1
|
Ma L, Katyare N, Johnston K, Everling S. Effects of Ketamine on Frontoparietal Interactions in a Rule-Based Antisaccade Task in Macaque Monkeys. J Neurosci 2024; 44:e1018232024. [PMID: 39472063 PMCID: PMC11638814 DOI: 10.1523/jneurosci.1018-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Cognitive control is engaged by working memory processes and high-demand situations like antisaccade, where one must suppress a prepotent response. While it is known to be supported by the frontoparietal control network, how intra- and interareal dynamics contribute to cognitive control processes remains unclear. N-Methyl-d-aspartate glutamate receptors (NMDARs) play a key role in prefrontal dynamics that support cognitive control. NMDAR antagonists, such as ketamine, are known to alter task-related prefrontal activities and impair cognitive performance. However, the role of NMDAR in cognitive control-related frontoparietal dynamics remains underexplored. Here, we simultaneously recorded local field potentials and single-unit activities from the lateral prefrontal (lPFC) and posterior parietal cortices (PPC) in two male macaque monkeys during a rule-based antisaccade task, with both rule-visible (RV) and rule-memorized (RM) conditions. In addition to altering the E/I balance in both areas, ketamine had a negative impact on rule coding in true oscillatory activities. It also reduced frontoparietal coherence in a frequency- and rule-dependent manner. Granger prediction analysis revealed that ketamine induced an overall reduction in bidirectional connectivity. Among antisaccade trials, a greater reduction in lPFC-PPC connectivity during the delay period preceded a greater delay in saccadic onset under the RM condition and a greater deficit in performance under the RV condition. Lastly, ketamine compromised rule coding in lPFC neurons in both RV and RM conditions and in PPC neurons only in the RV condition. Our findings demonstrate the utility of acute NMDAR antagonists in understanding the mechanisms through which frontoparietal dynamics support cognitive control processes.
Collapse
Affiliation(s)
- Liya Ma
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Biophysics, Donders Centre for Neuroscience, Radboud University
| | - Nupur Katyare
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | - Stefan Everling
- Department of Physiology and Pharmacology
- Brain and Mind Institute, 6525 AJ Nijmegen, The Netherlands
- Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
2
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia. Curr Top Behav Neurosci 2023; 63:315-362. [PMID: 36607528 DOI: 10.1007/7854_2022_407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter, I review studies in nonhuman primates that emulate the circuit failure in prefrontal cortex responsible for working memory and cognitive control deficits in schizophrenia. These studies have characterized how synaptic malfunction, typically induced by blockade of NMDAR, disrupts neural function and computation in prefrontal networks to explain errors in cognitive tasks that are seen in schizophrenia. This work is finding causal relationships between pathogenic events of relevance to schizophrenia at vastly different levels of scale, from synapses, to neurons, local, circuits, distributed networks, computation, and behavior. Pharmacological manipulation, the dominant approach in primate models, has limited construct validity for schizophrenia pathogenesis, as the disease results from a complex interplay between environmental, developmental, and genetic factors. Genetic manipulation replicating schizophrenia risk is more advanced in rodent models. Nonetheless, gene manipulation in nonhuman primates is rapidly advancing, and primate developmental models have been established. Integration of large scale neural recording, genetic manipulation, and computational modeling in nonhuman primates holds considerable potential to provide a crucial schizophrenia model moving forward. Data generated by this approach is likely to fill several crucial gaps in our understanding of the causal sequence leading to schizophrenia in humans. This causal chain presents a vexing problem largely because it requires understanding how events at very different levels of scale relate to one another, from genes to circuits to cognition to social interactions. Nonhuman primate models excel here. They optimally enable discovery of causal relationships across levels of scale in the brain that are relevant to cognitive deficits in schizophrenia. The mechanistic understanding of prefrontal circuit failure they promise to provide may point the way to more effective therapeutic interventions to restore function to prefrontal networks in the disease.
