain, we aimed to decode Chinese characters from non-characters with activation from multiple brain areas including occipital, parietal, temporal, and frontal cortices. RESULTS Semantic categories could be decoded from responses at the intermodulation frequency with high accuracy (80%-90%), but not the base frequency. Moreover, semantic categories could be decoded with activation from multiple areas including temporal, parietal, and frontal areas. COMPARISON WITH EXISTING METHOD(S) Previous studies investigated holistic processing in faces and words with frequency-tagged scalp EEGs. The current study extended the results to stereotactic EEG signals directly recorded from the brain. CONCLUSIONS The human brain applies holistic processing in recognizing objects like Chinese characters. Our findings could be extended to an add-on feature in the existing SSVEP BCI speller.
Collapse
Affiliation(s)
- Jing Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xianghong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Zheng Liu
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Baoxiang Shang
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Chunqi Chang
- School of Medicine, Shenzhen University, Shenzhen, China; Peng Cheng Laboratory, Shenzhen, China
| | - Yixuan Ku
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China; Peng Cheng Laboratory, Shenzhen, China.
| |
Collapse
|
5
|
Hua L, Gao F, Leong C, Yuan Z. Neural decoding dissociates perceptual grouping between proximity and similarity in visual perception. Cereb Cortex 2022; 33:3803-3815. [PMID: 35973163 DOI: 10.1093/cercor/bhac308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike single grouping principle, cognitive neural mechanism underlying the dissociation across two or more grouping principles is still unclear. In this study, a dimotif lattice paradigm that can adjust the strength of one grouping principle was used to inspect how, when, and where the processing of two grouping principles (proximity and similarity) were carried out in human brain. Our psychophysical findings demonstrated that similarity grouping effect was enhanced with reduced proximity effect when the grouping cues of proximity and similarity were presented simultaneously. Meanwhile, EEG decoding was performed to reveal the specific cognitive patterns involved in each principle by using time-resolved MVPA. More importantly, the onsets of dissociation between 2 grouping principles coincided within 3 time windows: the early-stage proximity-defined local visual element arrangement in middle occipital cortex, the middle-stage processing for feature selection modulating low-level visual cortex such as inferior occipital cortex and fusiform cortex, and the high-level cognitive integration to make decisions for specific grouping preference in the parietal areas. In addition, it was discovered that the brain responses were highly correlated with behavioral grouping. Therefore, our study provides direct evidence for a link between the human perceptual space of grouping decision-making and neural space of brain activation patterns.
Collapse
Affiliation(s)
- Lin Hua
- Centre for Cognitive and Brain Sciences, N21 Research Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.,Faculty of Health Sciences, E12 Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Fei Gao
- Centre for Cognitive and Brain Sciences, N21 Research Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Chantat Leong
- Centre for Cognitive and Brain Sciences, N21 Research Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.,Faculty of Health Sciences, E12 Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, N21 Research Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.,Faculty of Health Sciences, E12 Building, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| |
Collapse
|
6
|
Hallez Q, Monier F, Droit-Volet S. Simultaneous time processing in children and adults: When attention predicts temporal interference effects. J Exp Child Psychol 2021; 210:105209. [PMID: 34166993 DOI: 10.1016/j.jecp.2021.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022]
Abstract
Children from 5 to 8 years of age, as well as adults, performed a temporal reproduction task in both a solo-timing condition and a multi-timing condition, with different durations presented simultaneously. In the multi-timing condition, all durations were processed because the participants did not know in advance which stimulus needed to be judged. In a first experiment, two or three durations were presented with a synchrony of their onset. In a second experiment, two durations were presented simultaneously with asynchrony of their offset, different lengths of the concurrent duration, and different presentation orders. In addition, the participants' cognitive abilities in terms of selective attention, as well as short-term and working memory, were assessed with different neuropsychological tests. The results of both experiments showed that children and adults alike were able to process multiple durations simultaneously. However, the simultaneous presentation of different durations generated a temporal interference effect in children and adults, resulting in longer and more variable time estimates. This temporal interference effect was nevertheless higher in children due to their limited attention capacities. Therefore, a developmental improvement in the ability to process different durations simultaneously is related to the cognitive development of attention capacities.
