1
|
Chikamoto A, Tochinai R, Sekizawa SI, Kuwahara M. Plasticity occurs in a specific phenotype of neurons in the nucleus tractus solitarius of dystrophin gene-mutated rats. Eur J Neurosci 2023; 58:4282-4297. [PMID: 37933572 DOI: 10.1111/ejn.16179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe progressive neuromuscular disorder that causes cardiac and respiratory failure. Patients with DMD have tachycardia and autonomic nervous dysfunction at a young age, which can potentially worsen cardiorespiratory function. Therefore, we hypothesised that plasticity occurs in neurons of the cardiorespiratory brainstem nucleus (nucleus tractus solitarius [NTS]) due to DMD, thus affecting neuronal regulation because afferent information from cardiorespiratory organs changes with disease progression. Patch-clamp experiments were performed on second-order NTS neurons from Dmd-mutated (Dm) rats that showed no functional dystrophin protein expression, as confirmed by immunohistochemistry. NTS neurons are classified into two electrophysiological phenotypes: one showing a delayed onset of spiking from hyperpolarised membrane potentials, namely, delayed-onset spiking (DS)-type neurons, and the other showing a rapid onset, namely, rapid-onset spiking-type neurons. Neuroplasticity mainly occurs in DS-type neurons in Dm rats and is characterised by blunted neuronal excitability accompanied by reduced outward currents and a facilitatory effect on synaptic transmission, that is, an increased frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) without changes in the amplitude and an increased amplitude of tractus solitarius-evoked EPSCs without changes in the paired-pulse ratio. Although we cannot rule out the possibility that the neuroplastic changes observed in Dm rats were caused by dystrophin deficiency in the neurons themselves, the plasticity could be caused by cardiorespiratory deterioration and/or adaptation in DMD patients.
Collapse
Affiliation(s)
- Akitoshi Chikamoto
- Laboratory of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryota Tochinai
- Laboratory of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Sekizawa
- Laboratory of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Kuwahara
- Laboratory of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Junkins MS, Bagriantsev SN, Gracheva EO. Towards understanding the neural origins of hibernation. J Exp Biol 2022; 225:273864. [PMID: 34982152 DOI: 10.1242/jeb.229542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hibernators thrive under harsh environmental conditions instead of initiating canonical behavioral and physiological responses to promote survival. Although the physiological changes that occur during hibernation have been comprehensively researched, the role of the nervous system in this process remains relatively underexplored. In this Review, we adopt the perspective that the nervous system plays an active, essential role in facilitating and supporting hibernation. Accumulating evidence strongly suggests that the hypothalamus enters a quiescent state in which powerful drives to thermoregulate, eat and drink are suppressed. Similarly, cardiovascular and pulmonary reflexes originating in the brainstem are altered to permit the profoundly slow heart and breathing rates observed during torpor. The mechanisms underlying these changes to the hypothalamus and brainstem are not currently known, but several neuromodulatory systems have been implicated in the induction and maintenance of hibernation. The intersection of these findings with modern neuroscience approaches, such as optogenetics and in vivo calcium imaging, has opened several exciting avenues for hibernation research.
Collapse
Affiliation(s)
- Madeleine S Junkins
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.,Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.,Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Hsu JCN, Sekizawa S, Tochinai R, Kuwahara M. Loss of Group II Metabotropic Glutamate Receptor Signaling Exacerbates Hypertension in Spontaneously Hypertensive Rats. Life (Basel) 2021; 11:life11070720. [PMID: 34357092 PMCID: PMC8307370 DOI: 10.3390/life11070720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
High blood pressure is a major risk factor of cerebro-cardiovascular outcomes. Blood pressure is partly regulated by the autonomic nervous system and its reflex functions; therefore, we hypothesized that pharmacological intervention in the brainstem that can regulate blood pressure could be a novel therapeutic strategy to control hypertension. We infused a group II metabotropic glutamate receptor (mGluR) antagonist (LY341495, 0.40 μg/day), using a mini-osmotic pump, into the dorsal medulla oblongata in young spontaneously hypertensive rats (SHRs), as this area is adjacent to the nucleus tractus solitarius (NTS), of which the neurons are involved in baroreflex pathways with glutamatergic transmission. Blood pressure was recorded for conscious rats with the tail cuff method. A 6-week antagonist treatment from 6 to 12 weeks of age slightly but significantly increased systolic blood pressure by >30 mmHg, compared to that in SHRs without treatment. Moreover, the effect continued even 3 weeks after the treatment ended, and concurred with an increase in blood catecholamine concentration. However, heart rate variability analysis revealed that LY341495 treatment had little effect on autonomic activity. Meanwhile, mRNA expression level of mGluR subtype 2, but not subtype 3 in the brainstem was significantly enhanced by the antagonist treatment in SHRs, possibly compensating the lack of mGluR signaling. In conclusion, mGluR2 signaling in the dorsal brainstem is crucial for preventing the worsening of hypertension over a relatively long period in SHRs, through a mechanism of catecholamine secretion. This may be a specific drug target for hypertension therapy.
