1
|
Sun L, Ping L, Gao R, Zhang B, Chen X. lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway. Genes (Basel) 2023; 14:1371. [PMID: 37510276 PMCID: PMC10378989 DOI: 10.3390/genes14071371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In vertebrates, the development of the inner ear is a delicate process, whereas its relating molecular pathways are still poorly understood. LMO4, an LIM domain-only transcriptional regulator, is drawing an increasing amount of interest for its multiple roles regarding human embryonic development and the modulation of ototoxic side effects of cisplatin including cochlear apoptosis and hearing loss. The aim of the present study is to further explore the role of lmo4a in zebrafish inner ear development and thus explore its functional role. METHODS The Spatial Transcript Omics DataBase was referred to in order to evaluate the expression of lmo4a during the first 24 h of zebrafish development. In situ hybridization was applied to validate and extend the expression profile of lmo4a to 3 days post-fertilization. The morpholino (MO) knockdown and CRISPR/Cas9 knockout (KO) of lmo4a was applied. Morphological analyses of otic vesical, hair cells, statoacoustic ganglion and semicircular canals were conducted. The swimming pattern of lmo4a KO and MO zebrafish was tracked. In situ hybridization was further applied to verify the expression of genes of the related pathways. Rescue of the phenotype was attempted by blockage of the bmp pathway via heat shock and injection of Dorsomorphin. RESULTS lmo4a is constitutively expressed in the otic placode and otic vesicle during the early stages of zebrafish development. Knockdown and knockout of lmo4a both induced smaller otocysts, less hair cells, immature statoacoustic ganglion and malformed semicircular canals. Abnormal swimming patterns could be observed in both lmo4a MO and KO zebrafish. eya1 in preplacodal ectoderm patterning was downregulated. bmp2 and bmp4 expressions were found to be upregulated and extended in lmo4a morphants, and blockage of the Bmp pathway partially rescued the vestibular defects. CONCLUSIONS We concluded that lmo4a holds a regulative effect on the Bmp pathway and is required for the normal development of zebrafish inner ear. Our study pointed out the conservatism of LMO4 in inner ear development between mammals and zebrafish as well as shed more light on the molecular mechanisms behind it. Further research is needed to distinguish the relationships between lmo4 and the Bmp pathway, which may lead to diagnostic and therapeutic approaches towards human inner ear malformation.
Collapse
Affiliation(s)
- Le Sun
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing 100730, China;
| | - Lu Ping
- Chinese Academy of Medical Sciences and Peking Union Medical College, #9 Dongdan Santiao, Dongcheng District, Beijing 100050, China;
| | - Ruzhen Gao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China;
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing 100730, China;
| |
Collapse
|
2
|
Zine A, Fritzsch B. Early Steps towards Hearing: Placodes and Sensory Development. Int J Mol Sci 2023; 24:6994. [PMID: 37108158 PMCID: PMC10139157 DOI: 10.3390/ijms24086994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Sensorineural hearing loss is the most prevalent sensory deficit in humans. Most cases of hearing loss are due to the degeneration of key structures of the sensory pathway in the cochlea, such as the sensory hair cells, the primary auditory neurons, and their synaptic connection to the hair cells. Different cell-based strategies to replace damaged inner ear neurosensory tissue aiming at the restoration of regeneration or functional recovery are currently the subject of intensive research. Most of these cell-based treatment approaches require experimental in vitro models that rely on a fine understanding of the earliest morphogenetic steps that underlie the in vivo development of the inner ear since its initial induction from a common otic-epibranchial territory. This knowledge will be applied to various proposed experimental cell replacement strategies to either address the feasibility or identify novel therapeutic options for sensorineural hearing loss. In this review, we describe how ear and epibranchial placode development can be recapitulated by focusing on the cellular transformations that occur as the inner ear is converted from a thickening of the surface ectoderm next to the hindbrain known as the otic placode to an otocyst embedded in the head mesenchyme. Finally, we will highlight otic and epibranchial placode development and morphogenetic events towards progenitors of the inner ear and their neurosensory cell derivatives.
