1
|
Kobayashi H, Takemoto K, Sanbo M, Hirabayashi M, Hirabayashi T, Hirayama T, Kiyonari H, Abe T, Yagi T. Isoform requirement of clustered protocadherin for preventing neuronal apoptosis and neonatal lethality. iScience 2023; 26:105766. [PMID: 36582829 PMCID: PMC9793319 DOI: 10.1016/j.isci.2022.105766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Clustered protocadherin is a family of cell-surface recognition molecules implicated in neuronal connectivity that has a diverse isoform repertoire and homophilic binding specificity. Mice have 58 isoforms, encoded by Pcdhα, β, and γ gene clusters, and mutant mice lacking all isoforms died after birth, displaying massive neuronal apoptosis and synapse loss. The current hypothesis is that the three specific γC-type isoforms, especially γC4, are essential for the phenotype, raising the question about the necessity of isoform diversity. We generated TC mutant mice that expressed the three γC-type isoforms but lacked all the other 55 isoforms. The TC mutants died immediately after birth, showing massive neuronal death, and γC3 or γC4 expression did not prevent apoptosis. Restoring the α- and β-clusters with the three γC alleles rescued the phenotype, suggesting that along with the three γC-type isoforms, other isoforms are also required for the survival of neurons and individual mice.
Collapse
Affiliation(s)
- Hiroaki Kobayashi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Division of Biophysical Engineering, Department of Systems Science, School of Engineering Science, Osaka University, Toyonaka 565-8531, Japan
| | - Kenji Takemoto
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Takahiro Hirabayashi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Teruyoshi Hirayama
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Department of Anatomy and Developmental Neurobiology, Tokushima University, Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 6500047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 6500047, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Division of Biophysical Engineering, Department of Systems Science, School of Engineering Science, Osaka University, Toyonaka 565-8531, Japan
| |
Collapse
|
2
|
Branchereau P, Cattaert D. Chloride Homeostasis in Developing Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:45-61. [PMID: 36066820 DOI: 10.1007/978-3-031-07167-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maturation of GABA/Glycine chloride-mediated synaptic inhibitions is crucial for the establishment of a balance between excitation and inhibition. GABA and glycine are excitatory neurotransmitters on immature neurons that exhibit elevated [Cl-]i. Later in development [Cl-]i drops leading to the occurrence of inhibitory synaptic activity. This ontogenic change is closely correlated to a differential expression of two cation-chloride cotransporters that are the Cl- channel K+/Cl- co-transporter type 2 (KCC2) that extrudes Cl- ions and the Na+-K+-2Cl- cotransporter NKCC1 that accumulates Cl- ions. The classical scheme built from studies performed on cortical and hippocampal networks proposes that immature neurons display high [Cl-]i because NKCC1 is overexpressed compared to KCC2 and that the co-transporters ratio reverses in mature neurons, lowering [Cl-]i. In this chapter, we will see that this classical scheme is not true in motoneurons (MNs) and that an early alteration of the chloride homeostasis may be involved in pathological conditions.
Collapse
Affiliation(s)
- Pascal Branchereau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Univ. Bordeaux, UMR 5287, CNRS, Bordeaux, France.
| | - Daniel Cattaert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Univ. Bordeaux, UMR 5287, CNRS, Bordeaux, France
| |
Collapse
|
3
|
Arulkandarajah KH, Osterstock G, Lafont A, Le Corronc H, Escalas N, Corsini S, Le Bras B, Chenane L, Boeri J, Czarnecki A, Mouffle C, Bullier E, Hong E, Soula C, Legendre P, Mangin JM. Neuroepithelial progenitors generate and propagate non-neuronal action potentials across the spinal cord. Curr Biol 2021; 31:4584-4595.e4. [PMID: 34478646 DOI: 10.1016/j.cub.2021.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
In the developing central nervous system, electrical signaling is thought to rely exclusively on differentiating neurons as they acquire the ability to generate and propagate action potentials. Accordingly, neuroepithelial progenitors (NEPs), which give rise to all neurons and glial cells during development, have been reported to remain electrically passive. Here, we investigated the physiological properties of NEPs at the onset of spontaneous neural activity (SNA) initiating motor behavior in mouse embryonic spinal cord. Using patch-clamp recordings, we discovered that spinal NEPs exhibit spontaneous membrane depolarizations during episodes of SNA. These rhythmic depolarizations exhibited a ventral-to-dorsal gradient with the highest amplitude located in the floor plate, the ventral-most part of the neuroepithelium. Paired recordings revealed that NEPs are coupled via gap junctions and form an electrical syncytium. Although other NEPs were electrically passive, we discovered that floor-plate NEPs generated large Na+/Ca2+ action potentials. Unlike in neurons, floor-plate action potentials relied primarily on the activation of voltage-gated T-type calcium channels (TTCCs). In situ hybridization showed that all 3 known subtypes of TTCCs are predominantly expressed in the floor plate. During SNA, we found that acetylcholine released by motoneurons rhythmically triggers floor-plate action potentials by acting through nicotinic acetylcholine receptors. Finally, by expressing the genetically encoded calcium indicator GCaMP6f in the floor plate, we demonstrated that neuroepithelial action potentials are associated with calcium waves and propagate along the entire length of the spinal cord. Our work reveals a novel physiological mechanism to generate and propagate electrical signals across a neural structure independently from neurons.
