1
|
Staedtke V, Topilko P, Le LQ, Grimes K, Largaespada DA, Cagan RL, Steensma MR, Stemmer-Rachamimov A, Blakeley JO, Rhodes SD, Ly I, Romo CG, Lee SY, Serra E. Existing and Developing Preclinical Models for Neurofibromatosis Type 1-Related Cutaneous Neurofibromas. J Invest Dermatol 2023; 143:1378-1387. [PMID: 37330719 PMCID: PMC11246562 DOI: 10.1016/j.jid.2023.01.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/19/2023]
Abstract
Neurofibromatosis type 1 (NF1) is caused by a nonfunctional copy of the NF1 tumor suppressor gene that predisposes patients to the development of cutaneous neurofibromas (cNFs), the skin tumor that is the hallmark of this condition. Innumerable benign cNFs, each appearing by an independent somatic inactivation of the remaining functional NF1 allele, form in nearly all patients with NF1. One of the limitations in developing a treatment for cNFs is an incomplete understanding of the underlying pathophysiology and limitations in experimental modeling. Recent advances in preclinical in vitro and in vivo modeling have substantially enhanced our understanding of cNF biology and created unprecedented opportunities for therapeutic discovery. We discuss the current state of cNF preclinical in vitro and in vivo model systems, including two- and three-dimensional cell cultures, organoids, genetically engineered mice, patient-derived xenografts, and porcine models. We highlight the models' relationship to human cNFs and how they can be used to gain insight into cNF development and therapeutic discovery.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Piotr Topilko
- Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Lu Q Le
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin Grimes
- SPARK Program in Translational Research, Stanford University School of Medicine, Stanford, California, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew R Steensma
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA; Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, Michigan, USA; Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven D Rhodes
- Division of Hematology-Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sang Y Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eduard Serra
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
2
|
The function of Scox in glial cells is essential for locomotive ability in Drosophila. Sci Rep 2021; 11:21207. [PMID: 34707123 PMCID: PMC8551190 DOI: 10.1038/s41598-021-00663-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
Synthesis of cytochrome c oxidase (Scox) is a Drosophila homolog of human SCO2 encoding a metallochaperone that transports copper to cytochrome c, and is an essential protein for the assembly of cytochrome c oxidase in the mitochondrial respiratory chain complex. SCO2 is highly conserved in a wide variety of species across prokaryotes and eukaryotes, and mutations in SCO2 are known to cause mitochondrial diseases such as fatal infantile cardioencephalomyopathy, Leigh syndrome, and Charcot-Marie-Tooth disease, a neurodegenerative disorder. These diseases have a common symptom of locomotive dysfunction. However, the mechanisms of their pathogenesis remain unknown, and no fundamental medications or therapies have been established for these diseases. In this study, we demonstrated that the glial cell-specific knockdown of Scox perturbs the mitochondrial morphology and function, and locomotive behavior in Drosophila. In addition, the morphology and function of synapses were impaired in the glial cell-specific Scox knockdown. Furthermore, Scox knockdown in ensheathing glia, one type of glial cell in Drosophila, resulted in larval and adult locomotive dysfunction. This study suggests that the impairment of Scox in glial cells in the Drosophila CNS mimics the pathological phenotypes observed by mutations in the SCO2 gene in humans.