Collapse
Affiliation(s)
- Quentin Hallez
- Laboratory DIPHE (Développement, Individu, Processus, Handicap, Education), Psychology Institute, University Lumière Lyon 2, 69500 Bron, France.
| | - Florie Monier
- Université Clermont Auvergne, CNRS, LAPSCO, F-63000, Clermont-Ferrand, France
| | - Sylvie Droit-Volet
- Université Clermont Auvergne, CNRS, LAPSCO, F-63000, Clermont-Ferrand, France
| |
Collapse
|
7
|
Kawashima Y, Li R, Chen SCY, Vickery RM, Morley JW, Tsuchiya N. Steady state evoked potential (SSEP) responses in the primary and secondary somatosensory cortices of anesthetized cats: Nonlinearity characterized by harmonic and intermodulation frequencies. PLoS One 2021; 16:e0240147. [PMID: 33690648 PMCID: PMC7943005 DOI: 10.1371/journal.pone.0240147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
When presented with an oscillatory sensory input at a particular frequency, F [Hz], neural systems respond with the corresponding frequency, f [Hz], and its multiples. When the input includes two frequencies (F1 and F2) and they are nonlinearly integrated in the system, responses at intermodulation frequencies (i.e., n1*f1+n2*f2 [Hz], where n1 and n2 are non-zero integers) emerge. Utilizing these properties, the steady state evoked potential (SSEP) paradigm allows us to characterize linear and nonlinear neural computation performed in cortical neurocircuitry. Here, we analyzed the steady state evoked local field potentials (LFPs) recorded from the primary (S1) and secondary (S2) somatosensory cortex of anesthetized cats (maintained with alfaxalone) while we presented slow (F1 = 23Hz) and fast (F2 = 200Hz) somatosensory vibration to the contralateral paw pads and digits. Over 9 experimental sessions, we recorded LFPs from N = 1620 and N = 1008 bipolar-referenced sites in S1 and S2 using electrode arrays. Power spectral analyses revealed strong responses at 1) the fundamental (f1, f2), 2) its harmonic, 3) the intermodulation frequencies, and 4) broadband frequencies (50-150Hz). To compare the computational architecture in S1 and S2, we employed simple computational modeling. Our modeling results necessitate nonlinear computation to explain SSEP in S2 more than S1. Combined with our current analysis of LFPs, our paradigm offers a rare opportunity to constrain the computational architecture of hierarchical organization of S1 and S2 and to reveal how a large-scale SSEP can emerge from local neural population activities.
Collapse
Affiliation(s)
- Yota Kawashima
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Rannee Li
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Spencer Chin-Yu Chen
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | | | - John W. Morley
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, Soraku-gun, Kyoto, Japan
- * E-mail:
| |
Collapse
|
8
|
Wang W, Liu Y, Luo S, Guo X, Luo X, Zhang Y. Associations between brain-derived neurotrophic factor and cognitive impairment in panic disorder. Brain Behav 2020; 10:e01885. [PMID: 33047489 PMCID: PMC7749616 DOI: 10.1002/brb3.1885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Our study was designed to examine the relationship between Brain-Derived Neurotrophic Factor (BDNF) genotypes (rs6265, Val66Met), BDNF plasma levels, and cognitive impairment in Chinese patients with panic disorder (PD). METHODS Total 85 patients with PD and 91 healthy controls finally completed all assessments. The severity of panic symptoms and whole anxiety of PD was measured by Panic Disorder Severity Scale-Chinese Version (PDSS-CV) and Hamilton Anxiety Scale (HAMA-14). Montreal Cognitive Assessment (MoCA) and some neurocognitive measures were conducted to evaluate the cognitive performance. All participants were detected for the plasma BDNF levels and BDNF Val66Met polymorphism before assessment and treatment. RESULTS No significant differences were found in the BDNF allele frequencies and the BDNF genotype distributions between healthy controls and PD patients. BDNF Met/Met genotype was associated with lower BDNF plasma levels in PD patients, and PD patients with BDNF Met/Met genotype had the lower scores in the attention and speed of processing domains compared to those with Val/Val and Met/Val genotype (p's < .05). Among PD patients, the BDNF plasma levels showed moderate positive correlations with Stroop interference (r = .60, p < .001). Using the MoCA data, the BDNF plasma levels were correlated with delayed memory (r = .50, p < .001), verbal learning (r = .45, p < .001), and total scores of MoCA (r = .51, p < .001). CONCLUSIONS The BDNF Met/Met genotype may be associated with lower BDNF plasma levels and cognitive impairments in PD patients.