Collapse
Affiliation(s)
- Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Glover JC, Fritzsch B. Molecular mechanisms governing development of the hindbrain choroid plexus and auditory projection: A validation of the seminal observations of Wilhelm His. IBRO Neurosci Rep 2022; 13:306-313. [PMID: 36247525 PMCID: PMC9561746 DOI: 10.1016/j.ibneur.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Studies by His from 1868 to 1904 delineated the critical role of the dorsal roof plate in the development of the hindbrain choroid plexus, and of the rhombic lips in the development of hindbrain auditory centers. Modern molecular studies have confirmed these observations and placed them in a mechanistic context. Expression of the transcription factor Lmx1a/b is crucial to the development of the hindbrain choroid plexus, and also regulates the expression of Atoh1, a transcription factor that is essential for the formation of the cochlear hair cells and auditory nuclei. By contrast, development of the vestibular hair cells, vestibular ganglion and vestibular nuclei does not depend on Lmx1a/b. These findings demonstrate a common dependence on a specific gene for the hindbrain choroid plexus and the primary auditory projection from hair cells to sensory neurons to hindbrain nuclei. Thus, His' conclusions regarding the origins of specific hindbrain structures are borne out by molecular genetic experiments conducted more than a hundred years later.
Collapse
Affiliation(s)
- Joel C. Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| |
Collapse
|
4
|
Lee SY, Soon Yoo H, Hee Han J, Hee Lee D, Soo Park S, Hwan Suh M, Ho Lee J, Oh SH, Choi BY. Novel Molecular Genetic Etiology of Asymmetric Hearing Loss: Autosomal-Dominant LMX1A Variants. Ear Hear 2022; 43:1698-1707. [PMID: 35711095 DOI: 10.1097/aud.0000000000001237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Sensorineural hearing loss is the most common sensory disorder in humans. Genetic analyses have greatly increased our understanding of the pathogenic mechanisms in play. Thus, characterization of audiologic phenotypes by the genetic etiology may aid elucidation of the etiologies of certain types of inherited hearing loss. Further, delineation of specific audiologic phenotypes based on the genetic etiology aids our understanding of some types of inherited hearing loss in terms of the prediction of clinical course, revelation of genotype-phenotype correlations, and application of appropriate audiologic rehabilitation. Here, we describe the interesting audiologic characteristics of LMX1A -associated deafness, which revealed significant asymmetry between two ears. METHODS Among 728 probands of which genomic DNA went through exome sequencing regardless of any specific audiologic phenotypes, probands for which exome sequencing was performed and a causative LMX1A variant was found were all included. Five LMX1A -associated DFNA7 families (approximately 0.7%), the pedigrees of whom indicated autosomal-dominant hearing loss, were identified, and segregation was studied using Sanger sequencing. The affected individuals underwent comprehensive evaluations, including medical history reviews, physical examinations, imaging, and auditory phenotyping. We functionally characterized the novel LMX1A variants via computational structural modeling and luciferase reporter assays. RESULTS Among 728 probands of which genomic DNA went through exome sequencing, we identified four novel LMX1A heterozygous variants related to DFNA7 (c.622C>T:p.Arg208*, c.719A>G:p.Gln240Arg, c.721G>A:p.Val241Met, and c.887dup:p.Gln297Thrfs*41) and one harboring a de novo heterozygous missense LMX1A variant (c.595A>G;p.Arg199Gly) previously reported. It is important to note that asymmetric hearing loss was identified in all probands and most affected individuals, although the extent of asymmetry varied. Structural modeling revealed that the two missense variants, p.Gln240Arg and p.Val241Met, affected conserved residues of the homeodomain, thus attenuating LMX1A-DNA interaction. In addition, Arg208*-induced premature termination of translation destroyed the structure of the LMX1A protein, including the DNA-binding homeodomain, and p.Gln297Thrfs*41 led to the loss of the C-terminal helix involved in LIM2 domain interaction. Compared with the wild-type protein, all mutant LMX1A proteins had significantly reduced transactivation efficiency, indicating that the ability to elicit transcription of the downstream target genes of LMX1A was severely compromised. Thus, in line with the American College of Medical Genetics and Genomics guideline specified to genetic hearing loss, the four novel LMX1A variants were identified as "pathogenic" (p.Arg208* and p.Gln297Thrfs*41), "likely pathogenic" (p.Val241Met), and as a "variant of uncertain significance'' (p.Gln240Arg). CONCLUSION For the first time, we suggest that LMX1A is one of the candidate genes which, if altered, could be associated with dominantly inherited asymmetric hearing loss. We also expand the genotypic spectrum of disease-causing variants of LMX1A causing DFNA7 by doubling the number of LMX1A variants reported thus far in the literature.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Hyo Soon Yoo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dae Hee Lee