Collapse
|
3
|
Shahzad U, Taccone MS, Kumar SA, Okura H, Krumholtz S, Ishida J, Mine C, Gouveia K, Edgar J, Smith C, Hayes M, Huang X, Derry WB, Taylor MD, Rutka JT. Modeling human brain tumors in flies, worms, and zebrafish: From proof of principle to novel therapeutic targets. Neuro Oncol 2021; 23:718-731. [PMID: 33378446 DOI: 10.1093/neuonc/noaa306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For decades, cell biologists and cancer researchers have taken advantage of non-murine species to increase our understanding of the molecular processes that drive normal cell and tissue development, and when perturbed, cause cancer. The advent of whole-genome sequencing has revealed the high genetic homology of these organisms to humans. Seminal studies in non-murine organisms such as Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio identified many of the signaling pathways involved in cancer. Studies in these organisms offer distinct advantages over mammalian cell or murine systems. Compared to murine models, these three species have shorter lifespans, are less resource intense, and are amenable to high-throughput drug and RNA interference screening to test a myriad of promising drugs against novel targets. In this review, we introduce species-specific breeding strategies, highlight the advantages of modeling brain tumors in each non-mammalian species, and underscore the successes attributed to scientific investigation using these models. We conclude with an optimistic proposal that discoveries in the fields of cancer research, and in particular neuro-oncology, may be expedited using these powerful screening tools and strategies.
Collapse
Affiliation(s)
- Uswa Shahzad
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Michael S Taccone
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sachin A Kumar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Hidehiro Okura
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Stacey Krumholtz
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Joji Ishida
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Coco Mine
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Kyle Gouveia
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Julia Edgar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Christian Smith
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Madeline Hayes
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Xi Huang
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - W Brent Derry
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - James T Rutka
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Silva-Rodrigues JF, Patrício-Rodrigues CF, de Sousa-Xavier V, Augusto PM, Fernandes AC, Farinho AR, Martins JP, Teodoro RO. Peripheral axonal ensheathment is regulated by RalA GTPase and the exocyst complex. Development 2020; 147:dev.174540. [PMID: 31969325 DOI: 10.1242/dev.174540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Axon ensheathment is fundamental for fast impulse conduction and the normal physiological functioning of the nervous system. Defects in axonal insulation lead to debilitating conditions, but, despite its importance, the molecular players responsible are poorly defined. Here, we identify RalA GTPase as a key player in axon ensheathment in Drosophila larval peripheral nerves. We demonstrate through genetic analysis that RalA action through the exocyst complex is required in wrapping glial cells to regulate their growth and development. We suggest that the RalA-exocyst pathway controls the targeting of secretory vesicles for membrane growth or for the secretion of a wrapping glia-derived factor that itself regulates growth. In summary, our findings provide a new molecular understanding of the process by which axons are ensheathed in vivo, a process that is crucial for normal neuronal function.
Collapse
Affiliation(s)
- Joana F Silva-Rodrigues
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Cátia F Patrício-Rodrigues
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Vicente de Sousa-Xavier
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Pedro M Augusto
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Ana C Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Ana R Farinho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - João P Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rita O Teodoro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| |
Collapse
|
5
|
Yildirim K, Petri J, Kottmeier R, Klämbt C. Drosophila glia: Few cell types and many conserved functions. Glia 2018; 67:5-26. [DOI: 10.1002/glia.23459] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Johanna Petri
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Rita Kottmeier
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Christian Klämbt
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| |
Collapse
|
6
|
Gerdøe-Kristensen S, Lund VK, Wandall HH, Kjaerulff O. Mactosylceramide prevents glial cell overgrowth by inhibiting insulin and fibroblast growth factor receptor signaling. J Cell Physiol 2017; 232:3112-3127. [PMID: 28019653 DOI: 10.1002/jcp.25762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
Receptor tyrosine kinase (RTK) signaling controls key aspects of cellular differentiation, proliferation, survival, metabolism, and migration. Deregulated RTK signaling also underlies many cancers. Glycosphingolipids (GSL) are essential elements of the plasma membrane. By affecting clustering and activity of membrane receptors, GSL modulate signal transduction, including that mediated by the RTK. GSL are abundant in the nervous system, and glial development in Drosophila is emerging as a useful model for studying how GSL modulate RTK signaling. Drosophila has a simple GSL biosynthetic pathway, in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what extent this effect involves changes in upstream signaling events is unresolved. We show here that glial overgrowth in egh is strongly linked to increased activation of Insulin and fibroblast growth factor receptors (FGFR). Glial hypertrophy is phenocopied when overexpressing gain-of-function mutants of the Drosophila insulin receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of insulin and fibroblast growth factor receptors in Drosophila glia.