Collapse
Affiliation(s)
- Wenchen Wang
- Department of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, China
| | - Yuanyuan Liu
- Department of Cardiology, Chest Hospital of Tianjin, Tianjin, China
| | - Shuqing Luo
- Department of Obstetrics, Baoding Second Central Hospital, Hebei, China
| | - Xiaoyun Guo
- Department of psychiatry, Shanghai Mental Health Center, Shanghai, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yong Zhang
- Department of Bipolar Disorder, Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
9
|
Davidson MJ, Mithen W, Hogendoorn H, van Boxtel JJA, Tsuchiya N. The SSVEP tracks attention, not consciousness, during perceptual filling-in. eLife 2020; 9:e60031. [PMID: 33170121 PMCID: PMC7682990 DOI: 10.7554/elife.60031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Research on the neural basis of conscious perception has almost exclusively shown that becoming aware of a stimulus leads to increased neural responses. By designing a novel form of perceptual filling-in (PFI) overlaid with a dynamic texture display, we frequency-tagged multiple disappearing targets as well as their surroundings. We show that in a PFI paradigm, the disappearance of a stimulus and subjective invisibility is associated with increases in neural activity, as measured with steady-state visually evoked potentials (SSVEPs), in electroencephalography (EEG). We also find that this increase correlates with alpha-band activity, a well-established neural measure of attention. These findings cast doubt on the direct relationship previously reported between the strength of neural activity and conscious perception, at least when measured with current tools, such as the SSVEP. Instead, we conclude that SSVEP strength more closely measures changes in attention.
Collapse
Affiliation(s)
- Matthew J Davidson
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Department of Experimental Psychology, Faculty of Medicine, University of OxfordOxfordUnited Kingdom
| | - Will Mithen
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
| | - Hinze Hogendoorn
- Melbourne School of Psychological Sciences, University of MelbourneMelbourneAustralia
| | - Jeroen JA van Boxtel
- Discipline of Psychology, Faculty of Health, University of CanberraCanberraAustralia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT)SuitaJapan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gunKyotoJapan
| |
Collapse
|
10
|
Radtke EL, Schöne B, Martens U, Gruber T. Electrophysiological correlates of gist perception: a steady-state visually evoked potentials study. Exp Brain Res 2020; 238:1399-1410. [PMID: 32363553 PMCID: PMC7286871 DOI: 10.1007/s00221-020-05819-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 01/23/2023]
Abstract
Gist perception refers to perceiving the substance or general meaning of a scene. To investigate its neuronal mechanisms, we used the steady-state visually evoked potential (SSVEP) method—an evoked oscillatory cortical response at the same frequency as a visual stimulus flickered at this frequency. Two neighboring stimuli were flickered at different frequencies f1 and f2, for example, a drawing of a sun on the left side of the screen flickering at 8.6 Hz and the drawing of a parasol on the right side of the screen flickering at 12 Hz. SSVEPs enabled us to separate the responses to the two distinct stimuli by extracting oscillatory brain responses at f1 and f2. Additionally, it allowed to investigate intermodulation frequencies, that is, the brain’s response at a linear combination of f1 and f2 (here at f1 + f2 = 20.6 Hz) as an indicator of processing shared aspects of the input, that is, gist perception (here: a beach scene). We recorded high-density EEG of 18 participants. Results revealed clear and separable neuronal oscillations at f1 and f2. Additionally, occipital electrodes showed increased amplitudes at the intermodulation frequency in related as compared to unrelated pairs. The increase in intermodulation frequency was associated with bilateral temporal and parietal lobe activation, probably reflecting the interaction of local object representations as a basis for activating the gist network. The study demonstrates that SSVEPs are an excellent method to unravel mechanisms underlying the processing within multi-stimulus displays in the context of gist perception.
Collapse
Affiliation(s)
- Elise L Radtke
- Institute of Psychology, Osnabrück University, Seminarstraße 20, 49074, Osnabrück, Germany.
| | - Benjamin Schöne
- Institute of Psychology, Osnabrück University, Seminarstraße 20, 49074, Osnabrück, Germany
| | - Ulla Martens
- DRK-Norddeutsches Epilepsiezentrum für Kinder und Jugendliche, Henry-Dunant-Str. 6-10, 24223, Schwentinental, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Seminarstraße 20, 49074, Osnabrück, Germany
| |
Collapse
|
11
|
Itthipuripat S, Deering S, Serences JT. When Conflict Cannot be Avoided: Relative Contributions of Early Selection and Frontal Executive Control in Mitigating Stroop Conflict. Cereb Cortex 2019; 29:5037-5048. [PMID: 30877786 PMCID: PMC6918928 DOI: 10.1093/cercor/bhz042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/10/2019] [Indexed: 01/29/2023] Open
Abstract
When viewing familiar stimuli (e.g., common words), processing is highly automatized such that it can interfere with the processing of incompatible sensory information. At least two mechanisms may help mitigate this interference. Early selection accounts posit that attentional processes filter out distracting sensory information to avoid conflict. Alternatively, late selection accounts hold that all sensory inputs receive full semantic analysis and that frontal executive mechanisms are recruited to resolve conflict. To test how these mechanisms operate to overcome conflict induced by highly automatized processing, we developed a novel version of the color-word Stroop task, where targets and distractors were simultaneously flickered at different frequencies. We measured the quality of early sensory processing by assessing the amplitude of steady-state visually evoked potentials (SSVEPs) elicited by targets and distractors. We also indexed frontal executive processes by assessing changes in frontal theta oscillations induced by color-word incongruency. We found that target- and distractor-related SSVEPs were not modulated by changes in the level of conflict whereas frontal theta activity increased on high compared to low conflict trials. These results suggest that frontal executive processes play a more dominant role in mitigating cognitive interference driven by the automatic tendency to process highly familiar stimuli.