Collapse
|
4
|
Suda Y, Uka T. The NMDA receptor antagonist ketamine impairs and delays context-dependent decision making in the parietal cortex. Commun Biol 2022; 5:690. [PMID: 35858997 PMCID: PMC9300646 DOI: 10.1038/s42003-022-03626-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Flexible decision making is an indispensable ability for humans. A subanesthetic dose of ketamine, an N-methyl-D-aspartate receptor antagonist, impairs this flexibility in a manner that is similar to patients with schizophrenia; however how it affects neural processes related to decision making remains unclear. Here, we report that ketamine administration impairs neural processing related to context-dependent decision making, and delays the onset of decision making. We recorded single unit activity in the lateral intraparietal area (LIP) while monkeys switched between a direction-discrimination task and a depth-discrimination task. Ketamine impaired choice accuracy for incongruent stimuli that required different decisions depending on the task, for the direction-discrimination task. Neural sensitivity to irrelevant depth information increased with ketamine during direction discrimination in LIP, indicating impaired processing of irrelevant information. Furthermore, the onset of decision-related neural activity was delayed in conjunction with an increased reaction time irrespective of task and stimulus congruency. Neural sensitivity and response onset of the middle temporal area (MT) were not modulated by ketamine, indicating that ketamine worked on neural decision processes downstream of MT. These results suggest that ketamine administration may impair what information to process and when to process it for the purpose of achieving flexible decision making.
Collapse
Affiliation(s)
- Yuki Suda
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.,Brain Science Institute, Tamagawa University, 6-1-1 Tamagawagakuen, Machida, Tokyo, 194-8610, Japan.,Department of Neurophysiology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan. .,Brain Science Institute, Tamagawa University, 6-1-1 Tamagawagakuen, Machida, Tokyo, 194-8610, Japan. .,Department of Neurophysiology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| |
Collapse
|
5
|
Sakamoto K, Kawaguchi N, Mushiake H. Shape and Rule Information Is Reflected in Different Local Field Potential Frequencies and Different Areas of the Primate Lateral Prefrontal Cortex. Front Behav Neurosci 2022; 16:750832. [PMID: 35645746 PMCID: PMC9137426 DOI: 10.3389/fnbeh.2022.750832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The lateral prefrontal cortex (LFPC) plays a crucial role in executive function by adaptively storing behavior-relevant information as working memory. Neural mechanisms associated with local field potentials (LFPs) may underlie the adaptive properties of the LFPC. Here, we analyzed how LFPs recorded from the monkey LFPC are modulated by the crucial factors of a shape manipulation task. In this task, the test shape is transformed by manipulating a lever to match the size and orientation of the sample shape. The subject is required to temporarily memorize the rules such as the arm-movement-manipulation relationship and the sample shape to generate the sequential behavior of operations. In the present study, we focused on task variables about shape and rules, and examined among which aspects distinguish the ventral and dorsal sides of the LFPC. We found that the transformed shape in the sample period strongly affected the theta and delta waves in the delay period on the ventral side, while the arm-manipulation assignment influenced the gamma components on the dorsal side. These findings suggest that area- and frequency-selective LFP modulations are involved in dynamically recruiting different behavior-relevant information in the LFPC.
Collapse
Affiliation(s)
- Kazuhiro Sakamoto
- Department of Neuroscience, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
- *Correspondence: Kazuhiro Sakamoto,
| | - Norihiko Kawaguchi
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|
7
|
Beating Pain with Psychedelics: Matter over Mind? Neurosci Biobehav Rev 2021; 134:104482. [PMID: 34922987 DOI: 10.1016/j.neubiorev.2021.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 02/08/2023]
Abstract
Basic pain research has shed light on key cellular and molecular mechanisms underlying nociceptive and phenomenological aspects of pain. Despite these advances, [[we still yearn for] the discovery of novel therapeutic strategies to address the unmet needs of about 70% of chronic neuropathic pain patients whose pain fails to respond to opioids as well as to other conventional analgesic agents. Importantly, a substantial body of clinical observations over the past decade cumulatively suggests that the psychedelic class of drugs may possess heuristic value for understanding and treating chronic pain conditions. The present review presents a theoretical framework for hitherto insufficiently understood neuroscience-based mechanisms of psychedelics' potential analgesic effects. To that end, searches of PubMed-indexed journals were performed using the following Medical Subject Headings' terms: pain, analgesia, inflammatory, brain connectivity, ketamine, psilocybin, functional imaging, and dendrites. Recursive sets of scientific and clinical evidence extracted from this literature review were summarized within the following key areas: (1) studies employing psychedelics for alleviation of physical and emotional pain; (2) potential neuro-restorative effects of psychedelics to remediate the impaired connectivity underlying the dissociation between pain-related conscious states/cognitions and the subcortical activity/function leading to the eventual chronicity through immediate and long-term effects on dentritic plasticity; (3) anti-neuroinflammatory and pro-immunomodulatory actions of psychedelics as the may pertain to the role of these factors in the pathogenesis of neuropathic pain; (4) safety, legal, and ethical consideration inherent in psychedelics' pharmacotherapy. In addition to direct beneficial effects in terms of reduction of pain and suffering, psychedelics' inclusion in the analgesic armamentarium will contribute to deeper and more sophisticated insights not only into pain syndromes but also into frequently comorbid psychiatric condition associated with emotional pain, e.g., depressive and anxiety disorders. Further inquiry is clearly warranted into the above areas that have potential to evolve into further elucidate the mechanisms of chronic pain and affective disorders, and lead to the development of innovative, safe, and more efficacious neurobiologically-based therapeutic approaches.