Collapse
|
4
|
Hsu JCN, Sekizawa SI, Tochinai R, Kuwahara M. Chronic stimulation of group II metabotropic glutamate receptors in the medulla oblongata attenuates hypertension development in spontaneously hypertensive rats. PLoS One 2021; 16:e0251495. [PMID: 34010316 PMCID: PMC8133461 DOI: 10.1371/journal.pone.0251495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
Baroreflex dysfunction is partly implicated in hypertension and one responsible region is the dorsal medulla oblongata including the nucleus tractus solitarius (NTS). NTS neurons receive and project glutamatergic inputs to subsequently regulate blood pressure, while G-protein-coupled metabotropic glutamate receptors (mGluRs) play a modulatory role for glutamatergic transmission in baroreflex pathways. Stimulating group II mGluR subtype 2 and 3 (mGluR2/3) in the brainstem can decrease blood pressure and sympathetic nervous activity. Here, we hypothesized that the chronic stimulation of mGluR2/3 in the dorsal medulla oblongata can alleviate hypertensive development via the modulation of autonomic nervous activity in young, spontaneously hypertensive rats (SHRs). Compared with that in the sham control group, chronic LY379268 application (mGluR2/3 agonist; 0.40 μg/day) to the dorsal medulla oblongata for 6 weeks reduced the progression of hypertension in 6-week-old SHRs as indicated by the 40 mmHg reduction in systolic blood pressure and promoted their parasympathetic nervous activity as evidenced by the heart rate variability. No differences in blood catecholamine levels or any echocardiographic indices were found between the two groups. The improvement of reflex bradycardia, a baroreflex function, appeared after chronic LY379268 application. The mRNA expression level of mGluR2, but not mGluR3, in the dorsal medulla oblongata was substantially reduced in SHRs compared to that of the control strain. In conclusion, mGluR2/3 signaling might be responsible for hypertension development in SHRs, and modulating mGluR2/3 expression/stimulation in the dorsal brainstem could be a novel therapeutic strategy for hypertension via increasing the parasympathetic activity.
Collapse
Affiliation(s)
- Julia Chu-Ning Hsu
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-ichi Sekizawa
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Martinez D, Kline DD. The role of astrocytes in the nucleus tractus solitarii in maintaining central control of autonomic function. Am J Physiol Regul Integr Comp Physiol 2021; 320:R418-R424. [PMID: 33439770 PMCID: PMC8238142 DOI: 10.1152/ajpregu.00254.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
The nucleus tractus solitarii (nTS) is the first central site for the termination and integration of autonomic and respiratory sensory information. Sensory afferents terminating in the nTS as well as the embedded nTS neurocircuitry release and utilize glutamate that is critical for maintenance of baseline cardiorespiratory parameters and initiating cardiorespiratory reflexes, including those activated by bouts of hypoxia. nTS astrocytes contribute to synaptic and neuronal activity through a variety of mechanisms, including gliotransmission and regulation of glutamate in the extracellular space via membrane-bound transporters. Here, we aim to highlight recent evidence for the role of astrocytes within the nTS and their regulation of autonomic and cardiorespiratory processes under normal and hypoxic conditions.