Collapse
Affiliation(s)
- Sirawaj Itthipuripat
- Department of Psychology and Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN, USA
- Learning Institute and Futuristic Research in Enigmatic Aesthetics Knowledge Laboratory, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Sean Deering
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
- Health Services Research and Development, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - John T Serences
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
- Kavli Foundation for the Brain and Mind, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Spatial attention enhances cortical tracking of quasi-rhythmic visual stimuli. Neuroimage 2019; 208:116444. [PMID: 31816422 DOI: 10.1016/j.neuroimage.2019.116444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/06/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022] Open
Abstract
Successfully interpreting and navigating our natural visual environment requires us to track its dynamics constantly. Additionally, we focus our attention on behaviorally relevant stimuli to enhance their neural processing. Little is known, however, about how sustained attention affects the ongoing tracking of stimuli with rich natural temporal dynamics. Here, we used MRI-informed source reconstructions of magnetoencephalography (MEG) data to map to what extent various cortical areas track concurrent continuous quasi-rhythmic visual stimulation. Further, we tested how top-down visuo-spatial attention influences this tracking process. Our bilaterally presented quasi-rhythmic stimuli covered a dynamic range of 4-20 Hz, subdivided into three distinct bands. As an experimental control, we also included strictly rhythmic stimulation (10 vs 12 Hz). Using a spectral measure of brain-stimulus coupling, we were able to track the neural processing of left vs. right stimuli independently, even while fluctuating within the same frequency range. The fidelity of neural tracking depended on the stimulation frequencies, decreasing for higher frequency bands. Both attended and non-attended stimuli were tracked beyond early visual cortices, in ventral and dorsal streams depending on the stimulus frequency. In general, tracking improved with the deployment of visuo-spatial attention to the stimulus location. Our results provide new insights into how human visual cortices process concurrent dynamic stimuli and provide a potential mechanism - namely increasing the temporal precision of tracking - for boosting the neural representation of attended input.
Collapse
|
13
|
Klimovich-Gray A, Bozic M. Domain-general and domain-specific computations in single word processing. Neuroimage 2019; 202:116112. [PMID: 31437552 DOI: 10.1016/j.neuroimage.2019.116112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Language comprehension relies on a multitude of domain-general and domain-specific cognitive operations. This study asks whether the domain-specific grammatical computations are obligatorily invoked whenever we process linguistic inputs. Using fMRI and three complementary measures of neural activity, we tested how domain-general and domain-specific demands of single word comprehension engage cortical language networks, and whether the left frontotemporal network (commonly taken to support domain-specific grammatical computations) automatically processes grammatical information present in inflectionally complex words. In a natural listening task, participants were presented with words that manipulated domain-general and domain-specific processing demands in a 2 × 2 manner. The results showed that only domain-general demands of mapping words onto their representations consistently engaged the language processing system during single word comprehension, triggering increased activity and connectivity in bilateral frontotemporal regions, as well as bilateral encoding across multivoxel activity patterns. In contrast, inflectional complexity failed to activate left frontotemporal regions in this task, implying that domain-specific grammatical processing in the left hemisphere is not automatically triggered when the processing context does not specifically require such analysis. This suggests that cortical computations invoked by language processing critically depend on the current communicative goals and demands, underlining the importance of domain-general processes in language comprehension, and arguing against the strong domain-specific view of the LH network function.