Collapse
Affiliation(s)
- Kalaimakan Hervé Arulkandarajah
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Guillaume Osterstock
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Agathe Lafont
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Hervé Le Corronc
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Université d'Angers, 49000 Angers, France
| | - Nathalie Escalas
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31000 Toulouse, France
| | - Silvia Corsini
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Barbara Le Bras
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Linda Chenane
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Juliette Boeri
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Antonny Czarnecki
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Christine Mouffle
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Erika Bullier
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Elim Hong
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Cathy Soula
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31000 Toulouse, France
| | - Pascal Legendre
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Jean-Marie Mangin
- Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| |
Collapse
|
4
|
Kolos EA, Korzhevskii DE. Glutamine Synthetase in the Cells of the Developing Rat Spinal Cord. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421050040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Boeri J, Meunier C, Le Corronc H, Branchereau P, Timofeeva Y, Lejeune FX, Mouffle C, Arulkandarajah H, Mangin JM, Legendre P, Czarnecki A. Two opposite voltage-dependent currents control the unusual early development pattern of embryonic Renshaw cell electrical activity. eLife 2021; 10:62639. [PMID: 33899737 PMCID: PMC8139835 DOI: 10.7554/elife.62639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/24/2021] [Indexed: 11/25/2022] Open
Abstract
Renshaw cells (V1R) are excitable as soon as they reach their final location next to the spinal motoneurons and are functionally heterogeneous. Using multiple experimental approaches, in combination with biophysical modeling and dynamical systems theory, we analyzed, for the first time, the mechanisms underlying the electrophysiological properties of V1R during early embryonic development of the mouse spinal cord locomotor networks (E11.5–E16.5). We found that these interneurons are subdivided into several functional clusters from E11.5 and then display an unexpected transitory involution process during which they lose their ability to sustain tonic firing. We demonstrated that the essential factor controlling the diversity of the discharge pattern of embryonic V1R is the ratio of a persistent sodium conductance to a delayed rectifier potassium conductance. Taken together, our results reveal how a simple mechanism, based on the synergy of two voltage-dependent conductances that are ubiquitous in neurons, can produce functional diversity in embryonic V1R and control their early developmental trajectory.
Collapse
Affiliation(s)
- Juliette Boeri
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France
| | - Claude Meunier
- Centre de Neurosciences Intégratives et Cognition, CNRS UMR 8002, Institut Neurosciences et Cognition, Université de Paris, Paris, France
| | - Hervé Le Corronc
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France.,Univ Angers, Angers, France
| | | | - Yulia Timofeeva
- Department of Computer Science and Centre for Complexity Science, University of Warwick, Coventry, United Kingdom.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - François-Xavier Lejeune
- Institut du Cerveau et de la Moelle Epinière, Centre de Recherche CHU Pitié-Salpétrière, INSERM, U975, CNRS, UMR 7225, Sorbonne Univ, Paris, France
| | - Christine Mouffle
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France
| | - Hervé Arulkandarajah
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France
| | - Jean Marie Mangin
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France
| | - Pascal Legendre
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France
| | - Antonny Czarnecki
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France.,Univ. Bordeaux, CNRS, EPHE, INCIA, Bordeaux, France
| |
Collapse
|
6
|
Zhang C, Maslar D, Minckley TF, LeJeune KD, Qin Y. Spontaneous, synchronous zinc spikes oscillate with neural excitability and calcium spikes in primary hippocampal neuron culture. J Neurochem 2021; 157:1838-1849. [PMID: 33638177 DOI: 10.1111/jnc.15334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Zinc has been suggested to act as an intracellular signaling molecule due to its regulatory effects on numerous protein targets including enzymes, transcription factors, ion channels, neurotrophic factors, and postsynaptic scaffolding proteins. However, intracellular zinc concentration is tightly maintained at steady levels under natural physiological conditions. Dynamic changes in intracellular zinc concentration have only been detected in certain types of cells that are exposed to pathologic stimuli or upon receptor ligand binding. Unlike calcium, the ubiquitous signaling metal ion that can oscillate periodically and spontaneously in various cells, spontaneous zinc oscillations have never been reported. In this work, we made the novel observation that the developing neurons generated spontaneous and synchronous zinc spikes in primary hippocampal cultures using a fluorescent zinc sensor, FluoZin-3. Blocking of glutamate receptor-dependent calcium influx depleted the zinc spikes, suggesting that these zinc spikes were driven by the glutamate-mediated spontaneous neural excitability and calcium spikes that have been characterized in early developing neurons. Simultaneous imaging of calcium or pH together with zinc, we uncovered that a downward pH spike was evoked with each zinc spike and this transient cellular acidification occurred downstream of calcium spikes but upstream of zinc spikes. Our results suggest that spontaneous, synchronous zinc spikes were generated through calcium influx-induced cellular acidification, which liberates zinc from intracellular zinc binding ligands. Given that changes in zinc concentration can modulate activities of proteins essential for synapse maturation and neuronal differentiation, these zinc spikes might act as important signaling roles in neuronal development.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Drew Maslar