- CTCELLS, Inc., Yuseong-gu, Daejeon, South Korea
| | - Sang Soo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Myung Hwan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
5
|
Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci 2022; 14:814528. [PMID: 35250542 PMCID: PMC8891613 DOI: 10.3389/fnagi.2022.814528] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Age-related hearing loss (ARHL) is a common, increasing problem for older adults, affecting about 1 billion people by 2050. We aim to correlate the different reductions of hearing from cochlear hair cells (HCs), spiral ganglion neurons (SGNs), cochlear nuclei (CN), and superior olivary complex (SOC) with the analysis of various reasons for each one on the sensory deficit profiles. Outer HCs show a progressive loss in a basal-to-apical gradient, and inner HCs show a loss in a apex-to-base progression that results in ARHL at high frequencies after 70 years of age. In early neonates, SGNs innervation of cochlear HCs is maintained. Loss of SGNs results in a considerable decrease (~50% or more) of cochlear nuclei in neonates, though the loss is milder in older mice and humans. The dorsal cochlear nuclei (fusiform neurons) project directly to the inferior colliculi while most anterior cochlear nuclei reach the SOC. Reducing the number of neurons in the medial nucleus of the trapezoid body (MNTB) affects the interactions with the lateral superior olive to fine-tune ipsi- and contralateral projections that may remain normal in mice, possibly humans. The inferior colliculi receive direct cochlear fibers and second-order fibers from the superior olivary complex. Loss of the second-order fibers leads to hearing loss in mice and humans. Although ARHL may arise from many complex causes, HC degeneration remains the more significant problem of hearing restoration that would replace the cochlear implant. The review presents recent findings of older humans and mice with hearing loss.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Liu W, Johansson Å, Rask-Andersen H, Rask-Andersen M. A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens. BMC Med 2021; 19:302. [PMID: 34847940 PMCID: PMC8638543 DOI: 10.1186/s12916-021-02169-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sensorineural hearing loss is one of the most common sensory deficiencies. However, the molecular contribution to age-related hearing loss is not fully elucidated. METHODS We performed genome-wide association studies (GWAS) for hearing loss-related traits in the UK Biobank (N = 362,396) and selected a high confidence set of ten hearing-associated gene products for staining in human cochlear samples: EYA4, LMX1A, PTK2/FAK, UBE3B, MMP2, SYNJ2, GRM5, TRIOBP, LMO-7, and NOX4. RESULTS All proteins were found to be expressed in human cochlear structures. Our findings illustrate cochlear structures that mediate mechano-electric transduction of auditory stimuli, neuronal conductance, and neuronal plasticity to be involved in age-related hearing loss. CONCLUSIONS Our results suggest common genetic variation to influence structural resilience to damage as well as cochlear recovery after trauma, which protect against accumulated damage to cochlear structures and the development of hearing loss over time.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Elliott KL, Pavlinkova G, Chizhikov VV, Yamoah EN, Fritzsch B. Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, cochlear nuclei, and cochlear hair cell development. Fac Rev 2021; 10:47. [PMID: 34131657 PMCID: PMC8170689 DOI: 10.12703/r/10-47] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We review the molecular basis of three related basic helix–loop–helix (bHLH) genes (Neurog1, Neurod1, and Atoh1) and upstream regulators Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires early expression of Neurog1, followed by its downstream target Neurod1, which downregulates Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 and Neurog1 expression for various aspects of development. Several experiments show a partial uncoupling of Atoh1/Neurod1 (spiral ganglia and cochlea) and Atoh1/Neurog1/Neurod1 (cochlear nuclei). In this review, we integrate the cellular and molecular mechanisms that regulate the development of auditory system and provide novel insights into the restoration of hearing loss, beyond the limited generation of lost sensory neurons and hair cells.