Collapse
Affiliation(s)
- Diana Martinez
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D Kline
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
6
|
Martinez D, Rogers RC, Hermann GE, Hasser EM, Kline DD. Astrocytic glutamate transporters reduce the neuronal and physiological influence of metabotropic glutamate receptors in nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol 2020; 318:R545-R564. [PMID: 31967862 PMCID: PMC7099463 DOI: 10.1152/ajpregu.00319.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Astrocytic excitatory amino acid transporters (EAATs) are critical to restraining synaptic and neuronal activity in the nucleus tractus solitarii (nTS). Relief of nTS EAAT restraint generates two opposing effects, an increase in neuronal excitability that reduces blood pressure and breathing and an attenuation in afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. Although the former is due, in part, to activation of ionotropic glutamate receptors, there remains a substantial contribution from another unidentified glutamate receptor. In addition, the mechanism(s) by which EAAT inhibition reduced TS-EPSC amplitude is unknown. Metabotropic glutamate receptors (mGluRs) differentially modulate nTS excitability. Activation of group I mGluRs on nTS neuron somas leads to depolarization, whereas group II/III mGluRs on sensory afferents decrease TS-EPSC amplitude. Thus we hypothesize that EAATs control postsynaptic excitability and TS-EPSC amplitude via restraint of mGluR activation. To test this hypothesis, we used in vivo recording, brain slice electrophysiology, and imaging of glutamate release and TS-afferent Ca2+. Results show that EAAT blockade in the nTS with (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) induced group I mGluR-mediated depressor, bradycardic, and apneic responses that were accompanied by neuronal depolarization, elevated discharge, and increased spontaneous synaptic activity. Conversely, upon TS stimulation TFB-TBOA elevated extracellular glutamate to decrease presynaptic Ca2+ and TS-EPSC amplitude via activation of group II/III mGluRs. Together, these data suggest an important role of EAATs in restraining mGluR activation and overall cardiorespiratory function.
Collapse
Affiliation(s)
- Diana Martinez
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | | | | | - Eileen M. Hasser
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - David D. Kline
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
7
|
Chmykhova NM, Gapanovich SO, Pariyskaya EN, Veselkin NP. Involvement of Group II Metabotropic Glutamate Receptors in Modulation of Evoked Activity in Frog Spinal Motoneurons. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Lee CC. Inhibition of mammillary body neurons by direct activation of Group II metabotropic glutamate receptors. NEUROTRANSMITTER (HOUSTON, TEX.) 2016; 3:e1357. [PMID: 27390777 PMCID: PMC4933320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mammillary body is an important neural component of limbic circuitry implicated in learning and memory. Excitatory and inhibitory inputs, primarily mediated by glutamate and gamma-amino butyric acid (GABA), respectively, converge and integrate in this region, before sending information to the thalamus. One potentially overlooked mechanism for inhibition of mammillary body neurons is through direct activation of Group II metabotropic glutamate receptors (mGluRs). Here, whole-cell patch clamp recordings of in vitro slice preparations containing the mammillary body nuclei of the mouse were employed to record responses to bath application of pharmacological agents to isolate the direct effect of activating Group II mGluRs. Application of the Group II mGluR specific agonist, APDC, resulted in a hyperpolarization of the membrane potential in mammillary body neurons, likely resulting from the opening of a potassium conductance. These data suggest that glutamatergic inputs to the mammillary body may be attenuated via Group II mGluRs and implicates a functional role for these receptors in memory-related circuits and broadly throughout the central nervous system.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
9
|
Glasauer SMK, Wäger R, Gesemann M, Neuhauss SCF. mglur6b:EGFP Transgenic zebrafish suggest novel functions of metabotropic glutamate signaling in retina and other brain regions. J Comp Neurol 2016; 524:2363-78. [PMID: 27121676 DOI: 10.1002/cne.24029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 02/04/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are mainly known for regulating excitability of neurons. However, mGluR6 at the photoreceptor-ON bipolar cell synapse mediates sign inversion through glutamatergic inhibition. Although this is currently the only confirmed function of mGluR6, other functions have been suggested. Here we present Tg(mglur6b:EGFP)zh1, a new transgenic zebrafish line recapitulating endogenous expression of one of the two mglur6 paralogs in zebrafish. Investigating transgene as well as endogenous mglur6b expression within the zebrafish retina indicates that EGFP and mglur6b mRNA are not only expressed in bipolar cells, but also in a subset of ganglion and amacrine cells. The amacrine cells labeled in Tg(mglur6b:EGFP)zh1 constitute a novel cholinergic, non-GABAergic, non-starburst amacrine cell type described for the first time in teleost fishes. Apart from the retina, we found transgene expression in subsets of periventricular neurons of the hypothalamus, Purkinje cells of the cerebellum, various cell types of the optic tectum, and mitral/ruffed cells of the olfactory bulb. These findings suggest novel functions of mGluR6 besides sign inversion at ON bipolar cell dendrites, opening up the possibility that inhibitory glutamatergic signaling may be more prevalent than currently thought. J. Comp. Neurol. 524:2363-2378, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stella M K Glasauer