Collapse
Affiliation(s)
- Stine Gerdøe-Kristensen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Viktor K Lund
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Ole Kjaerulff
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
7
|
Dutta S, Rieche F, Eckl N, Duch C, Kretzschmar D. Glial expression of Swiss cheese (SWS), the Drosophila orthologue of neuropathy target esterase (NTE), is required for neuronal ensheathment and function. Dis Model Mech 2015; 9:283-94. [PMID: 26634819 PMCID: PMC4826977 DOI: 10.1242/dmm.022236] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023] Open
Abstract
Mutations in Drosophila Swiss cheese (SWS) or its vertebrate orthologue neuropathy target esterase (NTE), respectively, cause progressive neuronal degeneration in Drosophila and mice and a complex syndrome in humans that includes mental retardation, spastic paraplegia and blindness. SWS and NTE are widely expressed in neurons but can also be found in glia; however, their function in glia has, until now, remained unknown. We have used a knockdown approach to specifically address SWS function in glia and to probe for resulting neuronal dysfunctions. This revealed that loss of SWS in pseudocartridge glia causes the formation of multi-layered glial whorls in the lamina cortex, the first optic neuropil. This phenotype was rescued by the expression of SWS or NTE, suggesting that the glial function is conserved in the vertebrate protein. SWS was also found to be required for the glial wrapping of neurons by ensheathing glia, and its loss in glia caused axonal damage. We also detected severe locomotion deficits in glial sws-knockdown flies, which occurred as early as 2 days after eclosion and increased further with age. Utilizing the giant fibre system to test for underlying functional neuronal defects showed that the response latency to a stimulus was unchanged in knockdown flies compared to controls, but the reliability with which the neurons responded to increasing frequencies was reduced. This shows that the loss of SWS in glia impairs neuronal function, strongly suggesting that the loss of glial SWS plays an important role in the phenotypes observed in the sws mutant. It is therefore likely that changes in glia also contribute to the pathology observed in humans that carry mutations in NTE.
Collapse
Affiliation(s)
- Sudeshna Dutta
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, OR 97239, USA
| | - Franziska Rieche
- Institut für Zoologie III - Neurobiologie, Universität Mainz, Colonel-Kleinmann-Weg 2, Mainz D-55099, Germany
| | - Nina Eckl
- Institut für Zoologie III - Neurobiologie, Universität Mainz, Colonel-Kleinmann-Weg 2, Mainz D-55099, Germany
| | - Carsten Duch
- Institut für Zoologie III - Neurobiologie, Universität Mainz, Colonel-Kleinmann-Weg 2, Mainz D-55099, Germany
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, OR 97239, USA
| |
Collapse
|
8
|
von Hilchen C, Altenhein B. Tracing cells throughout development: insights into single glial cell differentiation. Fly (Austin) 2014; 8:86-90. [PMID: 25483246 PMCID: PMC4197020 DOI: 10.4161/fly.28855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the article "Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system" we combined our expertise to identify glial cells of the embryonic peripheral nervous system on a single cell resolution with the possibility to genetically label cells using Flybow. We show that all 12 embryonic peripheral glial cells (ePG) per abdominal hemisegment persist into larval (and even adult) stages and differentially contribute to the three distinct glial layers surrounding peripheral nerves. Repetitive labelings of the same cell further revealed that layer affiliation, morphological expansion, and control of proliferation are predetermined and subject to an intrinsic differentiation program. Interestingly, wrapping and subperineurial glia undergo enormous hypertrophy in response to larval growth and elongation of peripheral nerves, while perineurial glia respond to the same environmental changes with hyperplasia. Increase in cell number from embryo (12 cells per hemisegment) to third instar (up to 50 cells per hemisegment) is the result of proliferation of a single ePG that serves as transient progenitor and only contributes to the outermost perineurial glial layer.