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Taylor F Minckley
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kate D LeJeune
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
7
|
Gamage R, Wagnon I, Rossetti I, Childs R, Niedermayer G, Chesworth R, Gyengesi E. Cholinergic Modulation of Glial Function During Aging and Chronic Neuroinflammation. Front Cell Neurosci 2020; 14:577912. [PMID: 33192323 PMCID: PMC7594524 DOI: 10.3389/fncel.2020.577912] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex biological process that increases the risk of age-related cognitive degenerative diseases such as dementia, including Alzheimer’s disease (AD), Lewy Body Dementia (LBD), and mild cognitive impairment (MCI). Even non-pathological aging of the brain can involve chronic oxidative and inflammatory stress, which disrupts the communication and balance between the brain and the immune system. There has been an increasingly strong connection found between chronic neuroinflammation and impaired memory, especially in AD. While microglia and astrocytes, the resident immune cells of the central nervous system (CNS), exerting beneficial effects during the acute inflammatory phase, during chronic neuroinflammation they can become more detrimental. Central cholinergic circuits are involved in maintaining normal cognitive function and regulating signaling within the entire cerebral cortex. While neuronal-glial cholinergic signaling is anti-inflammatory and anti-oxidative, central cholinergic neuronal degeneration is implicated in impaired learning, memory sleep regulation, and attention. Although there is evidence of cholinergic involvement in memory, fewer studies have linked the cholinergic anti-inflammatory and anti-oxidant pathways to memory processes during development, normal aging, and disease states. This review will summarize the current knowledge of cholinergic effects on microglia and astroglia, and their role in both anti-inflammatory and anti-oxidant mechanisms, concerning normal aging and chronic neuroinflammation. We provided details on how stimulation of α7 nicotinic acetylcholine (α7nACh) receptors can be neuroprotective by increasing amyloid-β phagocytosis, decreasing inflammation and reducing oxidative stress by promoting the nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and decreasing the release of pro-inflammatory cytokines. There is also evidence for astroglial α7nACh receptor stimulation mediating anti-inflammatory and antioxidant effects by inhibiting the nuclear factor-κB (NF-κB) pathway and activating the Nrf2 pathway respectively. We conclude that targeting cholinergic glial interactions between neurons and glial cells via α7nACh receptors could regulate neuroinflammation and oxidative stress, relevant to the treatment of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Rashmi Gamage
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ingrid Wagnon
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ilaria Rossetti
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ryan Childs
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
8
|
Dynamic regulation of the cholinergic system in the spinal central nervous system. Sci Rep 2020; 10:15338. [PMID: 32948826 PMCID: PMC7501295 DOI: 10.1038/s41598-020-72524-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022] Open
Abstract
While the role of cholinergic neurotransmission from motoneurons is well established during neuromuscular development, whether it regulates central nervous system development in the spinal cord is unclear. Zebrafish presents a powerful model to investigate how the cholinergic system is set up and evolves during neural circuit formation. In this study, we carried out a detailed spatiotemporal analysis of the cholinergic system in embryonic and larval zebrafish. In 1-day-old embryos, we show that spinal motoneurons express presynaptic cholinergic genes including choline acetyltransferase (chata), vesicular acetylcholine transporters (vachta, vachtb), high-affinity choline transporter (hacta) and acetylcholinesterase (ache), while nicotinic acetylcholine receptor (nAChR) subunits are mainly expressed in interneurons. However, in 3-day-old embryos, we found an unexpected decrease in presynaptic cholinergic transcript expression in a rostral to caudal gradient in the spinal cord, which continued during development. On the contrary, nAChR subunits remained highly expressed throughout the spinal cord. We found that protein and enzymatic activities of presynaptic cholinergic genes were also reduced in the rostral spinal cord. Our work demonstrating that cholinergic genes are initially expressed in the embryonic spinal cord, which is dynamically downregulated during development suggests that cholinergic signaling may play a pivotal role during the formation of intra-spinal locomotor circuit.
