1
|
Duan J, Zeng D, Wu T, Luo Z, Jingwen G, Tan W, Zeng Y. Neural connections and molecular mechanisms underlying motor skill deficits in genetic models of autism spectrum disorders. Prog Neurobiol 2025; 249:102759. [PMID: 40254176 DOI: 10.1016/j.pneurobio.2025.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/14/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
Autism spectrum disorders (ASDs) comprise a broad category of neurodevelopmental disorders that include repetitive behaviors and difficulties in social interactions. Notably, individuals with ASDs exhibit significant impairments in motor skills even prior to the manifestation of other core symptoms. These skills are crucial for daily activities, such as communication, imitation, and exploration, and hold significant importance for individuals with ASDs. This review seeks to offer new insights into the understanding of motor skill impairments by delineating the pathological mechanisms underlying motor skill learning impairments associated with gene mutations in Fmr1, Chd8, Shank3, BTBR, 16p11.2, and Mecp2, predominantly drawing from well-characterized genetic mouse model studies and proposing potential targets for future therapeutic interventions. We further discuss the underlying pathogenic abnormalities associated with the development of specific brain regions within the cerebellum and cerebrum, as well as disruptions in the structure and function of critical neuronal connectivity pathways. Additional research utilizing epidemiological data, clinical observations, and animal research methodologies is warranted to enhance our understanding of the effect of motor skill learning on the growth, development, and social integration of children. Ultimately, our review suggests potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Jingwen Duan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Deyang Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Tong Wu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Zhenzhao Luo
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Geng Jingwen
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Lin PW, Lin ZR, Wang WW, Guo AS, Chen YX. Identification of immune-inflammation targets for intracranial aneurysms: a multiomics and epigenome-wide study integrating summary-data-based Mendelian randomization, single-cell-type expression analysis, and DNA methylation regulation. Int J Surg 2025; 111:346-359. [PMID: 39051921 PMCID: PMC11745758 DOI: 10.1097/js9.0000000000001990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Dysfunction of the immune system and inflammation plays a vital role in developing intracranial aneurysms (IAs). However, the progress of genetic pathophysiology is complicated and not entirely elaborated. This study aimed to explore the genetic associations of immune-related and inflammation-related genes (IIRGs) with IAs and their subtypes using Mendelian randomization, colocalization test, and integrated multiomics functional analysis. METHODS The authors conducted a summary-data-based Mendelian randomization (SMR) analysis using data from several genome-wide association studies of gene expression (31 684 European individuals) and protein quantitative trait loci (35 559 Icelanders), as well as information on IAs and their subtypes from The International Stroke Genetics Consortium (IGSC) for discovery phase and the FinnGen study for replication. This analysis aimed to determine the causal relationship between IIRGs and the risk of IAs and their subtypes. Further functional analyses, including DNA methylation regulation (1980, European individuals), single-cell-type expression analysis, and protein-protein interaction, were conducted to detect the specific cell type with enriched expression and discover potential drug targets. RESULTS After integrating multiomics evidence from expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL), the authors found that tier 1: RELT [odds ratio (OR): 0.14, 95% CI: 0.04-0.50], TNFSF12 (OR: 1.24, 95% CI: 1.24-1.43), tier 3: ICAM5 (OR: 0.89, 95% CI: 0.82-0.96), and ERAP2 (OR: 1.07, 95% CI: 1.02-1.12) were associated with the risk of IAs; tier 3: RELT (OR: 0.11, 95% CI: 0.02-0.54), ERAP2 (OR: 1.08, 95% CI: 1.02-1.13), and TNFSF12 (OR: 1.24, 95% CI: 1.05-1.47) were associated with the risk of aneurysmal subarachnoid hemorrhage (aSAH); and tier 1: RELT (OR: 0.04, 95% CI: 0.01-0.30) was associated with the risk of unruptured intracranial aneurysms (uIAs). Further functional analyses showed that RELT was regulated by cg06382664 and cg18850434 and ICAM5 was regulated by cg04295144 in IAs; RELT was regulated by cg06382664, cg08770935, cg16533363, and cg18850434 in aSAH; and RELT was regulated by cg06382664 and cg21810604 in uIAs. In addition, the authors found that H6PD (OR: 1.13, 95% CI: 1.01-1.28), NT5M (OR: 1.91, 95% CI: 1.21-3.01), and NPTXR (OR: 1.13, 95% CI: 1.01-1.26) were associated with IAs; NT5M (OR: 2.13, 95% CI: 1.23-3.66) was associated aSAH; and AP4M1 (OR: 0.06, 95% CI: 0.01-0.42) and STX7 (OR: 3.97, 95% CI: 1.41-11.18) were related to uIAs. STX7 and TNFSF12 were mainly enriched in microglial cells, whereas H6PD, STX7 , and TNFSF12 were mainly enriched in astrocytes. CONCLUSIONS After integrating multiomics evidence, the authors eventually identified IIRGs: RELT, TNFSF12, ICAM5 , and ERAP2 were the novel therapy targets for IAs. These new results confirmed a vital role of immune and inflammation in the etiology of IAs, contributing to enhance our understanding of the immune and inflammatory mechanisms in the pathogenesis of IAs and revealing the complex genetic causality of IAs.