Collapse
|
8
|
Neurons in the Nonhuman Primate Amygdala and Dorsal Anterior Cingulate Cortex Signal Aversive Memory Formation under Sedation. Anesthesiology 2021; 134:734-747. [PMID: 33684203 DOI: 10.1097/aln.0000000000003732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Anesthetics aim to prevent memory of unpleasant experiences. The amygdala and dorsal anterior cingulate cortex participate in forging emotional and valence-driven memory formation. It was hypothesized that this circuitry maintains its role under sedation. METHODS Two nonhuman primates underwent aversive tone-odor conditioning under sedative states induced by ketamine or midazolam (1 to 8 and 0.1 to 0.8 mg/kg, respectively). The primary outcome was behavioral and neural evidence suggesting memory formation. This study simultaneously measured conditioned inspiratory changes and changes in firing rate of single neurons in the amygdala and the dorsal anterior cingulate cortex in response to an expected aversive olfactory stimulus appearing during acquisition and tested their retention after recovery. RESULTS Aversive memory formation occurred in 26 of 59 sessions under anesthetics (16 of 29 and 10 of 30, 5 of 30 and 21 of 29 for midazolam and ketamine at low and high doses, respectively). Single-neuron responses in the amygdala and dorsal anterior cingulate cortex were positively correlated between acquisition and retention (amygdala, n = 101, r = 0.51, P < 0.001; dorsal anterior cingulate cortex, n = 121, r = 0.32, P < 0.001). Neural responses during acquisition under anesthetics were stronger in sessions exhibiting memory formation than those that did not (amygdala median response ratio, 0.52 versus 0.33, n = 101, P = 0.021; dorsal anterior cingulate cortex median response ratio, 0.48 versus 0.32, n = 121, P = 0.012). The change in firing rate of amygdala neurons during acquisition was correlated with the size of stimuli-conditioned inspiratory response during retention (n = 101, r = 0.22 P = 0.026). Thus, amygdala and dorsal anterior cingulate cortex responses during acquisition under anesthetics predicted retention. Respiratory unconditioned responses to the aversive odor anesthetics did not differ from saline controls. CONCLUSIONS These results suggest that the amygdala-dorsal anterior cingulate cortex circuit maintains its role in acquisition and maintenance of aversive memories in nonhuman primates under sedation with ketamine and midazolam and that the stimulus valence is sufficient to drive memory formation. EDITOR’S PERSPECTIVE
Collapse
|
9
|
Ketamine-Induced Alteration of Working Memory Utility during Oculomotor Foraging Task in Monkeys. eNeuro 2021; 8:ENEURO.0403-20.2021. [PMID: 33688041 PMCID: PMC8026253 DOI: 10.1523/eneuro.0403-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022] Open
Abstract
Impairments of working memory (WM) are commonly observed in a variety of neurodegenerative disorders but they are difficult to quantitatively assess in clinical cases. Recent studies in experimental animals have used low-dose ketamine (an NMDA receptor antagonist) to disrupt WM, partly mimicking the pathophysiology of schizophrenia. Here, we developed a novel behavioral paradigm to assess multiple components of WM and applied it to monkeys with and without ketamine administration. In an oculomotor foraging task, the animals were presented with 15 identical objects on the screen. One of the objects was associated with a liquid reward, and monkeys were trained to search for the target by generating sequential saccades under a time constraint. We assumed that the occurrence of recursive movements to the same object might reflect WM dysfunction. We constructed a "foraging model" that incorporated (1) memory capacity, (2) memory decay, and (3) utility rate; this model was able to explain more than 92% of the variations in behavioral data obtained from three monkeys. Following systemic administration of low dosages of ketamine, the memory capacity and utility rate were dramatically reduced by 15% and 57%, respectively, while memory decay remained largely unchanged. These results suggested that the behavioral deficits during the blockade of NMDA receptors were mostly due to the decreased usage of short-term memory. Our oculomotor paradigm and foraging model appear to be useful for quantifying multiple components of WM and could be applicable to clinical cases in future studies.