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland.,Life Science Zurich Graduate School, Ph.D. Program in Molecular Life Sciences, Zurich, Switzerland
| | - Robert Wäger
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| | - Matthias Gesemann
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| | - Stephan C F Neuhauss
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland.,Life Science Zurich Graduate School, Ph.D. Program in Molecular Life Sciences, Zurich, Switzerland
| |
Collapse
|
10
|
Metabotropic glutamate2/3 receptor agonism facilitates autonomic recovery after pharmacological panic challenge in healthy humans. Int Clin Psychopharmacol 2016; 31:176-8. [PMID: 26752621 DOI: 10.1097/yic.0000000000000117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Group II metabotropic glutamate receptors (mGluR2/3) are suggested to modulate anxiety, arousal, and stress including autonomic control. However, no study has investigated mGluR2/3-related effects on baseline autonomic activity and reactivity to emotional challenge in humans as yet. Using a double-blind, randomized placebo-controlled, cross-over study design, we investigated the influence of a 1-week treatment with the mGluR2/3 agonist LY544344, prodrug of LY354740, on autonomic reactivity to a cholecystokinin tetrapeptide (CCK-4) panic challenge in eight healthy young men. The main outcome measures were time and frequency domain heart rate variability parameters during baseline, CCK-4 challenge, and recovery. There was no evidence for LY544344-mediated effects on baseline and CCK-4 challenge vagal activity, but a significantly lower recovery low frequency (%) and low frequency/high frequency ratio in the LY544344 group, suggesting enhanced autonomic recovery. This pilot study provides first human data indicating that mGluR2/3 agonism is involved in autonomic responsiveness, suggesting an important role of mGluR2/3 in central autonomic regulation.
Collapse
|
11
|
Zhang H, Cilz NI, Yang C, Hu B, Dong H, Lei S. Depression of neuronal excitability and epileptic activities by group II metabotropic glutamate receptors in the medial entorhinal cortex. Hippocampus 2015; 25:1299-313. [DOI: 10.1002/hipo.22437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
- Department of Anesthesiology; Xijing Hospital, Fourth Military Medical University; Xi'an Shaanxi Province China
| | - Nicholas I. Cilz
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| | - Chuanxiu Yang
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| | - Binqi Hu
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| | - Hailong Dong
- Department of Anesthesiology; Xijing Hospital, Fourth Military Medical University; Xi'an Shaanxi Province China
| | - Saobo Lei
- Department of Basic Sciences; School of Medicine and Health Sciences, University of North Dakota; Grand Forks North Dakota
| |
Collapse
|
12
|
Ostrowski TD, Ostrowski D, Hasser EM, Kline DD. Depressed GABA and glutamate synaptic signaling by 5-HT1A receptors in the nucleus tractus solitarii and their role in cardiorespiratory function. J Neurophysiol 2014; 111:2493-504. [PMID: 24671532 PMCID: PMC4044435 DOI: 10.1152/jn.00764.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/19/2014] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT), and its 5-HT1A receptor (5-HT1AR) subtype, is a powerful modulator of the cardiorespiratory system and its sensory reflexes. The nucleus tractus solitarii (nTS) serves as the first central station for visceral afferent integration and is critical for cardiorespiratory reflex responses. However, the physiological and synaptic role of 5-HT1ARs in the nTS is relatively unknown. In the present study, we examined the distribution and modulation of 5-HT1ARs on cardiorespiratory and synaptic parameters in the nTS. 5-HT1ARs were widely distributed to cell bodies within the nTS but not synaptic terminals. In anesthetized rats, activation of 5-HT1ARs by microinjection of the 5-HT1AR agonist 8-OH-DPAT into the caudal nTS decreased minute phrenic neural activity via a reduction in phrenic amplitude. In brain stem slices, 8-OH-DPAT decreased the amplitude of glutamatergic tractus solitarii-evoked excitatory postsynaptic currents, and reduced overall spontaneous excitatory nTS network activity. These effects persisted in the presence of GABAA receptor blockade and were antagonized by coapplication of 5-HT1AR blocker WAY-100135. 5-HT1AR blockade alone had no effect on tractus solitarii-evoked excitatory postsynaptic currents, but increased excitatory network activity. On the other hand, GABAergic nTS-evoked inhibitory postsynaptic currents did not change by activation of the 5-HT1ARs, but spontaneous inhibitory nTS network activity decreased. Blocking 5-HT1ARs tended to increase nTS-evoked inhibitory postsynaptic currents and inhibitory network activity. Taken together, 5-HT1ARs in the caudal nTS decrease breathing, likely via attenuation of afferent transmission, as well as overall nTS network activity.