Collapse
|
9
|
Alvarez FJ, Rotterman TM, Akhter ET, Lane AR, English AW, Cope TC. Synaptic Plasticity on Motoneurons After Axotomy: A Necessary Change in Paradigm. Front Mol Neurosci 2020; 13:68. [PMID: 32425754 PMCID: PMC7203341 DOI: 10.3389/fnmol.2020.00068] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Motoneurons axotomized by peripheral nerve injuries experience profound changes in their synaptic inputs that are associated with a neuroinflammatory response that includes local microglia and astrocytes. This reaction is conserved across different types of motoneurons, injuries, and species, but also displays many unique features in each particular case. These reactions have been amply studied, but there is still a lack of knowledge on their functional significance and mechanisms. In this review article, we compiled data from many different fields to generate a comprehensive conceptual framework to best interpret past data and spawn new hypotheses and research. We propose that synaptic plasticity around axotomized motoneurons should be divided into two distinct processes. First, a rapid cell-autonomous, microglia-independent shedding of synapses from motoneuron cell bodies and proximal dendrites that is reversible after muscle reinnervation. Second, a slower mechanism that is microglia-dependent and permanently alters spinal cord circuitry by fully eliminating from the ventral horn the axon collaterals of peripherally injured and regenerating sensory Ia afferent proprioceptors. This removes this input from cell bodies and throughout the dendritic tree of axotomized motoneurons as well as from many other spinal neurons, thus reconfiguring ventral horn motor circuitries to function after regeneration without direct sensory feedback from muscle. This process is modulated by injury severity, suggesting a correlation with poor regeneration specificity due to sensory and motor axons targeting errors in the periphery that likely render Ia afferent connectivity in the ventral horn nonadaptive. In contrast, reversible synaptic changes on the cell bodies occur only while motoneurons are regenerating. This cell-autonomous process displays unique features according to motoneuron type and modulation by local microglia and astrocytes and generally results in a transient reduction of fast synaptic activity that is probably replaced by embryonic-like slow GABA depolarizations, proposed to relate to regenerative mechanisms.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Travis M Rotterman
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Erica T Akhter
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Alicia R Lane
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cellular Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy C Cope
- Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
10
|
Traub RD, Whittington MA, Maier N, Schmitz D, Nagy JI. Could electrical coupling contribute to the formation of cell assemblies? Rev Neurosci 2019; 31:121-141. [DOI: 10.1515/revneuro-2019-0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Abstract
Cell assemblies and central pattern generators (CPGs) are related types of neuronal networks: both consist of interacting groups of neurons whose collective activities lead to defined functional outputs. In the case of a cell assembly, the functional output may be interpreted as a representation of something in the world, external or internal; for a CPG, the output ‘drives’ an observable (i.e. motor) behavior. Electrical coupling, via gap junctions, is critical for the development of CPGs, as well as for their actual operation in the adult animal. Electrical coupling is also known to be important in the development of hippocampal and neocortical principal cell networks. We here argue that electrical coupling – in addition to chemical synapses – may therefore contribute to the formation of at least some cell assemblies in adult animals.
Collapse
Affiliation(s)
- Roger D. Traub
- AI Foundations, IBM T.J. Watson Research Center , Yorktown Heights, NY 10598 , USA
| | | | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin , Neuroscience Research Center , Charitéplatz 1 , D-10117 Berlin , Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin , Neuroscience Research Center , Charitéplatz 1 , D-10117 Berlin , Germany
| | - James I. Nagy
- Department of Physiology and Pathophysiology , University of Manitoba , Winnipeg R3E OJ9, MB , Canada
| |
Collapse
|
11
|
Lombardi A, Jedlicka P, Luhmann HJ, Kilb W. Giant Depolarizing Potentials Trigger Transient Changes in the Intracellular Cl - Concentration in CA3 Pyramidal Neurons of the Immature Mouse Hippocampus. Front Cell Neurosci 2018; 12:420. [PMID: 30515078 PMCID: PMC6255825 DOI: 10.3389/fncel.2018.00420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/26/2018] [Indexed: 11/30/2022] Open
Abstract
Giant depolarizing potentials (GDPs) represent a typical spontaneous activity pattern in the immature hippocampus. GDPs are mediated by GABAergic and glutamatergic synaptic inputs and their initiation requires an excitatory GABAergic action, which is typical for immature neurons due to their elevated intracellular Cl- concentration ([Cl-]i). Because GABAA receptors are ligand-gated Cl- channels, activation of these receptors can potentially influence [Cl-]i. However, whether the GABAergic activity during GDPs influences [Cl-]i is unclear. To address this question we performed whole-cell and gramicidin-perforated patch-clamp recordings from visually identified CA3 pyramidal neurons in immature hippocampal slices of mice at postnatal days 4–7. These experiments revealed that the [Cl-]i of CA3 neurons displays a considerable heterogeneity, ranging from 13 to 70 mM (average 38.1 ± 3.2 mM, n = 36). In accordance with this diverse [Cl-]i, GDPs induced either Cl--effluxes or Cl--influxes. In high [Cl-]i neurons with a negative Cl--driving force (DFCl) the [Cl-]i decreased after a GDP by 12.4 ± 3.4 mM (n = 10), while in low [Cl-]i neurons with a positive DFCl [Cl-]i increased by 4.4 ± 0.9 mM (n = 6). Inhibition of GDP activity by application of the AMPA receptor antagonist CNQX led to a [Cl-]i decrease to 24.7 ± 2.9 mM (n = 8). We conclude from these results, that Cl--fluxes via GABAA receptors during GDPs induced substantial [Cl-]i changes and that this activity-dependent ionic plasticity in neuronal [Cl-]i contributes to the functional consequences of GABAergic responses, emphasizing the concept that [Cl-]i is a state- and compartment-dependent parameter of individual cells.
Collapse
Affiliation(s)
- Aniello Lombardi
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Jedlicka
- Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany.,Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Angelim MKSC, Maia LMSDS, Mouffle C, Ginhoux F, Low D, Amancio-Dos-Santos A, Makhoul J, Le Corronc H, Mangin JM, Legendre P. Embryonic macrophages and microglia ablation alter the development of dorsal root ganglion sensory neurons in mouse embryos. Glia 2018; 66:2470-2486. [PMID: 30252950 DOI: 10.1002/glia.23499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
Microglia are known to regulate several aspects of the development of the central nervous system. When microglia colonize the spinal cord, from E11.5 in the mouse embryo, they interact with growing central axons of dorsal root ganglion sensory neurons (SNs), which suggests that they may have some functions in SN development. To address this issue, we analyzed the effects of embryonic macrophage ablation on the early development of SNs using mouse embryo lacking embryonic macrophages (PU.1 knock-out mice) and immune cell ablation. We discovered that, in addition to microglia, embryonic macrophages contact tropomyosin receptor kinase (Trk) C+ SN, TrkB+ SN, and TrkA+ SN peripheral neurites from E11.5. Deprivation of immune cells resulted in an initial reduction of TrkC+ SN and TrkB+ SN populations at E11.5 that was unlikely to be related to an alteration in their developmental cell death (DCD), followed by a transitory increase in their number at E12.5. It also resulted in a reduction of TrkA+ SN number during the developmental period analyzed (E11.5-E15.5), although we did not observe any change in their DCD. Proliferation of cells negative for brain fatty acid-binding protein (BFABP- ), which likely correspond to neuronal progenitors, was increased at E11.5, while their proliferation was decreased at E12.5, which could partly explain the alterations of SN subtype production observed from E11.5. In addition, we observed alterations in the proliferation of glial cell progenitors (BFABP+ cells) in the absence of embryonic macrophages. Our data indicate that embryonic macrophages and microglia ablation alter the development of SNs.