Collapse
|
10
|
Assessment of brain cholesterol metabolism biomarker 24S-hydroxycholesterol in schizophrenia. NPJ SCHIZOPHRENIA 2020; 6:34. [PMID: 33219208 PMCID: PMC7680117 DOI: 10.1038/s41537-020-00121-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/03/2020] [Indexed: 11/08/2022]
Abstract
Plasma 24S-hydroxycholesterol mostly originates in brain tissue and likely reflects the turnover of cholesterol in the central nervous system. As cholesterol is disproportionally enriched in many key brain structures, 24S-hydroxycholesterol is a promising biomarker for psychiatric and neurologic disorders that impact brain structure. We hypothesized that, as schizophrenia patients have widely reported gray and white matter deficits, they would have abnormal levels of plasma 24S-hydroxycholesterol, and that plasma levels of 24S-hydroxycholesterol would be associated with brain structural and functional biomarkers for schizophrenia. Plasma levels of 24S-hydroxycholesterol were measured in 226 individuals with schizophrenia and 204 healthy controls. The results showed that levels of 24S-hydroxycholesterol were not significantly different between patients and controls. Age was significantly and negatively correlated with 24S-hydroxycholesterol in both groups, and in both groups, females had significantly higher levels of 24S-hydroxycholesterol compared to males. Levels of 24S-hydroxycholesterol were not related to average fractional anisotropy of white matter or cortical thickness, or to cognitive deficits in schizophrenia. Based on these results from a large sample and using multiple brain biomarkers, we conclude there is little to no value of plasma 24S-hydroxycholesterol as a brain metabolite biomarker for schizophrenia.
Collapse
|
11
|
Cavanagh SE, Lam NH, Murray JD, Hunt LT, Kennerley SW. A circuit mechanism for decision-making biases and NMDA receptor hypofunction. eLife 2020; 9:e53664. [PMID: 32988455 PMCID: PMC7524553 DOI: 10.7554/elife.53664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Decision-making biases can be features of normal behaviour, or deficits underlying neuropsychiatric symptoms. We used behavioural psychophysics, spiking-circuit modelling and pharmacological manipulations to explore decision-making biases during evidence integration. Monkeys showed a pro-variance bias (PVB): a preference to choose options with more variable evidence. The PVB was also present in a spiking circuit model, revealing a potential neural mechanism for this behaviour. To model possible effects of NMDA receptor (NMDA-R) antagonism on this behaviour, we simulated the effects of NMDA-R hypofunction onto either excitatory or inhibitory neurons in the model. These were then tested experimentally using the NMDA-R antagonist ketamine, a pharmacological model of schizophrenia. Ketamine yielded an increase in subjects' PVB, consistent with lowered cortical excitation/inhibition balance from NMDA-R hypofunction predominantly onto excitatory neurons. These results provide a circuit-level mechanism that bridges across explanatory scales, from the synaptic to the behavioural, in neuropsychiatric disorders where decision-making biases are prominent.