Collapse
Affiliation(s)
- Anastasia Klimovich-Gray
- Basque Center on Cognition, Brain and Language, Mikeletegi Pasealekua, 69, 20009, Donostia, Gipuzkoa, Spain.
| | - Mirjana Bozic
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|
14
|
Gordon N, Hohwy J, Davidson MJ, van Boxtel JJA, Tsuchiya N. From intermodulation components to visual perception and cognition-a review. Neuroimage 2019; 199:480-494. [PMID: 31173903 DOI: 10.1016/j.neuroimage.2019.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 04/15/2019] [Accepted: 06/03/2019] [Indexed: 01/27/2023] Open
Abstract
Perception results from complex interactions among sensory and cognitive processes across hierarchical levels in the brain. Intermodulation (IM) components, used in frequency tagging neuroimaging designs, have emerged as a promising direct measure of such neural interactions. IMs have initially been used in electroencephalography (EEG) to investigate low-level visual processing. In a more recent trend, IMs in EEG and other neuroimaging methods are being used to shed light on mechanisms of mid- and high-level perceptual processes, including the involvement of cognitive functions such as attention and expectation. Here, we provide an account of various mechanisms that may give rise to IMs in neuroimaging data, and what these IMs may look like. We discuss methodologies that can be implemented for different uses of IMs and we demonstrate how IMs can provide insights into the existence, the degree and the type of neural integration mechanisms at hand. We then review a range of recent studies exploiting IMs in visual perception research, placing an emphasis on high-level vision and the influence of awareness and cognition on visual processing. We conclude by suggesting future directions that can enhance the benefits of IM-methodology in perception research.
Collapse
Affiliation(s)
- Noam Gordon
- Cognition and Philosophy Lab, Philosophy Department, Monash University, Clayton VIC, 3800, Australia.
| | - Jakob Hohwy
- Cognition and Philosophy Lab, Philosophy Department, Monash University, Clayton VIC, 3800, Australia
| | - Matthew James Davidson
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton VIC, 3800, Australia; School of Psychological Sciences, Monash University, Clayton VIC, 3800, Australia
| | - Jeroen J A van Boxtel
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton VIC, 3800, Australia; School of Psychological Sciences, Monash University, Clayton VIC, 3800, Australia; School of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
| | - Naotsugu Tsuchiya
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton VIC, 3800, Australia; School of Psychological Sciences, Monash University, Clayton VIC, 3800, Australia; ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
de Vries E, Baldauf D. Attentional Weighting in the Face Processing Network: A Magnetic Response Image-guided Magnetoencephalography Study Using Multiple Cyclic Entrainments. J Cogn Neurosci 2019; 31:1573-1588. [PMID: 31112470 DOI: 10.1162/jocn_a_01428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We recorded magnetoencephalography using a neural entrainment paradigm with compound face stimuli that allowed for entraining the processing of various parts of a face (eyes, mouth) as well as changes in facial identity. Our magnetic response image-guided magnetoencephalography analyses revealed that different subnodes of the human face processing network were entrained differentially according to their functional specialization. Whereas the occipital face area was most responsive to the rate at which face parts (e.g., the mouth) changed, and face patches in the STS were mostly entrained by rhythmic changes in the eye region, the fusiform face area was the only subregion that was strongly entrained by the rhythmic changes in facial identity. Furthermore, top-down attention to the mouth, eyes, or identity of the face selectively modulated the neural processing in the respective area (i.e., occipital face area, STS, or fusiform face area), resembling behavioral cue validity effects observed in the participants' RT and detection rate data. Our results show the attentional weighting of the visual processing of different aspects and dimensions of a single face object, at various stages of the involved visual processing hierarchy.
Collapse
|
16
|
Object-based attention in complex, naturalistic auditory streams. Sci Rep 2019; 9:2854. [PMID: 30814547 PMCID: PMC6393668 DOI: 10.1038/s41598-019-39166-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/14/2019] [Indexed: 11/08/2022] Open
Abstract
In vision, objects have been described as the 'units' on which non-spatial attention operates in many natural settings. Here, we test the idea of object-based attention in the auditory domain within ecologically valid auditory scenes, composed of two spatially and temporally overlapping sound streams (speech signal vs. environmental soundscapes in Experiment 1 and two speech signals in Experiment 2). Top-down attention was directed to one or the other auditory stream by a non-spatial cue. To test for high-level, object-based attention effects we introduce an auditory repetition detection task in which participants have to detect brief repetitions of auditory objects, ruling out any possible confounds with spatial or feature-based attention. The participants' responses were significantly faster and more accurate in the valid cue condition compared to the invalid cue condition, indicating a robust cue-validity effect of high-level, object-based auditory attention.
Collapse
|
17
|
Kuo CC, Tucker DM, Luu P, Jenson K, Tsai JJ, Ojemann JG, Holmes MD. EEG source imaging of epileptic activity at seizure onset. Epilepsy Res 2018; 146:160-171. [DOI: 10.1016/j.eplepsyres.2018.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 01/16/2023]
|