Collapse
Affiliation(s)
- Monara Kaélle Sérvulo Cruz Angelim
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France.,Neurophysiology and pharmacology laboratory, Federal University of Pernambuco, Pernambuco, Brazil
| | - Luciana Maria Silva de Seixas Maia
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France.,Neurophysiology and pharmacology laboratory, Federal University of Pernambuco, Pernambuco, Brazil
| | - Christine Mouffle
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Jennifer Makhoul
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| | - Hervé Le Corronc
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France.,Université d'Angers, Angers, France
| | - Jean-Marie Mangin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| | - Pascal Legendre
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| |
Collapse
|
13
|
Wang H, Zhou Y, Cong M, Zhang L, Gu X, Tang X. Comparative transcriptomic profiling of peripheral efferent and afferent nerve fibres at different developmental stages in mice. Sci Rep 2018; 8:11990. [PMID: 30097601 PMCID: PMC6086926 DOI: 10.1038/s41598-018-30463-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Peripheral nerve injury impairs motor and sensory function in humans, and its functional recovery largely depends on the axonal outgrowth required for the accurate reinnervation of appropriate targets. To better understand how motor and sensory nerve fibres select their terminal pathways, an unbiased cDNA microarray analysis was conducted to examine differential gene expression patterns in peripheral efferent and afferent fibres at different developmental stages in mice. Gene ontology (GO) and Kyoto Enrichment of Genes and Genomes (KEGG) analyses revealed common and distinct features of enrichment for differentially expressed genes during motor and sensory nerve fibre development. Ingenuity Pathway Analysis (IPA) further indicated that the key differentially expressed genes were associated with trans-synaptic neurexin-neuroligin signalling components and a variety of gamma-aminobutyric acid (GABA) receptors. The aim of this study was to generate a framework of gene networks regulated during motor and sensory neuron differentiation/maturation. These data may provide new clues regarding the underlying cellular and molecular mechanisms that determine the intrinsic capacity of neurons to regenerate after peripheral nerve injury. Our findings may thus facilitate further development of a potential intervention to manipulate the therapeutic efficiency of peripheral nerve repair in the clinic.
Collapse
Affiliation(s)
- Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Youlang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, JS, 226001, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Li Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| |
Collapse
|
14
|
Persistent Sodium Current Drives Excitability of Immature Renshaw Cells in Early Embryonic Spinal Networks. J Neurosci 2018; 38:7667-7682. [PMID: 30012693 DOI: 10.1523/jneurosci.3203-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
Spontaneous network activity (SNA) emerges in the spinal cord (SC) before the formation of peripheral sensory inputs and central descending inputs. SNA is characterized by recurrent giant depolarizing potentials (GDPs). Because GDPs in motoneurons (MNs) are mainly evoked by prolonged release of GABA, they likely necessitate sustained firing of interneurons. To address this issue we analyzed, as a model, embryonic Renshaw cell (V1R) activity at the onset of SNA (E12.5) in the embryonic mouse SC (both sexes). V1R are one of the interneurons known to contact MNs, which are generated early in the embryonic SC. Here, we show that V1R already produce GABA in E12.5 embryo, and that V1R make synaptic-like contacts with MNs and have putative extrasynaptic release sites, while paracrine release of GABA occurs at this developmental stage. In addition, we discovered that V1R are spontaneously active during SNA and can already generate several intrinsic activity patterns including repetitive-spiking and sodium-dependent plateau potential that rely on the presence of persistent sodium currents (INap). This is the first demonstration that INap is present in the embryonic SC and that this current can control intrinsic activation properties of newborn interneurons in the SC of mammalian embryos. Finally, we found that 5 μm riluzole, which is known to block INaP, altered SNA by reducing episode duration and increasing inter-episode interval. Because SNA is essential for neuronal maturation, axon pathfinding, and synaptogenesis, the presence of INaP in embryonic SC neurons may play a role in the early development of mammalian locomotor networks.SIGNIFICANCE STATEMENT The developing spinal cord (SC) exhibits spontaneous network activity (SNA) involved in the building of nascent locomotor circuits in the embryo. Many studies suggest that SNA depends on the rhythmic release of GABA, yet intracellular recordings of GABAergic neurons have never been performed at the onset of SNA in the SC. We first discovered that embryonic Renshaw cells (V1R) are GABAergic at E12.5 and spontaneously active during SNA. We uncover a new role for persistent sodium currents (INaP) in driving plateau potential in V1R and in SNA patterning in the embryonic SC. Our study thus sheds light on a role for INaP in the excitability of V1R and the developing SC.