Collapse
Affiliation(s)
- Peng-Wei Lin
- The School of Clinical Medicine, Fujian Medical University, Zhangzhou Affiliated Hospital of Fujian Medical University, Fuzhou
| | - Zhen-Rong Lin
- Department of Neurosurgery, Zhangzhou Municipal Hospital of Fujian Province and Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People’s Republic of China
| | - Wei-Wei Wang
- Department of Neurosurgery, Zhangzhou Municipal Hospital of Fujian Province and Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People’s Republic of China
| | - Ai-Shun Guo
- Department of Neurosurgery, Zhangzhou Municipal Hospital of Fujian Province and Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People’s Republic of China
| | - Yu-Xiang Chen
- The School of Clinical Medicine, Fujian Medical University, Zhangzhou Affiliated Hospital of Fujian Medical University, Fuzhou
| |
Collapse
|
3
|
Bai SY, Zeng DY, Ouyang M, Zeng Y, Tan W, Xu L. Synaptic cell adhesion molecules contribute to the pathogenesis and progression of fragile X syndrome. Front Cell Neurosci 2024; 18:1393536. [PMID: 39022311 PMCID: PMC11252757 DOI: 10.3389/fncel.2024.1393536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a monogenic cause of autism spectrum disorders. Deficiencies in the fragile X messenger ribonucleoprotein, encoded by the FMR1 gene, lead to various anatomical and pathophysiological abnormalities and behavioral deficits, such as spine dysmorphogenesis and learning and memory impairments. Synaptic cell adhesion molecules (CAMs) play crucial roles in synapse formation and neural signal transmission by promoting the formation of new synaptic contacts, accurately organizing presynaptic and postsynaptic protein complexes, and ensuring the accuracy of signal transmission. Recent studies have implicated synaptic CAMs such as the immunoglobulin superfamily, N-cadherin, leucine-rich repeat proteins, and neuroligin-1 in the pathogenesis of FXS and found that they contribute to defects in dendritic spines and synaptic plasticity in FXS animal models. This review systematically summarizes the biological associations between nine representative synaptic CAMs and FMRP, as well as the functional consequences of the interaction, to provide new insights into the mechanisms of abnormal synaptic development in FXS.
Collapse
Affiliation(s)
- Shu-Yuan Bai
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - De-Yang Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Ouyang
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Papandreou A, Singh N, Gianfrancesco L, Budinger D, Barwick K, Agrotis A, Luft C, Shao Y, Lenaerts AS, Gregory A, Jeong SY, Hogarth P, Hayflick S, Barral S, Kriston-Vizi J, Gissen P, Kurian MA, Ketteler R. Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.13.556416. [PMID: 37745522 PMCID: PMC10515824 DOI: 10.1101/2023.09.13.556416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are poorly understood and, as a result, there are currently no disease-modifying treatments for this progressive disorder. We have developed a patient-derived, induced pluripotent stem cell (iPSC)-based midbrain dopaminergic neuronal cell model of BPAN (3 patient, 2 age-matched controls and 2 isogenic control lines) which shows defective autophagy and aberrant gene expression in key neurodegenerative, neurodevelopmental and collagen pathways. A high content imaging-based medium-throughput blinded drug screen using the FDA-approved Prestwick library identified 5 cardiac glycosides that both corrected disease-related defective autophagosome formation and restored BPAN-specific gene expression profiles. Our findings have clear translational potential and emphasise the utility of iPSC-based modelling in elucidating disease pathophysiology and identifying targeted therapeutics for early-onset monogenic disorders.