Collapse
|
9
|
Glial enriched gene expression profiling identifies novel factors regulating the proliferation of specific glial subtypes in the Drosophila brain. Gene Expr Patterns 2014; 16:61-8. [PMID: 25217886 PMCID: PMC4222725 DOI: 10.1016/j.gep.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 01/13/2023]
Abstract
Global gene expression analysis identifies glial specific transcriptomes. Different glial subtypes have distinct but overlapping transcriptomes. foxO and tramtrack69 are novel regulators of glial subtype specific proliferation.
Glial cells constitute a large proportion of the central nervous system (CNS) and are critical for the correct development and function of the adult CNS. Recent studies have shown that specific subtypes of glia are generated through the proliferation of differentiated glial cells in both the developing invertebrate and vertebrate nervous systems. However, the factors that regulate glial proliferation in specific glial subtypes are poorly understood. To address this we have performed global gene expression analysis of Drosophila post-embryonic CNS tissue enriched in glial cells, through glial specific overexpression of either the FGF or insulin receptor. Analysis of the differentially regulated genes in these tissues shows that the expression of known glial genes is significantly increased in both cases. Conversely, the expression of neuronal genes is significantly decreased. FGF and insulin signalling drive the expression of overlapping sets of genes in glial cells that then activate proliferation. We then used these data to identify novel transcription factors that are expressed in glia in the brain. We show that two of the transcription factors identified in the glial enriched gene expression profiles, foxO and tramtrack69, have novel roles in regulating the proliferation of cortex and perineurial glia. These studies provide new insight into the genes and molecular pathways that regulate the proliferation of specific glial subtypes in the Drosophila post-embryonic brain.
Collapse
|
10
|
von Hilchen CM, Bustos AE, Giangrande A, Technau GM, Altenhein B. Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system. Development 2013; 140:3657-68. [PMID: 23903191 PMCID: PMC3915570 DOI: 10.1242/dev.093245] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the numerous functions of glial cells in Drosophila is the ensheathment of neurons to isolate them from the potassium-rich haemolymph, thereby establishing the blood-brain barrier. Peripheral nerves of flies are surrounded by three distinct glial cell types. Although all embryonic peripheral glia (ePG) have been identified on a single-cell level, their contribution to the three glial sheaths is not known. We used the Flybow system to label and identify each individual ePG in the living embryo and followed them into third instar larva. We demonstrate that all ePG persist until the end of larval development and some even to adulthood. We uncover the origin of all three glial sheaths and describe the larval differentiation of each peripheral glial cell in detail. Interestingly, just one ePG (ePG2) exhibits mitotic activity during larval stages, giving rise to up to 30 glial cells along a single peripheral nerve tract forming the outermost perineurial layer. The unique mitotic ability of ePG2 and the layer affiliation of additional cells were confirmed by in vivo ablation experiments and layer-specific block of cell cycle progression. The number of cells generated by this glial progenitor and hence the control of perineurial hyperplasia correlate with the length of the abdominal nerves. By contrast, the wrapping and subperineurial glia layers show enormous hypertrophy in response to larval growth. This characterisation of the embryonic origin and development of each glial sheath will facilitate functional studies, as they can now be addressed distinctively and genetically manipulated in the embryo.
Collapse
|
11
|
Brink DL, Gilbert M, Xie X, Petley-Ragan L, Auld VJ. Glial processes at the Drosophila larval neuromuscular junction match synaptic growth. PLoS One 2012; 7:e37876. [PMID: 22666403 PMCID: PMC3362601 DOI: 10.1371/journal.pone.0037876] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/25/2012] [Indexed: 11/19/2022] Open
Abstract
Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ), we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ.