Collapse
|
15
|
Osterstock G, Le Bras B, Arulkandarajah KH, Le Corronc H, Czarnecki A, Mouffle C, Bullier E, Legendre P, Mangin JM. Axoglial synapses are formed onto pioneer oligodendrocyte precursor cells at the onset of spinal cord gliogenesis. Glia 2018; 66:1678-1694. [PMID: 29603384 DOI: 10.1002/glia.23331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Virtually all oligodendrocyte precursors cells (OPCs) receive glutamatergic and/or GABAergic synapses that are lost upon their differentiation into oligodendrocytes in the postnatal and adult brain. Although OPCs are generated at mid-embryonic stages, several weeks before the onset of myelination, it remains unknown when and where OPCs receive their first synapses and become susceptible to the influence of neuronal activity. In the embryonic spinal cord, neuro-epithelial precursors in the pMN domain cease generating cholinergic motor neurons (MNs) to produce OPCs when the first synapses are formed in the ventral-lateral marginal zone. We discovered that when the first synapses form onto MNs, axoglial synapses also form onto the processes of neuro-epithelial precursors located in the marginal zone as they differentiate into OPCs. After leaving the neuro-epithelium, these pioneer OPCs preferentially accumulate in the marginal zone where they are contacted by functional glutamatergic and GABAergic synapses. Spontaneous activity of these axoglial synapses was significantly potentiated by cholinergic signaling acting through presynaptic nicotinic acetylcholine receptors. Moreover, we discovered that chronic nicotine treatment significantly increases early OPC proliferation and density in the marginal zone. Our results demonstrate that OPCs are contacted by functional synapses as soon as they emerge from their precursor domain and that embryonic spinal cord colonization by OPCs can be regulated by cholinergic signaling acting onto these axoglial synapses.
Collapse
Affiliation(s)
- Guillaume Osterstock
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Barbara Le Bras
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Kalaimakan Hervé Arulkandarajah
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Hervé Le Corronc
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France.,Université d'Angers, Angers, 49000, France
| | - Antonny Czarnecki
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Christine Mouffle
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Erika Bullier
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Pascal Legendre
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Jean-Marie Mangin
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| |
Collapse
|
16
|
Magown P, Rafuse VF, Brownstone RM. Microcircuit formation following transplantation of mouse embryonic stem cell-derived neurons in peripheral nerve. J Neurophysiol 2017; 117:1683-1689. [PMID: 28148646 DOI: 10.1152/jn.00943.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/22/2022] Open
Abstract
Motoneurons derived from embryonic stem cells can be transplanted in the tibial nerve, where they extend axons to functionally innervate target muscle. Here, we studied spontaneous muscle contractions in these grafts 3 mo following transplantation. One-half of the transplanted grafts generated rhythmic muscle contractions of variable patterns, either spontaneously or in response to brief electrical stimulation. Activity generated by transplanted embryonic stem cell-derived neurons was driven by glutamate and was modulated by muscarinic and GABAergic/glycinergic transmission. Furthermore, rhythmicity was promoted by the same transmitter combination that evokes rhythmic locomotor activity in spinal cord circuits. These results demonstrate that there is a degree of self-assembly of microcircuits in these peripheral grafts involving embryonic stem cell-derived motoneurons and interneurons. Such spontaneous activity is reminiscent of embryonic circuit development in which spontaneous activity is essential for proper connectivity and function and may be necessary for the grafts to form functional connections with muscle.NEW & NOTEWORTHY This manuscript demonstrates that, following peripheral transplantation of neurons derived from embryonic stem cells, the grafts are spontaneously active. The activity is produced and modulated by a number of transmitter systems, indicating that there is a degree of self-assembly of circuits in the grafts.
Collapse
Affiliation(s)
- Philippe Magown
- Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Victor F Rafuse
- Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - Robert M Brownstone
- Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; .,Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada.,Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Bosma MM. Regulation of Spontaneous Propagating Waves in the Embryonic Mouse Brainstem. Front Neural Circuits 2017; 10:110. [PMID: 28101007 PMCID: PMC5209361 DOI: 10.3389/fncir.2016.00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/15/2016] [Indexed: 12/03/2022] Open
Abstract
Spontaneous activity (SA) modulates many aspects of neural development, including neuronal phenotype, axon path-finding and synaptic connectivity. In the embryonic mouse brainstem, SA initially is recorded in isolated cells at embryonic day (E) 9.5, and 48 h later takes the form of propagating waves. The majority of these waves originate from one midline initiation zone (InZ), which is situated within the developing serotonergic raphe. InZ cells express a t-type calcium channel, are depolarized, and have high membrane resistance, the combination of which allows spontaneous depolarization. Propagating events require signaling at metabotropic 5-HT receptors; a possible source could be 5-HT released by newly differentiating 5-HT neurons. At E11.5, waves propagate throughout the hindbrain, with some events crossing into the midbrain. At E12.5, lateral cells (further than 150 μm from the midline) up-regulate expression of a K channel that increases resting conductance and hyperpolarizes them, preventing the propagation of waves laterally. At the same stage, cells in the isthmus up-regulate t-type calcium channels, permitting more events to cross into the midbrain, some of which form recurring loops of activity that are able to keep intracellular calcium levels high for many minutes. At E13.5, caudal hindbrain cells hyperpolarize utilizing the same K conductance, and 24 h later, at E14.5, the InZ hyperpolarizes and no longer undergoes spontaneous events. Thus, 5-HT receptor-dependent propagating waves in the embryonic brainstem are generated and propagated by regulation of membrane conductance. We discuss these mechanisms, and the possible role of this SA in neuronal development.