Collapse
Affiliation(s)
- Sean Edward Cavanagh
- Department of Clinical and Movement Neurosciences, University College LondonLondonUnited Kingdom
| | - Norman H Lam
- Department of Physics, Yale UniversityNew HavenUnited States
| | - John D Murray
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Laurence Tudor Hunt
- Department of Clinical and Movement Neurosciences, University College LondonLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
- Max Planck-UCL Centre for Computational Psychiatry and Aging, University College LondonLondonUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
| | - Steven Wayne Kennerley
- Department of Clinical and Movement Neurosciences, University College LondonLondonUnited Kingdom
| |
Collapse
|
12
|
Friesner ID, Martinez E, Zhou H, Gould JD, Li A, Chen ZS, Zhang Q, Wang J. Ketamine normalizes high-gamma power in the anterior cingulate cortex in a rat chronic pain model. Mol Brain 2020; 13:129. [PMID: 32967695 PMCID: PMC7513294 DOI: 10.1186/s13041-020-00670-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022] Open
Abstract
Chronic pain alters cortical and subcortical plasticity, causing enhanced sensory and affective responses to peripheral nociceptive inputs. Previous studies have shown that ketamine had the potential to inhibit abnormally amplified affective responses of single neurons by suppressing hyperactivity in the anterior cingulate cortex (ACC). However, the mechanism of this enduring effect has yet to be understood at the network level. In this study, we recorded local field potentials from the ACC of freely moving rats. Animals were injected with complete Freund’s adjuvant (CFA) to induce persistent inflammatory pain. Mechanical stimulations were administered to the hind paw before and after CFA administration. We found a significant increase in the high-gamma band (60–100 Hz) power in response to evoked pain after CFA treatment. Ketamine, however, reduced the high-gamma band power in response to evoked pain in CFA-treated rats. In addition, ketamine had a sustained effect on the high-gamma band power lasting up to five days after a single dose administration. These results demonstrate that ketamine has the potential to alter maladaptive neural responses in the ACC induced by chronic pain.
Collapse
Affiliation(s)
- Isabel D Friesner
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | - Erik Martinez
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | - Haocheng Zhou
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, 10016, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA. .,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, 10016, USA. .,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
13
|
Kummerfeld E, Ma S, Blackman RK, DeNicola AL, Redish AD, Vinogradov S, Crowe DA, Chafee MV. Cognitive Control Errors in Nonhuman Primates Resembling Those in Schizophrenia Reflect Opposing Effects of NMDA Receptor Blockade on Causal Interactions Between Cells and Circuits in Prefrontal and Parietal Cortices. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:705-714. [PMID: 32513554 DOI: 10.1016/j.bpsc.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The causal biology underlying schizophrenia is not well understood, but it is likely to involve a malfunction in how neurons adjust synaptic connections in response to patterns of activity in networks. We examined statistical dependencies between neural signals at the cell, local circuit, and distributed network levels in prefrontal and parietal cortices of monkeys performing a variant of the AX continuous performance task paradigm. We then quantified changes in the pattern of neural interactions across levels of scale following NMDA receptor (NMDAR) blockade and related these changes to a pattern of cognitive control errors closely matching the performance of patients with schizophrenia. METHODS We recorded the spiking activity of 1762 neurons along with local field potentials at multiple electrode sites in prefrontal and parietal cortices concurrently, and we generated binary time series indicating the presence or absence of spikes in single neurons or local field potential power above or below a threshold. We then applied causal discovery analysis to the time series to detect statistical dependencies between the signals (causal interactions) and compared the pattern of these interactions before and after NMDAR blockade. RESULTS Global blockade of NMDAR produced distinctive and frequently opposite changes in neural interactions at the cell, local circuit, and network levels in prefrontal and parietal cortices. Cognitive control errors were associated with decreased interactions at the cell level and with opposite changes at the network level in prefrontal and parietal cortices. CONCLUSIONS NMDAR synaptic deficits change causal interactions between neural signals at different levels of scale that correlate with schizophrenia-like deficits in cognitive control.