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int J Mol Sci 2021; 22:ijms22084189. [PMID: 33919542 PMCID: PMC8074135 DOI: 10.3390/ijms22084189] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix–loop–helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons’ fate into “hair cells”, highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of “intraganglionic” HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
| | - Gabriela Pavlínková
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czechia;
| | - Victor V. Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA;
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
- Correspondence:
| |
Collapse
|
9
|
Chizhikov VV, Iskusnykh IY, Fattakhov N, Fritzsch B. Lmx1a and Lmx1b are Redundantly Required for the Development of Multiple Components of the Mammalian Auditory System. Neuroscience 2021; 452:247-264. [PMID: 33246067 PMCID: PMC7780644 DOI: 10.1016/j.neuroscience.2020.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
The inner ear, projections, and brainstem nuclei are essential components of the auditory and vestibular systems. It is believed that the evolution of complex systems depends on duplicated sets of genes. The contribution of duplicated genes to auditory or vestibular system development, however, is poorly understood. We describe that Lmx1a and Lmx1b, which originate from the invertebrate Lmx1b-like gene, redundantly regulate development of multiple essential components of the mammalian auditory/vestibular systems. Combined, but not individual, loss of Lmx1a/b eliminated the auditory inner ear organ of Corti (OC) and disrupted the spiral ganglion, which was preceded by a diminished expression of their critical regulator Pax2. Innervation of the remaining inner ear vestibular organs revealed unusual sizes or shapes and was more affected compared to Lmx1a/b single-gene mutants. Individual loss of Lmx1a/b genes did not disrupt brainstem auditory nuclei or inner ear central projections. Combined loss of Lmx1a/b, however, eliminated excitatory neurons in cochlear/vestibular nuclei, and also the expression of a master regulator Atoh1 in their progenitors in the lower rhombic lip (RL). Finally, in Lmx1a/b double mutants, vestibular afferents aberrantly projected to the roof plate. This phenotype was associated with altered expression of Wnt3a, a secreted ligand of the Wnt pathway that regulates pathfinding of inner ear projections. Thus, Lmx1a/b are redundantly required for the development of the mammalian inner ear, inner ear central projections, and cochlear/vestibular nuclei.
Collapse
Affiliation(s)
- Victor V Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikolai Fattakhov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
10
|
Casoni F, Croci L, Vincenti F, Podini P, Riba M, Massimino L, Cremona O, Consalez GG. ZFP423 regulates early patterning and multiciliogenesis in the hindbrain choroid plexus. Development 2020; 147:dev.190173. [PMID: 33046507 DOI: 10.1242/dev.190173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022]
Abstract
The choroid plexus (ChP) is a secretory tissue that produces cerebrospinal fluid (CSF) secreted into the ventricular system. It is a monolayer of secretory, multiciliated epithelial cells derived from neuroepithelial progenitors and overlying a stroma of mesenchymal cells of mesodermal origin. Zfp423, which encodes a Kruppel-type zinc-finger transcription factor essential for cerebellar development and mutated in rare cases of cerebellar vermis hypoplasia/Joubert syndrome and other ciliopathies, is expressed in the hindbrain roof plate, from which the IV ventricle ChP arises, and, later, in mesenchymal cells, which give rise to the stroma and leptomeninges. Mouse Zfp423 mutants display a marked reduction of the hindbrain ChP (hChP), which: (1) fails to express established markers of its secretory function and genes implicated in its development and maintenance (Lmx1a and Otx2); (2) shows a perturbed expression of signaling pathways previously unexplored in hChP patterning (Wnt3); and (3) displays a lack of multiciliated epithelial cells and a profound dysregulation of master genes of multiciliogenesis (Gmnc). Our results propose that Zfp423 is a master gene and one of the earliest known determinants of hChP development.