Collapse
Affiliation(s)
- Martha M Bosma
- Department of Biology, University of Washington Seattle, WA, USA
| |
Collapse
|
18
|
Distinct development of the glycinergic terminals in the ventral and dorsal horns of the mouse cervical spinal cord. Neuroscience 2016; 343:459-471. [PMID: 28039040 DOI: 10.1016/j.neuroscience.2016.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 02/01/2023]
Abstract
In the spinal cord, glycine and γ-amino butyric acid (GABA) are inhibitory neurotransmitters. However, the ontogeny of the glycinergic network remains unclear. To address this point, we examined the developmental formation of glycinergic terminals by immunohistochemistry for glycine transporter 2 (GlyT2), a marker of glycinergic terminals, in developing mouse cervical spinal cord. Furthermore, the developmental localization of GlyT2 was compared with that of glutamic acid decarboxylase (GAD), a marker of GABAergic terminals, and vesicular GABA transporter (VGAT), a marker of inhibitory terminals, by single and double immunolabeling. GlyT2-positive dots (glycinergic terminals) were first detected in the marginal zone on embryonic day 14 (E14). In the ventral horn, they were detected at E16 and increased in observed density during postnatal development. Until postnatal day 7 (P7), GAD-positive dots (GABAergic terminals) were dominant and GlyT2 immunolabeling was localized at GAD-positive dots. During the second postnatal week, GABAergic terminals markedly decreased and glycinergic terminals became dominant. In the dorsal horn, glycinergic terminals were detected at P0 in lamina IV and P7 in lamina III and developmentally increased. GlyT2 was also localized at GAD-positive dots, and colocalizing dots were dominant at P21. VGAT-positive dots (inhibitory terminals) continued to increase until P21. These results suggest that GABAergic terminals first appear during embryonic development and may often change to colocalizing terminals throughout the gray matter during development. The colocalizing terminals may remain in the dorsal horn, whereas in the ventral horn, colocalizing terminals may give rise to glycinergic terminals.
Collapse
|
19
|
Momose-Sato Y, Sato K. Development of Spontaneous Activity in the Avian Hindbrain. Front Neural Circuits 2016; 10:63. [PMID: 27570506 PMCID: PMC4981603 DOI: 10.3389/fncir.2016.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity in the developing central nervous system occurs before the brain responds to external sensory inputs, and appears in the hindbrain and spinal cord as rhythmic electrical discharges of cranial and spinal nerves. This spontaneous activity recruits a large population of neurons and propagates like a wave over a wide region of the central nervous system. Here, we review spontaneous activity in the chick hindbrain by focusing on this large-scale synchronized activity. Asynchronous activity that is expressed earlier than the above mentioned synchronized activity and activity originating in midline serotonergic neurons are also briefly mentioned.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University Yokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University Tokyo, Japan
| |
Collapse
|
20
|
Allain AE, Cazenave W, Delpy A, Exertier P, Barthe C, Meyrand P, Cattaert D, Branchereau P. Nonsynaptic glycine release is involved in the early KCC2 expression. Dev Neurobiol 2016; 76:764-79. [PMID: 26506510 DOI: 10.1002/dneu.22358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/09/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
Abstract
The cation-chloride co-transporters are important regulators of the cellular Cl(-) homeostasis. Among them the Na(+) -K(+) -2Cl(-) co-transporter (NKCC1) is responsible for intracellular chloride accumulation in most immature brain structures, whereas the K(+) -Cl(-) co-transporter (KCC2) extrudes chloride from mature neurons, ensuring chloride-mediated inhibitory effects of GABA/glycine. We have shown that both KCC2 and NKCC1 are expressed at early embryonic stages (E11.5) in the ventral spinal cord (SC). The mechanisms by which KCC2 is prematurely expressed are unknown. In this study, we found that chronically blocking glycine receptors (GlyR) by strychnine led to a loss of KCC2 expression, without affecting NKCC1 level. This effect was not dependent on the firing of Na(+) action potentials but was mimicked by a Ca(2+) -dependent PKC blocker. Blocking the vesicular release of neurotransmitters did not impinge on strychnine effect whereas blocking volume-sensitive outwardly rectifying (VSOR) chloride channels reproduced the GlyR blockade, suggesting that KCC2 is controlled by a glycine release from progenitor radial cells in immature ventral spinal networks. Finally, we showed that the strychnine treatment prevented the maturation of rhythmic spontaneous activity. Thereby, the GlyR-activation is a necessary developmental process for the expression of functional spinal motor networks. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 764-779, 2016.
