1
|
Brenowitz EA, Lent KL, Miller KE, Perkel DJ. Adult neurogenesis is necessary for functional regeneration of a forebrain neural circuit. Proc Natl Acad Sci U S A 2024; 121:e2400596121. [PMID: 38968119 PMCID: PMC11252730 DOI: 10.1073/pnas.2400596121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
In adult songbirds, new neurons are born in large numbers in the proliferative ventricular zone in the telencephalon and migrate to the adjacent song control region HVC (acronym used as proper name) [A. Reiner et al., J. Comp. Neurol. 473, 377-414 (2004)]. Many of these new neurons send long axonal projections to the robust nucleus of the arcopallium (RA). The HVC-RA circuit is essential for producing stereotyped learned song. The function of adult neurogenesis in this circuit has not been clear. A previous study suggested that it is important for the production of well-structured songs [R. E. Cohen, M. Macedo-Lima, K. E. Miller, E. A. Brenowitz, J. Neurosci. 36, 8947-8956 (2016)]. We tested this hypothesis by infusing the neuroblast migration inhibitor cyclopamine into HVC of male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) to block seasonal regeneration of the HVC-RA circuit. Decreasing the number of new neurons in HVC prevented both the increase in spontaneous electrical activity of RA neurons and the improved structure of songs that would normally occur as sparrows enter breeding condition. These results show that the incorporation of new neurons into the adult HVC is necessary for the recovery of both electrical activity and song behavior in breeding birds and demonstrate the value of the bird song system as a model for investigating adult neurogenesis at the level of long projection neural circuits.
Collapse
Affiliation(s)
- Eliot A. Brenowitz
- Department of Psychology, University of Washington, Seattle, WA98195
- Department of Biology, University of Washington, Seattle, WA98195
| | - Karin L. Lent
- Department of Psychology, University of Washington, Seattle, WA98195
- Department of Biology, University of Washington, Seattle, WA98195
| | - Kimberly E. Miller
- Department of Psychology, University of Washington, Seattle, WA98195
- Department of Biology, University of Washington, Seattle, WA98195
| | - David J. Perkel
- Department of Biology, University of Washington, Seattle, WA98195
- Department of Otolaryngology, University of Washington, Seattle, WA98195
| |
Collapse
|
2
|
Tang C, Liu M, Zhou Z, Li H, Yang C, Yang L, Xiang J. Treadmill Exercise Alleviates Cognition Disorder by Activating the FNDC5: Dual Role of Integrin αV/β5 in Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24097830. [PMID: 37175535 PMCID: PMC10178565 DOI: 10.3390/ijms24097830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Parkinson's disease with cognitive impairment (PD-CI) results in several clinical outcomes for which specific treatment is lacking. Although the pathogenesis of PD-CI has not yet been fully elucidated, it is related to neuronal plasticity decline in the hippocampus region. The dopaminergic projections from the substantia nigra to the hippocampus are critical in regulating hippocampal plasticity. Recently, aerobic exercise has been recognized as an effective therapeutic strategy for enhancing plasticity through the secretion of various muscle factors. The exact role of FNDC5-an upregulated, newly identified myokine produced after exercise-in mediating hippocampal plasticity and regional dopaminergic projections in PD-CI remains unclear. In this study, the effect of treadmill exercise on hippocampal synaptic plasticity was evaluated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced chronic PD models. The results showed that treadmill exercise substantially alleviated the motor dysfunction, cognition disorder, and dopaminergic neuron degeneration induced by MPTP. Here, we discovered that the quadriceps, serum, and brain FNDC5 levels were lower in PD mice and that intervention with treadmill exercise restored FNDC5 levels. Moreover, treadmill exercise enhanced the synaptic plasticity of hippocampal pyramidal neurons via increased dopamine levels and BDNF in the PD mice. The direct protective effect of FNDC5 is achieved by promoting the secretion of BDNF in the hippocampal neurons via binding the integrin αVβ5 receptor, thereby improving synaptic plasticity. Regarding the indirect protection effect, FNDC5 promotes the dopaminergic connection from the substantia nigra to the hippocampus by mediating the interaction between the integrin αVβ5 of the hippocampal neurons and the CD90 molecules on the membrane of dopaminergic terminals. Our findings demonstrated that treadmill exercise could effectively alleviate cognitive disorders via the activation of the FNDC5-BDNF pathway and enhance the dopaminergic synaptic connection from SNpc to the hippocampus in the MPTP-induced chronic PD model.