Collapse
Affiliation(s)
- Erich Kummerfeld
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Rachael K Blackman
- Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Brain Sciences Center, Veterans Administration Medical Center, Minneapolis, Minnesota
| | - Adele L DeNicola
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Brain Sciences Center, Veterans Administration Medical Center, Minneapolis, Minnesota
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Sophia Vinogradov
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - David A Crowe
- Department of Biology, Augsburg University, Minneapolis, Minnesota
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Brain Sciences Center, Veterans Administration Medical Center, Minneapolis, Minnesota.
| |
Collapse
|
14
|
Deane KE, Brunk MGK, Curran AW, Zempeltzi MM, Ma J, Lin X, Abela F, Aksit S, Deliano M, Ohl FW, Happel MFK. Ketamine anaesthesia induces gain enhancement via recurrent excitation in granular input layers of the auditory cortex. J Physiol 2020; 598:2741-2755. [PMID: 32329905 DOI: 10.1113/jp279705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ketamine is a common anaesthetic agent used in research and more recently as medication in treatment of depression. It has known effects on inhibition of interneurons and cortical stimulus-locked responses, but the underlying functional network mechanisms are still elusive. Analysing population activity across all layers within the auditory cortex, we found that doses of this anaesthetic induce a stronger activation and stimulus-locked response to pure-tone stimuli. This cortical response is driven by gain enhancement of thalamocortical input processing selectively within granular layers due to an increased recurrent excitation. Time-frequency analysis indicates a higher broadband magnitude response and prolonged phase coherence in granular layers, possibly pointing to disinhibition of this recurrent excitation. These results further the understanding of ketamine's functional mechanisms, which will improve the ability to interpret physiological studies moving from anaesthetized to awake paradigms and may lead to the development of better ketamine-based depression treatments with lower side effects. ABSTRACT Ketamine is commonly used as an anaesthetic agent and has more recently gained attention as an antidepressant. It has been linked to increased stimulus-locked excitability, inhibition of interneurons and modulation of intrinsic neuronal oscillations. However, the functional network mechanisms are still elusive. A better understanding of these anaesthetic network effects may improve upon previous interpretations of seminal studies conducted under anaesthesia and have widespread relevance for neuroscience with awake and anaesthetized subjects as well as in medicine. Here, we investigated the effects of anaesthetic doses of ketamine (15 mg kg-1 h-1 i.p.) on the network activity after pure-tone stimulation within the auditory cortex of male Mongolian gerbils (Meriones unguiculatus). We used laminar current source density (CSD) analysis and subsequent layer-specific continuous wavelet analysis to investigate spatiotemporal response dynamics on cortical columnar processing in awake and ketamine-anaesthetized animals. We found thalamocortical input processing within granular layers III/IV to be significantly increased under ketamine. This layer-dependent gain enhancement under ketamine was not due to changes in cross-trial phase coherence but was rather attributed to a broadband increase in magnitude reflecting an increase in recurrent excitation. A time-frequency analysis was indicative of a prolonged period of stimulus-induced excitation possibly due to a reduced coupling of excitation and inhibition in granular input circuits - in line with the common hypothesis of cortical disinhibition via suppression of GABAergic interneurons.
Collapse
Affiliation(s)
- Katrina E Deane
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany
| | | | - Andrew W Curran
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany.,Graduate School of Life Science, Julius Maximilians University, Würzburg, D-97074, Germany
| | | | - Jing Ma
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany
| | - Xiao Lin
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany
| | - Francesca Abela
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany.,University of Pisa, Pisa, I-56126, Italy
| | - Sümeyra Aksit
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany
| | | | - Frank W Ohl
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany.,Institute of Biology, Otto von Guericke University, Magdeburg, D-39120, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, 39106, Germany
| | - Max F K Happel
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany.,Institute of Biology, Otto von Guericke University, Magdeburg, D-39120, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, 39106, Germany
| |
Collapse
|
15
|
Komatsu M, Ichinohe N. Effects of Ketamine Administration on Auditory Information Processing in the Neocortex of Nonhuman Primates. Front Psychiatry 2020; 11:826. [PMID: 32973576 PMCID: PMC7466740 DOI: 10.3389/fpsyt.2020.00826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts broad effects on consciousness and perception. Since NMDA receptor antagonists induce cognitive impairments, ketamine has been used for translational research on several psychiatric diseases, such as schizophrenia. Whereas the effects of ketamine on cognitive functions have been extensively studied, studies on the effects of ketamine on simple sensory information processing remain limited. In this study, we investigated the cortex-wide effects of ketamine administration on auditory information processing in nonhuman primates using whole-cortical electrocorticography (ECoG). We first recorded ECoG from awake monkeys on presenting auditory stimuli of different frequencies or different durations. We observed auditory evoked responses (AERs) across the cortex, including in frontal, parietal, and temporal areas, while feature-specific responses were obtained around the temporal sulcus. Next, we examined the effects of ketamine on cortical auditory information processing. We conducted ECoG recordings from monkeys that had been administered anesthetic doses of ketamine from 10 to 180 min following administration. We observed significant changes in stimulus feature-specific responses. Electrodes showing a frequency preference or offset responses were altered following ketamine administration, while those of the AERs were not strongly influenced. However, the frequency preference of a selected electrode was not significantly altered by ketamine administration over time following administration, while the imbalances in the onset and offset persisted over the course of 150 min following ketamine administration in all three monkeys. These results suggest that ketamine affects the ability to distinguish between sound frequency and duration in different ways. In conclusion, future research on the NMDA sensitivity of cortical wide sensory information processing may provide a new perspective into the development of nonhuman primate models of psychiatric disorders.