Collapse
Affiliation(s)
- Anne-Emilie Allain
- Univ. Bordeaux, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France. CNRS, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France
| | - William Cazenave
- Univ. Bordeaux, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France. CNRS, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France
| | - Alain Delpy
- Univ. Bordeaux, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France. CNRS, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France
| | - Prisca Exertier
- Univ. Bordeaux, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France. CNRS, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France
| | - Christophe Barthe
- Univ. Bordeaux, Laboratoire De Biotechnologie Des Protéines Recombinantes À Visée Santé, EA 4135, Bordeaux, F-33076, Bordeaux
| | - Pierre Meyrand
- Univ. Bordeaux, IMN, UMR 5293, Site Talence, F33615 Pessac cedex, France. CNRS, IMN, UMR 5293, Site Talence, F33615, Pessac cedex, France
| | - Daniel Cattaert
- Univ. Bordeaux, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France. CNRS, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France
| | - Pascal Branchereau
- Univ. Bordeaux, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France. CNRS, INCIA, UMR 5287, Site Talence, F33615 Pessac cedex, France
| |
Collapse
|
21
|
Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1. J Neurosci 2016; 36:561-76. [PMID: 26758845 DOI: 10.1523/jneurosci.1964-15.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1(-/-) mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1(-/-) mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1(-/-) neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1(-/-) mice and argue that this phenomenon shares parallels with neurodegenerative diseases. SIGNIFICANCE STATEMENT In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we characterize the neurodegeneration observed in Munc18-1 mutants and demonstrate that this cell-autonomous process does not appear to be a result of defects in growth factor signaling or ER stress caused by protein trafficking defects. However, we find the presence of various pathological hallmarks of Alzheimer's disease that suggest parallels between the degeneration in these mutants and neurodegenerative conditions.
Collapse
|
22
|
Depolarizing GABA/glycine synaptic events switch from excitation to inhibition during frequency increases. Sci Rep 2016; 6:21753. [PMID: 26912194 PMCID: PMC4766471 DOI: 10.1038/srep21753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/27/2016] [Indexed: 01/04/2023] Open
Abstract
By acting on their ionotropic chloride channel receptors, GABA and glycine represent the major inhibitory transmitters of the central nervous system. Nevertheless, in various brain structures, depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs) lead to dual inhibitory (shunting) and excitatory components, the functional consequences of which remain poorly acknowledged. Indeed, the extent to which each component prevails during dGPSP is unclear. Understanding the mechanisms predicting the dGPSP outcome on neural network activity is therefore a major issue in neurobiology. By combining electrophysiological recordings of spinal embryonic mouse motoneurons and modelling study, we demonstrate that increasing the chloride conductance (gCl) favors inhibition either during a single dGPSP or during trains in which gCl summates. Finally, based on this summation mechanism, the excitatory effect of EPSPs is overcome by dGPSPs in a frequency-dependent manner. These results reveal an important mechanism by which dGPSPs protect against the overexcitation of neural excitatory circuits.
Collapse
|
23
|
Gonzalez-Islas C, Garcia-Bereguiain MA, O'Flaherty B, Wenner P. Tonic nicotinic transmission enhances spinal GABAergic presynaptic release and the frequency of spontaneous network activity. Dev Neurobiol 2015; 76:298-312. [PMID: 26061781 DOI: 10.1002/dneu.22315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/26/2015] [Accepted: 06/05/2015] [Indexed: 01/16/2023]
Abstract
Synaptically driven spontaneous network activity (SNA) is observed in virtually all developing networks. Recurrently connected spinal circuits express SNA, which drives fetal movements during a period of development when GABA is depolarizing and excitatory. Blockade of nicotinic acetylcholine receptor (nAChR) activation impairs the expression of SNA and the development of the motor system. It is mechanistically unclear how nicotinic transmission influences SNA, and in this study we tested several mechanisms that could underlie the regulation of SNA by nAChRs. We find evidence that is consistent with our previous work suggesting that cholinergically driven Renshaw cells can initiate episodes of SNA. While Renshaw cells receive strong nicotinic synaptic input, we see very little evidence suggesting other spinal interneurons or motoneurons receive nicotinic input. Rather, we found that nAChR activation tonically enhanced evoked and spontaneous presynaptic release of GABA in the embryonic spinal cord. Enhanced spontaneous and/or evoked release could contribute to increased SNA frequency. Finally, our study suggests that blockade of nAChRs can reduce the frequency of SNA by reducing probability of GABAergic release. This result suggests that the baseline frequency of SNA is maintained through elevated GABA release driven by tonically active nAChRs. Nicotinic receptors regulate GABAergic transmission and SNA, which are critically important for the proper development of the embryonic network. Therefore, our results provide a better mechanistic framework for understanding the motor consequences of fetal nicotine exposure.
Collapse
Affiliation(s)
- Carlos Gonzalez-Islas
- Department of Physiology, Emory University, School of Medicine, Whitehead Bldg, Room 601, Atlanta, Georgia, 30322
| | | | - Brendan O'Flaherty
- Department of Physiology, Emory University, School of Medicine, Whitehead Bldg, Room 601, Atlanta, Georgia, 30322
| | - Peter Wenner
- Department of Physiology, Emory University, School of Medicine, Whitehead Bldg, Room 601, Atlanta, Georgia, 30322
| |
Collapse
|
24
|
Fritschy JM. Significance of GABAA Receptor Heterogeneity. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:13-39. [DOI: 10.1016/bs.apha.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|