Collapse
Affiliation(s)
- Chuanxi Tang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Mengting Liu
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, China
- The College of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Zihang Zhou
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Li
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Chenglin Yang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Li Yang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jie Xiang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, China
| |
Collapse
|
3
|
Zhang Y, Wang Q, Zheng Z, Sun Y, Niu Y, Li D, Wang S, Meng W. BDNF enhances electrophysiological activity and excitatory synaptic transmission of RA projection neurons in adult male zebra finches. Brain Res 2023; 1801:148208. [PMID: 36549361 DOI: 10.1016/j.brainres.2022.148208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
The singing of songbirds is a complex vocal behavior. It was reported that brain-derived neurotrophic factor (BDNF), a key neurotrophic factor involved in neuronal survival and activity, plays an important role in regulation of songbirds' song behavior. In all song-related nuclei, the electrophysiological activity of robust nucleus of the arcopallium (RA) in the forebrain of songbirds is directly related to birdsong output. Whether BDNF regulates the electrophysiological activity and synaptic transmission of RA causing the change of song behavior need be further explored. In this study, the effects of BDNF on the electrophysiological activity and excitatory synaptic transmission of RA projection neurons (PNs) in adult male zebra finches were investigated using whole-cell patch clamp recordings in vitro. Our results showed that BDNF increased the firing of evoked action potentials in RA PNs and decreased the membrane input resistance and membrane time constant of RA PNs, indicating that BDNF can promote RA PNs excitability by reducing membrane input resistance and membrane time constant. Meanwhile, BDNF increased the frequency rather than amplitude of miniature excitatory postsynaptic currents (mEPSCs) in RA PNs. Moreover, the effects of BDNF on the excitability, intrinsic membrane properties and mEPSCs of RA PNs were blocked by its receptor TrkB antagonist K252a. These results indicate that BDNF via TrkB enhances the excitability and excitatory synaptic transmission of RA PNs in adult male songbirds through presynaptic mechanisms, suggesting a possible cellular mechanism by which BDNF regulates song behavior.
Collapse
Affiliation(s)
- Yutao Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qingqin Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zijian Zheng
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yalun Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yali Niu
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Dongfeng Li
- School of Life Science, South China Normal University, Guangzhou, China.
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China.
| | - Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China.
| |
Collapse
|
4
|
Zhang Y, Zhou L, Zuo J, Wang S, Meng W. Analogies of human speech and bird song: From vocal learning behavior to its neural basis. Front Psychol 2023; 14:1100969. [PMID: 36910811 PMCID: PMC9992734 DOI: 10.3389/fpsyg.2023.1100969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Vocal learning is a complex acquired social behavior that has been found only in very few animals. The process of animal vocal learning requires the participation of sensorimotor function. By accepting external auditory input and cooperating with repeated vocal imitation practice, a stable pattern of vocal information output is eventually formed. In parallel evolutionary branches, humans and songbirds share striking similarities in vocal learning behavior. For example, their vocal learning processes involve auditory feedback, complex syntactic structures, and sensitive periods. At the same time, they have evolved the hierarchical structure of special forebrain regions related to vocal motor control and vocal learning, which are organized and closely associated to the auditory cortex. By comparing the location, function, genome, and transcriptome of vocal learning-related brain regions, it was confirmed that songbird singing and human language-related neural control pathways have certain analogy. These common characteristics make songbirds an ideal animal model for studying the neural mechanisms of vocal learning behavior. The neural process of human language learning may be explained through similar neural mechanisms, and it can provide important insights for the treatment of language disorders.
Collapse
Affiliation(s)
- Yutao Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lifang Zhou
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiachun Zuo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
5
|
Cornez G, Valle S, dos Santos EB, Chiver I, Müller W, Ball GF, Cornil CA, Balthazart J. Perineuronal nets in HVC and plasticity in male canary song. PLoS One 2021; 16:e0252560. [PMID: 34449793 PMCID: PMC8396724 DOI: 10.1371/journal.pone.0252560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023] Open
Abstract
Songbirds learn their vocalizations during developmental sensitive periods of song memorization and sensorimotor learning. Some seasonal songbirds, called open-ended learners, recapitulate transitions from sensorimotor learning and song crystallization on a seasonal basis during adulthood. In adult male canaries, sensorimotor learning occurs each year in autumn and leads to modifications of the syllable repertoire during successive breeding seasons. We previously showed that perineuronal nets (PNN) expression in song control nuclei decreases during this sensorimotor learning period. Here we explored the causal link between PNN expression in adult canaries and song modification by enzymatically degrading PNN in HVC, a key song control system nucleus. Three independent experiments identified limited effects of the PNN degradation in HVC on the song structure of male canaries. They clearly establish that presence of PNN in HVC is not required to maintain general features of crystallized song. Some suggestion was collected that PNN are implicated in the stability of song repertoires but this evidence is too preliminary to draw firm conclusions and additional investigations should consider producing PNN degradations at specified time points of the seasonal cycle. It also remains possible that once song has been crystallized at the beginning of the first breeding season, PNN no longer play a key role in determining song structure; this could be tested by treatments with chondroitinase ABC at key steps in ontogeny. It would in this context be important to develop multiple stereotaxic procedures allowing the simultaneous bilateral degradation of PNN in several song control nuclei for extended periods.
Collapse
Affiliation(s)
- Gilles Cornez
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Liege, Belgium
| | - Shelley Valle
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Liege, Belgium
| | - Ednei Barros dos Santos
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Liege, Belgium
| | - Ioana Chiver
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Liege, Belgium
| | - Wendt Müller
- Behavioural Ecology and Ecophysiology Lab, University of Antwerp, Antwerp, Belgium
| | - Gregory F. Ball
- Department of Psychology, University of Maryland, Maryland, College Park, MD, United States of America
| | - Charlotte A. Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Liege, Belgium
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Liege, Belgium
- * E-mail:
| |
Collapse
|