Collapse
Affiliation(s)
- Apostolos Papandreou
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Nivedita Singh
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Lorita Gianfrancesco
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Dimitri Budinger
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Katy Barwick
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Alexander Agrotis
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Christin Luft
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ying Shao
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | | | | | | | | | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Janos Kriston-Vizi
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paul Gissen
- Inborn Errors of Metabolism, Genetics & Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- These authors contributed equally
| | - Robin Ketteler
- Laboratory for Molecular Cell Biology, University College London, London, UK
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
- These authors contributed equally
| |
Collapse
|
5
|
Hu W, Liu Y, Lian C, Lu H. Genetic insight into putative causes of xanthelasma palpebrarum: a Mendelian randomization study. Front Immunol 2024; 15:1347112. [PMID: 38601164 PMCID: PMC11004296 DOI: 10.3389/fimmu.2024.1347112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Xanthelasma palpebrarum (XP) is the most common form of cutaneous xanthoma, with a prevalence of 1.1%~4.4% in the population. However, the cause of XP remains largely unknown. In the present study, we used Mendelian randomization to assess the genetic association between plasma lipids, metabolic traits, and circulating protein with XP, leveraging summary statistics from large genome-wide association studies (GWAS). Genetically predicted plasma cholesterol and LDL-C, but not HDL-C or triglyceride, were significantly associated with XP. Metabolic traits, including BMI, fasting glucose, type 2 diabetes, systolic and diastolic blood pressure, were not significantly associated with XP. Furthermore, we found genetically predicted 12 circulating proteins were associated with XP, including FN1, NTM, FCN2, GOLM1, ICAM5, PDE5A, C5, CLEC11A, CXCL1, CCL2, CCL11, CCL13. In conclusion, this study identified plasma cholesterol, LDL-C, and 12 circulating proteins to be putative causal factors for XP, highlighting the role of plasma cholesterol and inflammatory response in XP development.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Dermatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Yaozhong Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Cuihong Lian
- Department of Dermatology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Haocheng Lu
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Chen YS, Zhang SM, Tan W, Zhu Q, Yue CX, Xiang P, Li JQ, Wei Z, Zeng Y. Early 7,8-Dihydroxyflavone Administration Ameliorates Synaptic and Behavioral Deficits in the Young FXS Animal Model by Acting on BDNF-TrkB Pathway. Mol Neurobiol 2023; 60:2539-2552. [PMID: 36680734 DOI: 10.1007/s12035-023-03226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023]
Abstract
Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and the most common cause of autism spectrum disorders. FXS patients exhibit severe syndromic features and behavioral alterations, including anxiety, hyperactivity, impulsivity, and aggression, in addition to cognitive impairment and seizures. At present, there are no effective treatments or cures for FXS. Previously, we have found the divergence of BDNF-TrkB signaling trajectories is associated with spine defects in early postnatal developmental stages of Fmr1 KO mice. Here, young fragile X mice were intraperitoneal injection with 7,8-Dihydroxyflavone (7,8-DHF), a high affinity tropomyosin receptor kinase B (TrkB) agonist. 7,8-DHF ameliorated morphological abnormities in dendritic spine and synaptic structure and rescued synaptic and hippocampus-dependent cognitive dysfunction. These observed improvements of 7,8-DHF involved decreased protein levels of BDNF, p-TrkBY816, p-PLCγ, and p-CaMKII in the hippocampus. In addition, 7,8-DHF intervention in primary hippocampal neurons increased p-TrkBY816 and activated the PLCγ1-CaMKII signaling pathway, leading to improvement of neuronal morphology. This study is the first to account for early life synaptic impairments, neuronal morphological, and cognitive delays in FXS in response to the abnormal BDNF-TrkB pathway. Present studies provide novel evidences about the effective early intervention in FXS mice at developmental stages and a strategy to produce powerful impacts on neural development, synaptic plasticity, and behaviors.