Collapse
Affiliation(s)
- Tim D Ostrowski
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Daniela Ostrowski
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Eileen M Hasser
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D Kline
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
13
|
Ostrowski TD, Hasser EM, Heesch CM, Kline DD. H₂O₂ induces delayed hyperexcitability in nucleus tractus solitarii neurons. Neuroscience 2014; 262:53-69. [PMID: 24397952 DOI: 10.1016/j.neuroscience.2013.12.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
Hydrogen peroxide (H₂O₂) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H₂O₂ is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H₂O₂ modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10-500 μM H₂O₂. However, 500 μM H₂O₂ modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance (R(i)), hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H₂O₂ increased conductance of barium-sensitive potassium currents, and block of these currents ablated H₂O₂-induced changes in RMP, Ri and AP discharge. Following washout of H₂O₂ AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H₂O₂ exposure. H₂O₂ effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H₂O₂ initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes.
Collapse
Affiliation(s)
- T D Ostrowski
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - E M Hasser
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - C M Heesch
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - D D Kline
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
14
|
Venkatadri PS, Lee CC. Differential expression of mGluR2 in the developing cerebral cortex of the mouse. ACTA ACUST UNITED AC 2014; 7:1030-1037. [PMID: 25414764 DOI: 10.4236/jbise.2014.713100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glutamatergic synaptic transmission is an essential component of neural circuits in the central nervous system. Glutamate exerts its effects by binding to various types of glutamate receptors, which are found distributed on neurons throughout the central nervous system. These receptors are broadly classified into two main groups, ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). Unlike iGluRs, the mGluRs are G-protein coupled receptors that exert their effects on postsynaptic membrane conductance indirectly through the downstream modification of ion channels. A subtype of mGluRs, the Group II mGluRs, are particularly interesting since their activation by glutamate results in a hyperpolarizing response. Thus, glutamate can act potentially as an inhibitory neurotransmitter, by binding to postsynaptic Group II mGluRs. Given the potential importance of these receptors in synaptic processing, the development of the central nervous system, and neurological disorders, we sought to characterize the expression of mGluR2 in the developing neocortex of the mouse. Therefore, we examined the distribution of mGluR2 in the developing cerebral cortex. We found a general caudal to rostral gradient in the expression of these receptors, with ventral cortical regions labeled caudally and dorsal regions labeled rostrally. Limbic regions highly expressed mGluR2 throughout the brain, as did sensory and motor cortical areas. Finally, other non-cortical structures, such as the thalamic reticular nucleus, amygdala, and mammillary bodies were found to have significant expression of the receptor. These results suggest that mGluR2 may play important roles in mediating glutamatergic inhibition in these structures and also could have a role in shaping the development of mature neural networks in the forebrain.