Collapse
Affiliation(s)
- Filippo Casoni
- Università Vita-Salute San Raffaele, Milan, Italy .,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Laura Croci
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Paola Podini
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Michela Riba
- Center for Omics Sciences, IRCCS, San Raffaele Hospital, Milan 20132, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ottavio Cremona
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - G Giacomo Consalez
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
11
|
Nichols DH, Bouma JE, Kopecky BJ, Jahan I, Beisel KW, He DZZ, Liu H, Fritzsch B. Interaction with ectopic cochlear crista sensory epithelium disrupts basal cochlear sensory epithelium development in Lmx1a mutant mice. Cell Tissue Res 2020; 380:435-448. [PMID: 31932950 PMCID: PMC7393901 DOI: 10.1007/s00441-019-03163-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
The LIM homeodomain transcription factor Lmx1a shows a dynamic expression in the developing mouse ear that stabilizes in the non-sensory epithelium. Previous work showed that Lmx1a functional null mutants have an additional sensory hair cell patch in the posterior wall of a cochlear duct and have a mix of vestibular and cochlear hair cells in the basal cochlear sensory epithelium. In E13.5 mutants, Sox2-expressing posterior canal crista is continuous with an ectopic "crista sensory epithelium" located in the outer spiral sulcus of the basal cochlear duct. The medial margin of cochlear crista is in contact with the adjacent Sox2-expressing basal cochlear sensory epithelium. By E17.5, this contact has been interrupted by the formation of an intervening non-sensory epithelium, and Atoh1 is expressed in the hair cells of both the cochlear crista and the basal cochlear sensory epithelium. Where cochlear crista was formerly associated with the basal cochlear sensory epithelium, the basal cochlear sensory epithelium lacks an outer hair cell band, and gaps are present in its associated Bmp4 expression. Further apically, where cochlear crista was never present, the cochlear sensory epithelium forms a poorly ordered but complete organ of Corti. We propose that the core prosensory posterior crista is enlarged in the mutant when the absence of Lmx1a expression allows JAG1-NOTCH signaling to propagate into the adjacent epithelium and down the posterior wall of the cochlear duct. We suggest that the cochlear crista propagates in the mutant outer spiral sulcus because it expresses Lmo4 in the absence of Lmx1a.
Collapse
Affiliation(s)
- David H Nichols
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Judith E Bouma
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Benjamin J Kopecky
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA
| | - Israt Jahan
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA
| | - Kirk W Beisel
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - David Z Z He
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA.
| |
Collapse
|
12
|
Grandi FC, De Tomasi L, Mustapha M. Single-Cell RNA Analysis of Type I Spiral Ganglion Neurons Reveals a Lmx1a Population in the Cochlea. Front Mol Neurosci 2020; 13:83. [PMID: 32523514 PMCID: PMC7261882 DOI: 10.3389/fnmol.2020.00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
In the mature cochlea, each inner hair cell (IHC) is innervated by multiple spiral ganglion neurons of type I (SGNI). SGNIs are morphologically and electro-physiologically diverse. Also, they differ in their susceptibility to noise insult. However, the molecular underpinnings of their identity and physiological differences remain poorly understood. In this study, we developed a novel triple transgenic mouse, which enabled the isolation of pure populations of SGNIs and the analysis of a 96-gene panel via single-cell qPCR. We found three distinct populations of Type I SGNs, which were marked by their exclusive expression of Lmx1a, Slc4a4, or Mfap4/Fzd2, respectively, at postnatal days P3, P8, and P12. Our data suggest that afferent SGN subtypes are established genetically before the onset of hearing and that the expression of key physiological markers, such as ion channels, is heterogeneous and may be underlying the heterogeneous firing proprieties of SGNIs.
Collapse
Affiliation(s)
| | - Lara De Tomasi
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Mirna Mustapha
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
13
|
Yamoah EN, Li M, Shah A, Elliott KL, Cheah K, Xu PX, Phillips S, Young SM, Eberl DF, Fritzsch B. Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Res Rev 2020; 59:101042. [PMID: 32173536 PMCID: PMC7261488 DOI: 10.1016/j.arr.2020.101042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit. ARHL reduces the quality of life of the growing population, setting seniors up for the enhanced mental decline. The size of the needy population, the structural deficit, and a likely research strategy for effective treatment of chronic neurosensory hearing in the elderly are needed. Although there has been profound advancement in auditory regenerative research, there remain multiple challenges to restore hearing loss. Thus, additional investigations are required, using novel tools. We propose how the (1) flat epithelium, remaining after the organ of Corti has deteriorated, can be converted to the repaired-sensory epithelium, using Sox2. This will include (2) developing an artificial gene regulatory network transmitted by (3) large viral vectors to the flat epithelium to stimulate remnants of the organ of Corti to restore hair cells. We hope to unite with our proposal toward the common goal, eventually restoring a functional human hearing organ by transforming the flat epithelial cells left after the organ of Corti loss.