Collapse
Affiliation(s)
- Yu-Shan Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Si-Ming Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Qiong Zhu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Chao-Xiong Yue
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Peng Xiang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jin-Quan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zhen Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Zhu Z, Chen X, Wang C, Zhang S, Yu R, Xie Y, Yuan S, Cheng L, Shi L, Zhang X. An integrated strategy to identify COVID-19 causal genes and characteristics represented by LRRC37A2. J Med Virol 2023; 95:e28585. [PMID: 36794676 DOI: 10.1002/jmv.28585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
Genome-wide association study (GWAS) could identify host genetic factors associated with coronavirus disease 2019 (COVID-19). The genes or functional DNA elements through which genetic factors affect COVID-19 remain uncharted. The expression quantitative trait locus (eQTL) provides a path to assess the correlation between genetic variations and gene expression. Here, we firstly annotated GWAS data to describe genetic effects, obtaining genome-wide mapped genes. Subsequently, the genetic mechanisms and characteristics of COVID-19 were investigated by an integrated strategy that included three GWAS-eQTL analysis approaches. It was found that 20 genes were significantly associated with immunity and neurological disorders, including prior and novel genes such as OAS3 and LRRC37A2. The findings were then replicated in single-cell datasets to explore the cell-specific expression of causal genes. Furthermore, associations between COVID-19 and neurological disorders were assessed as a causal relationship. Finally, the effects of causal protein-coding genes of COVID-19 were discussed using cell experiments. The results revealed some novel COVID-19-related genes to emphasize disease characteristics, offering a broader insight into the genetic architecture underlying the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yubin Xie
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Shi
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue Zhang
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
- 3McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Speranza L, Filiz KD, Goebel S, Perrone-Capano C, Pulcrano S, Volpicelli F, Francesconi A. Combined DiI and Antibody Labeling Reveals Complex Dysgenesis of Hippocampal Dendritic Spines in a Mouse Model of Fragile X Syndrome. Biomedicines 2022; 10:2692. [PMID: 36359212 PMCID: PMC9687937 DOI: 10.3390/biomedicines10112692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Structural, functional, and molecular alterations in excitatory spines are a common hallmark of many neurodevelopmental disorders including intellectual disability and autism. Here, we describe an optimized methodology, based on combined use of DiI and immunofluorescence, for rapid and sensitive characterization of the structure and composition of spines in native brain tissue. We successfully demonstrate the applicability of this approach by examining the properties of hippocampal spines in juvenile Fmr1 KO mice, a mouse model of Fragile X Syndrome. We find that mutant mice display pervasive dysgenesis of spines evidenced by an overabundance of both abnormally elongated thin spines and cup-shaped spines, in combination with reduced density of mushroom spines. We further find that mushroom spines expressing the actin-binding protein Synaptopodin-a marker for spine apparatus-are more prevalent in mutant mice. Previous work identified spines with Synaptopodin/spine apparatus as the locus of mGluR-LTD, which is abnormally elevated in Fmr1 KO mice. Altogether, our data suggest this enhancement may be linked to the preponderance of this subset of spines in the mutant. Overall, these findings demonstrate the sensitivity and versatility of the optimized methodology by uncovering a novel facet of spine dysgenesis in Fmr1 KO mice.
Collapse
Affiliation(s)
- Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kardelen Dalım Filiz
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sarah Goebel
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, C.N.R., 80131 Naples, Italy
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
9
|
Casingal CR, Kikkawa T, Inada H, Sasaki Y, Osumi N. Identification of FMRP target mRNAs in the developmental brain: FMRP might coordinate Ras/MAPK, Wnt/β-catenin, and mTOR signaling during corticogenesis. Mol Brain 2020; 13:167. [PMID: 33323119 PMCID: PMC7739466 DOI: 10.1186/s13041-020-00706-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/23/2020] [Indexed: 01/18/2023] Open
Abstract
Corticogenesis is one of the most critical and complicated processes during embryonic brain development. Any slight impairment in corticogenesis could cause neurodevelopmental disorders such as Fragile X syndrome (FXS), of which symptoms contain intellectual disability (ID) and autism spectrum disorder (ASD). Fragile X mental retardation protein (FMRP), an RNA-binding protein responsible for FXS, shows strong expression in neural stem/precursor cells (NPCs) during corticogenesis, although its function during brain development remains largely unknown. In this study, we attempted to identify the FMRP target mRNAs in the cortical primordium using RNA immunoprecipitation sequencing analysis in the mouse embryonic brain. We identified 865 candidate genes as targets of FMRP involving 126 and 118 genes overlapped with ID and ASD-associated genes, respectively. These overlapped genes were enriched with those related to chromatin/chromosome organization and histone modifications, suggesting the involvement of FMRP in epigenetic regulation. We further identified a common set of 17 FMRP “core” target genes involved in neurogenesis/FXS/ID/ASD, containing factors associated with Ras/mitogen-activated protein kinase, Wnt/β-catenin, and mammalian target of rapamycin (mTOR) pathways. We indeed showed overactivation of mTOR signaling via an increase in mTOR phosphorylation in the Fmr1 knockout (Fmr1 KO) neocortex. Our results provide further insight into the critical roles of FMRP in the developing brain, where dysfunction of FMRP may influence the regulation of its mRNA targets affecting signaling pathways and epigenetic modifications.