Collapse
Affiliation(s)
- Pooja S Venkatadri
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
15
|
Sekizawa SI, Horwitz BA, Horowitz JM, Chen CY. Protection of signal processing at low temperature in baroreceptive neurons in the nucleus tractus solitarius of Syrian hamsters, a hibernating species. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1153-62. [PMID: 24068050 DOI: 10.1152/ajpregu.00165.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We previously described synaptic currents between baroreceptor fibers and second-order neurons in the nucleus tractus solitarius (NTS) that were larger in Syrian hamsters than in rats. This suggested that although electrical activity throughout the hamster brain decreased as brain temperature declined, the greater synaptic input to its NTS would support continued operation of cardiorespiratory reflexes at low body temperatures. Here, we focused on properties that would protect these neurons against potential damage from the larger synaptic inputs, testing the hypotheses that hamster NTS neurons exhibit: 1) intrinsic N-methyl-D-aspartate receptor (NMDAR) properties that limit Ca(2+) influx to a greater degree than do rat NTS neurons and 2) properties that reduce gating signals to NMDARs to a greater degree than in rat NTS neurons. Whole cell patch-clamp recordings on anatomically identified second-order NTS baroreceptive neurons showed that NMDAR-mediated synaptic currents between sensory fibers and second-order NTS neurons were larger in hamsters than in rats at 33°C and 15°C, with no difference in their permeability to Ca(2+). However, at 15°C, but not at 33°C, non-NMDAR currents evoked by glutamate released from baroreceptor fibers had significantly shorter durations in hamsters than in rats. Thus, hamster NMDARs did not exhibit lower Ca(2+) influx than did rats (negating hypothesis 1), but they did exhibit significant differences in non-NMDAR neuronal properties at low temperature (consistent with hypothesis 2). The latter (shorter duration of non-NMDAR currents) would likely limit NMDAR coincidence gating and may help protect hamster NTS neurons, enabling them to contribute to signal processing at low body temperatures.
Collapse
|
16
|
Cheng J, Liu W, Duffney LJ, Yan Z. SNARE proteins are essential in the potentiation of NMDA receptors by group II metabotropic glutamate receptors. J Physiol 2013; 591:3935-47. [PMID: 23774277 DOI: 10.1113/jphysiol.2013.255075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The group II metabotropic glutamate receptors (group II mGluRs) have emerged as the new drug targets for the treatment of mental disorders like schizophrenia. To understand the potential mechanisms underlying the antipsychotic effects of group II mGluRs, we examined their impact on NMDA receptors (NMDARs), since NMDAR hypofunction has been implicated in schizophrenia. The activation of group II mGluRs caused a significant enhancement of NMDAR currents in cortical pyramidal neurons, which was associated with increased NMDAR surface expression and synaptic localization. We further examined whether these effects of group II mGluRs are through the regulation of NMDAR exocytosis via SNARE proteins, a family of proteins involved in vesicle fusion. We found that the enhancing effect of APDC, a selective agonist of group II mGluRs, on NMDAR currents was abolished when botulinum toxin was delivered into the recorded neurons to disrupt the SNARE complex. Inhibiting the function of two key SNARE proteins, SNAP-25 and syntaxin 4, also eliminated the effect of APDC on NMDAR currents. Moreover, the application of APDC increased the activity of Rab4, a small Rab GTPase mediating fast recycling from early endosomes to the plasma membrane, and enhanced the interaction between syntaxin 4 and Rab4. Knockdown of Rab4 or expression of dominant-negative Rab4 attenuated the effect of APDC on NMDAR currents. Taken together, these results have identified key molecules involved in the group II mGluR-induced potentiation of NMDAR exocytosis and function.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Physiology and Biophysics, State University of New York at Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
17
|
Fan Y, Niu H, Rizak JD, Li L, Wang G, Xu L, Ren H, Lei H, Yu H. Combined action of MK-801 and ceftriaxone impairs the acquisition and reinstatement of morphine-induced conditioned place preference, and delays morphine extinction in rats. Neurosci Bull 2012; 28:567-76. [PMID: 23054634 DOI: 10.1007/s12264-012-1269-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/23/2012] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE It is well established that glutamate and its receptors, particularly the N-methyl-D-aspartate receptor (NMDAR), play a significant role in addiction and that the inhibition of glutamatergic hyperfunction reduces addictive behaviors in experimental animals. Specifically, NMDAR antagonists such as MK-801, and an inducer of the expression of glutamate transporter subtype-1 (GLT-1) (ceftriaxone) are known to inhibit addictive behavior. The purpose of this study was to determine whether the combined action of a low dose of MK-801 and a low dose of ceftriaxone provides better inhibition of the acquisition, extinction, and reinstatement of morphine-induced conditioned place preference (CPP) than either compound alone. METHODS A morphine-paired CPP experiment was used to study the effects of low doses of MK-801, ceftriaxone and a combination of both on reward-related memory (acquisition, extinction, and reinstatement of morphine preference) in rats. RESULTS A low dose of neither MK-801 (0.05 mg/kg, i.p.) nor ceftriaxone (25 mg/kg, i.p.) alone effectively impaired CPP behaviors. However, when applied in combination, they reduced the acquisition of morphine-induced CPP and completely prevented morphine reinstatement. Their combination also notably impaired the extinction of morphine-induced CPP. CONCLUSION The combined action of a low dose of an NMDAR antagonist (MK-801) and GLT-1 activation by ceftriaxone effectively changed different phases of CPP behavior.