Collapse
Affiliation(s)
- Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, USA
| | - Mark Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Anit Shah
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Karen L Elliott
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Kathy Cheah
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Pin-Xian Xu
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Stacia Phillips
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA; Department of Otolaryngology, Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Daniel F Eberl
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, USA.
| |
Collapse
|
14
|
Brown R, Groves AK. Hear, Hear for Notch: Control of Cell Fates in the Inner Ear by Notch Signaling. Biomolecules 2020; 10:biom10030370. [PMID: 32121147 PMCID: PMC7175228 DOI: 10.3390/biom10030370] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
The vertebrate inner ear is responsible for detecting sound, gravity, and head motion. These mechanical forces are detected by mechanosensitive hair cells, arranged in a series of sensory patches in the vestibular and cochlear regions of the ear. Hair cells form synapses with neurons of the VIIIth cranial ganglion, which convey sound and balance information to the brain. They are surrounded by supporting cells, which nourish and protect the hair cells, and which can serve as a source of stem cells to regenerate hair cells after damage in non-mammalian vertebrates. The Notch signaling pathway plays many roles in the development of the inner ear, from the earliest formation of future inner ear ectoderm on the side of the embryonic head, to regulating the production of supporting cells, hair cells, and the neurons that innervate them. Notch signaling is re-deployed in non-mammalian vertebrates during hair cell regeneration, and attempts have been made to manipulate the Notch pathway to promote hair cell regeneration in mammals. In this review, we summarize the different modes of Notch signaling in inner ear development and regeneration, and describe how they interact with other signaling pathways to orchestrate the fine-grained cellular patterns of the ear.
Collapse
Affiliation(s)
- Rogers Brown
- Program in Developmental Biology; Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andrew K. Groves
- Program in Developmental Biology; Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Neuroscience; Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-8743
| |
Collapse
|
15
|
Hwang CH, Keller J, Renner C, Ohta S, Wu DK. Genetic interactions support an inhibitory relationship between bone morphogenetic protein 2 and netrin 1 during semicircular canal formation. Development 2019; 146:dev.174748. [PMID: 30770380 PMCID: PMC6398446 DOI: 10.1242/dev.174748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022]
Abstract
The semicircular canals of the mammalian inner ear are derived from epithelial pouches in which epithelial cells in the central region of each pouch undergo resorption, leaving behind the region at the rim to form a tube-shaped canal. Lack of proliferation at the rim and/or over-clearing of epithelial cells in the center of the pouch can obliterate canal formation. Otic-specific knockout of bone morphogenetic protein 2 (Bmp2) results in absence of all three semicircular canals; however, the common crus and ampullae housing the sensory tissue (crista) are intact. The lack of Bmp2 causes Ntn1 (which encodes netrin 1), which is required for canal resorption, to be ectopically expressed at the canal rim. Ectopic Ntn1 results in reduction of Dlx5 and Lmo4, which are required for rim formation. These phenotypes can be partially rescued by removing one allele of Ntn1 in the Bmp2 mutants, indicating that Bmp2 normally negatively regulates Ntn1 for canal formation. Additionally, non-resorption of the canal pouch in Ntn1−/− mutants is partially rescued by removing one allele of Bmp2. Thus, reciprocal inhibition between Bmp2 and netrin 1 is involved in canal formation of the vestibule. Summary:Bmp2-conditional mutant analyses support the hypothesis that presumptive crista induces canal genesis zone in the canal pouch to express Bmp2, which promotes canal formation by restricting Ntn1 expression to the resorption domain.
Collapse
Affiliation(s)
- Chan Ho Hwang
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - James Keller
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - Charles Renner
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - Sho Ohta
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - Doris K Wu
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| |
Collapse
|