Collapse
Affiliation(s)
- Cristine R Casingal
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 6-6-12, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yukio Sasaki
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsumuri-ku, Yokohama, 230-0045, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
10
|
Joffrin AM, Hsieh-Wilson LC. Photoaffinity Probes for the Identification of Sequence-Specific Glycosaminoglycan-Binding Proteins. J Am Chem Soc 2020; 142:13672-13676. [PMID: 32786811 DOI: 10.1021/jacs.0c06046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycosaminoglycan (GAG)-protein interactions mediate critical physiological and pathological processes, such as neuronal plasticity, development, and viral invasion. However, mapping GAG-protein interaction networks is challenging as these interactions often require specific GAG sulfation patterns and involve transmembrane receptors or extracellular matrix-associated proteins. Here, we report the first GAG polysaccharide-based photoaffinity probes for the system-wide identification of GAG-binding proteins in living cells. A general platform for the modular, efficient assembly of various chondroitin sulfate (CS)-based photoaffinity probes was developed. Systematic evaluations led to benzophenone-containing probes that efficiently and selectively captured known CS-E-binding proteins in vitro and in cells. Importantly, the probes also enabled the identification of >50 new proteins from living neurons that interact with the neuroplasticity-relevant CS-E sulfation motif. Several candidates were independently validated and included membrane receptors important for axon guidance, innate immunity, synapse development, and synaptic plasticity. Overall, our studies provide a powerful approach for mapping GAG-protein interaction networks, revealing new potential functions for these polysaccharides and linking them to diseases such as Alzheimer's and autism.
Collapse
Affiliation(s)
- Amélie M Joffrin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Expression profile and bioinformatics analysis of circular RNAs in acute ischemic stroke in a South Chinese Han population. Sci Rep 2020; 10:10138. [PMID: 32576868 PMCID: PMC7311391 DOI: 10.1038/s41598-020-66990-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Recent studies have found that circular RNAs (circRNAs) play crucial roles not only in the normal growth and the development of different tissues and organs but also in the pathogenesis and progression of various disorders. However, the expression patterns and the function of circRNAs in acute ischemic stroke (AIS) in the South Chinese Han population are unclear. In the present study, RNA sequencing (RNA-seq) data was generated from 3 AIS patients and 3 healthy controls. The circRNAs were detected and identified by CIRI2 and Find_circ software. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses were used to detect the expression of circRNAs. Meanwhile, the potential diagnostic value of the selected circRNAs for AIS was assessed by generating receiver operating characteristic (ROC) curve with area under curve (AUC). The bioinformatic analysis of the host genes of differentially expressed (DE) circRNAs was performed by gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, KOBAS for pathway analysis and regulatory network analysis. miRNA-circRNA and miRNA-mRNA interactions were predicted by using TargetScan, miRanda and starBase. CircRNA-miRNA-mRNA interaction networks were created with Cytoscape. Our result showed that there were 2270 DE circRNAs between AIS patients and healthy controls. Among them, 659 were found upregulated and 1611 were downregulated. Bioinformatic analysis showed that the DE circRNAs were related to the following biological processes: endocytosis, energy metabolism, apoptosis, FoxO signaling pathway, platelet activation, neurotrophin signaling pathway and VEGF signaling pathway, which may be associated with the pathological of AIS. Three randomly selected circRNAs were successfully validated by qRT-PCR. The results show that hsa_circ_0005548 was significantly upregulated, while hsa_circ_0000607 and hsa_circ_0002465 were significantly downregulated in AIS. Furthermore, the AUC values for hsa_circ_005548, hsa_circ_0000607 and hsa_circ_0002465 were 0.51, 0.75 and 0.69, respectively, suggesting that hsa_circ_0000607 and hsa_circ_0002465 could be potential biomarkers for AIS. In addition, Bcl2 was predicted to be a direct target of miR-337-3p, and hsa_circRNA_0000607 was predicted to act as a sponge for miR-337-3p. Thus, hsa_circ_0000607 may be involved in AIS by regulating the miR-337-3p/Bcl2 axis. Collectively, our findings indicate that numerous dysregulated circRNAs may play pivotal functional roles in AIS and hsa_circ_0000607 may play a crucial role in the pathogenesis and progression of AIS by regulating the miR-337-3p/Bcl2 axis.
Collapse
|