Collapse
Affiliation(s)
- Yaodong Fan
- Department of Neurosurgery, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lee CC, Sherman SM. Intrinsic modulators of auditory thalamocortical transmission. Hear Res 2012; 287:43-50. [PMID: 22726616 DOI: 10.1016/j.heares.2012.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/14/2012] [Accepted: 04/02/2012] [Indexed: 01/19/2023]
Abstract
Neurons in layer 4 of the primary auditory cortex receive convergent glutamatergic inputs from thalamic and cortical projections that activate different groups of postsynaptic glutamate receptors. Of particular interest in layer 4 neurons are the Group II metabotropic glutamate receptors (mGluRs), which hyperpolarize neurons postsynaptically via the downstream opening of GIRK channels. This pronounced effect on membrane conductance could influence the neuronal processing of synaptic inputs, such as those from the thalamus, essentially modulating information flow through the thalamocortical pathway. To examine how Group II mGluRs affect thalamocortical transmission, we used an in vitro slice preparation of the auditory thalamocortical pathways in the mouse to examine synaptic transmission under conditions where Group II mGluRs were activated. We found that both pre- and post-synaptic Group II mGluRs are involved in the attenuation of thalamocortical EPSP/Cs. Thus, thalamocortical synaptic transmission is suppressed via the presynaptic reduction of thalamocortical neurotransmitter release and the postsynaptic inhibition of the layer 4 thalamorecipient neurons. This could enable the thalamocortical pathway to autoregulate transmission, via either a gating or gain control mechanism, or both.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
19
|
Sekizawa SI, Horowitz JM, Horwitz BA, Chen CY. Realignment of signal processing within a sensory brainstem nucleus as brain temperature declines in the Syrian hamster, a hibernating species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:267-82. [PMID: 22262373 DOI: 10.1007/s00359-011-0706-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 11/28/2011] [Accepted: 12/13/2011] [Indexed: 01/24/2023]
Abstract
Crucial for survival, the central nervous system must reliably process sensory information over all stages of a hibernation bout to ensure homeostatic regulation is maintained and well-matched to dramatically altered behavioral states. Comparing neural responses in the nucleus tractus solitarius of rats and euthermic Syrian hamsters, we tested the hypothesis that hamster neurons have adaptations sustaining signal processing while conserving energy. Using patch-clamp techniques, we classified second-order neurons in the nucleus as rapid-onset or delayed-onset spiking phenotypes based on their spiking onset to a depolarizing pulse (following a -80 mV prepulse). As temperature decreased from 33 to 15°C, the excitability of all neurons decreased. However, hamster rapid-onset spiking neurons had the highest spiking response and shortest action potential width at every temperature, while hamster delayed-onset spiking neurons had the most negative resting membrane potential. The frequency of spontaneous excitatory postsynaptic currents in both phenotypes decreased as temperature decreased, yet the amplitudes of tractus solitarius stimulation-evoked currents were greater in hamsters than in rats regardless of phenotype and temperature. Changes were significant (P < 0.05), supporting our hypothesis by showing that, as temperature falls, rapid-onset neurons contribute more to signal processing but less to energy conservation than do delayed-onset neurons.