Collapse
Affiliation(s)
- Misako Komatsu
- Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Center for Brain Science, Saitama, Japan.,Department of Ultrastructural Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noritaka Ichinohe
- Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Center for Brain Science, Saitama, Japan.,Department of Ultrastructural Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
16
|
Working Memory: Delay Activity, Yes! Persistent Activity? Maybe Not. J Neurosci 2019; 38:7013-7019. [PMID: 30089640 DOI: 10.1523/jneurosci.2485-17.2018] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/15/2023] Open
Abstract
Persistent spiking has been thought to underlie working memory (WM). However, virtually all of the evidence for this comes from studies that averaged spiking across time and across trials, which masks the details. On single trials, activity often occurs in sparse transient bursts. This has important computational and functional advantages. In addition, examination of more complex tasks reveals neural coding in WM is dynamic over the course of a trial. All this suggests that spiking is important for WM, but that its role is more complex than simply persistent spiking.Dual Perspectives Companion Paper:Persistent Spiking Activity Underlies Working Memory, by Christos Constantinidis, Shintaro Funahashi, Daeyeol Lee, John D. Murray, Xue-Lian Qi, Min Wang, and Amy F.T. Arnsten.
Collapse
|
17
|
Amat-Foraster M, Celada P, Richter U, Jensen AA, Plath N, Artigas F, Herrik KF. Modulation of thalamo-cortical activity by the NMDA receptor antagonists ketamine and phencyclidine in the awake freely-moving rat. Neuropharmacology 2019; 158:107745. [DOI: 10.1016/j.neuropharm.2019.107745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/29/2023]
|
18
|
Ma L, Chan JL, Johnston K, Lomber SG, Everling S. Macaque anterior cingulate cortex deactivation impairs performance and alters lateral prefrontal oscillatory activities in a rule-switching task. PLoS Biol 2019; 17:e3000045. [PMID: 31295254 PMCID: PMC6650082 DOI: 10.1371/journal.pbio.3000045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 07/23/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023] Open
Abstract
In primates, both the dorsal anterior cingulate cortex (dACC) and the dorsolateral prefrontal cortex (dlPFC) are key regions of the frontoparietal cognitive control network. To study the role of the dACC and its communication with the dlPFC in cognitive control, we recorded local field potentials (LFPs) from the dlPFC before and during the reversible deactivation of the dACC, in macaque monkeys engaging in uncued switches between 2 stimulus-response rules, namely prosaccade and antisaccade. Cryogenic dACC deactivation impaired response accuracy during maintenance of—but not the initial switching to—the cognitively demanding antisaccade rule, which coincided with a reduction in task-related theta activity and the correct-error (C-E) difference in dlPFC beta-band power. During both rule switching and maintenance, dACC deactivation prolonged the animals’ reaction time and reduced task-related alpha power in the dlPFC. Our findings support a role of the dACC in prefrontal oscillatory activities that are involved the maintenance of a new, challenging task rule. Reversible deactivation of the dorsal anterior cingulate cortex — an area of the cognitive control network — impairs rule maintenance but not rule switching per se, and disrupts task-related oscillatory activities in the dorsolateral prefrontal cortex — another area of the same network.
Collapse
Affiliation(s)
- Liya Ma
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | - Jason L. Chan
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Kevin Johnston
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen G. Lomber
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- Department of Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|