Collapse
Affiliation(s)
- Shin-Ichi Sekizawa
- Department of Pharmacology, University of California Davis, GBSF 3617, 451 Health Sciences Drive, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
20
|
Sekizawa SI, Joad JP, Pinkerton KE, Bonham AC. Secondhand smoke exposure alters K+ channel function and intrinsic cell excitability in a subset of second-order airway neurons in the nucleus tractus solitarius of young guinea pigs. Eur J Neurosci 2010; 31:673-84. [PMID: 20384811 DOI: 10.1111/j.1460-9568.2010.07093.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extended exposure to secondhand smoke (SHS) in infants and young children increases the incidence of cough, wheeze, airway hyper-reactivity and the prevalence and earlier onset of asthma. The adverse effects may result from environmentally-induced plasticity in the neural network regulating cough and airway function. Using whole-cell patch-clamp recordings in brainstem slices containing anatomically identified second-order lung afferent neurons in the nucleus tractus solitarius (NTS), we determined the effects of extended SHS exposure in young guinea pigs for a duration equivalent to human childhood on the intrinsic excitability of NTS neurons. SHS exposure resulted in marked decreases in the intrinsic excitability of a subset of lung afferent second-order NTS neurons. The neurons exhibited a decreased spiking capacity, prolonged action potential duration, reduced afterhyperpolarization, decrease in peak and steady-state outward currents, and membrane depolarization. SHS exposure effects were mimicked by low concentrations of the K+ channel blockers 4-aminopyridine and/or tetraethyl ammonium. The data suggest that SHS exposure downregulates K+ channel function in a subset of NTS neurons, resulting in reduced cell excitability. The changes may help to explain the exaggerated neural reflex responses in children exposed to SHS.
Collapse
Affiliation(s)
- Shin-Ichi Sekizawa
- Department of Pharmacology, School of Medicine, GBSF Room 3617, 451 Health Sciences Drive, University of California Davis, Davis, CA 95616-0635, USA
| | | | | | | |
Collapse
|
21
|
Lupinsky D, Moquin L, Gratton A. Interhemispheric regulation of the medial prefrontal cortical glutamate stress response in rats. J Neurosci 2010; 30:7624-33. [PMID: 20519537 PMCID: PMC6632388 DOI: 10.1523/jneurosci.1187-10.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/20/2010] [Accepted: 04/27/2010] [Indexed: 11/21/2022] Open
Abstract
While stressors are known to increase medial prefrontal cortex (PFC) glutamate (GLU) levels, the mechanism(s) subserving this response remain to be elucidated. We used microdialysis and local drug applications to investigate, in male Long-Evans rats, whether the PFC GLU stress response might reflect increased interhemispheric communication by callosal projection neurons. We report here that tail-pinch stress (20 min) elicited comparable increases in GLU in the left and right PFC that were sodium and calcium dependent and insensitive to local glial cystine-GLU exchanger blockade. Unilateral ibotenate-induced PFC lesions abolished the GLU stress response in the opposite hemisphere, as did contralateral mGlu(2/3) receptor activation. Local dopamine (DA) D(1) receptor blockade in the left PFC potently enhanced the right PFC GLU stress response, whereas the same treatment applied to the right PFC had a much weaker effect on the left PFC GLU response. Finally, the PFC GLU stress response was attenuated and potentiated, respectively, following alpha(1)-adrenoreceptor blockade and GABA(B) receptor activation in the opposite hemisphere. These findings indicate that the PFC GLU stress response reflects, at least in part, activation of callosal neurons located in the opposite hemisphere and that stress-induced activation of these neurons is regulated by GLU-, DA-, norepinephrine-, and GABA-sensitive mechanisms. In the case of DA, this control is asymmetrical, with a marked regulatory bias of the left PFC DA input over the right PFC GLU stress response. Together, these findings suggest that callosal neurons and their afferentation play an important role in the hemispheric specialization of PFC-mediated responses to stressors.
Collapse
Affiliation(s)
- Derek Lupinsky
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montréal, Québec H4H 1R3, Canada
| | - Luc Moquin
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montréal, Québec H4H 1R3, Canada
| | - Alain Gratton
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montréal, Québec H4H 1R3, Canada
| |
Collapse
|