Collapse
Affiliation(s)
- Deidre L. Brink
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary Gilbert
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaojun Xie
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay Petley-Ragan
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vanessa J. Auld
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
12
|
Neurofibromatosis-like phenotype in Drosophila caused by lack of glucosylceramide extension. Proc Natl Acad Sci U S A 2012; 109:6987-92. [PMID: 22493273 DOI: 10.1073/pnas.1115453109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Glycosphingolipids (GSLs) are of fundamental importance in the nervous system. However, the molecular details associated with GSL function are largely unknown, in part because of the complexity of GSL biosynthesis in vertebrates. In Drosophila, only one major GSL biosynthetic pathway exists, controlled by the glycosyltransferase Egghead (Egh). Here we discovered that loss of Egh causes overgrowth of peripheral nerves and attraction of immune cells to the nerves. This phenotype is reminiscent of the human disorder neurofibromatosis type 1, which is characterized by disfiguring nerve sheath tumors with mast cell infiltration, increased cancer risk, and learning deficits. Neurofibromatosis type 1 is due to a reduction of the tumor suppressor neurofibromin, a negative regulator of the small GTPase Ras. Enhanced Ras signaling promotes glial growth through activation of phosphatidylinositol 3-kinase (PI3K) and its downstream kinase Akt. We find that overgrowth of peripheral nerves in egh mutants is suppressed by down-regulation of the PI3K signaling pathway by expression of either dominant-negative PI3K, the tumor suppressor PTEN, or the transcription factor FOXO in the subperineurial glia. These results show that loss of the glycosyltransferase Egh affects membrane signaling and activation of PI3K signaling in glia of the peripheral nervous system, and suggest that glycosyltransferases may suppress proliferation.
Collapse
|
13
|
Shi GX, Andres DA, Cai W. Ras family small GTPase-mediated neuroprotective signaling in stroke. Cent Nerv Syst Agents Med Chem 2012; 11:114-37. [PMID: 21521171 DOI: 10.2174/187152411796011349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/18/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022]
Abstract
Selective neuronal cell death is one of the major causes of neuronal damage following stroke, and cerebral cells naturally mobilize diverse survival signaling pathways to protect against ischemia. Importantly, therapeutic strategies designed to improve endogenous anti-apoptotic signaling appear to hold great promise in stroke treatment. While a variety of complex mechanisms have been implicated in the pathogenesis of stroke, the overall mechanisms governing the balance between cell survival and death are not well-defined. Ras family small GTPases are activated following ischemic insults, and in turn, serve as intrinsic switches to regulate neuronal survival and regeneration. Their ability to integrate diverse intracellular signal transduction pathways makes them critical regulators and potential therapeutic targets for neuronal recovery after stroke. This article highlights the contribution of Ras family GTPases to neuroprotective signaling cascades, including mitogen-activated protein kinase (MAPK) family protein kinase- and AKT/PKB-dependent signaling pathways as well as the regulation of cAMP response element binding (CREB), Forkhead box O (FoxO) and hypoxiainducible factor 1(HIF1) transcription factors, in stroke.
Collapse
Affiliation(s)
- Geng-Xian Shi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, 741 S. Limestone St., Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
14
|
Xie X, Auld VJ. Integrins are necessary for the development and maintenance of the glial layers in the Drosophila peripheral nerve. Development 2011; 138:3813-22. [PMID: 21828098 DOI: 10.1242/dev.064816] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peripheral nerve development involves multiple classes of glia that cooperate to form overlapping glial layers paired with the deposition of a surrounding extracellular matrix (ECM). The formation of this tubular structure protects the ensheathed axons from physical and pathogenic damage and from changes in the ionic environment. Integrins, a major family of ECM receptors, play a number of roles in the development of myelinating Schwann cells, one class of glia ensheathing the peripheral nerves of vertebrates. However, the identity and the role of the integrin complexes utilized by the other classes of peripheral nerve glia have not been determined in any animal. Here, we show that, in the peripheral nerves of Drosophila melanogaster, two integrin complexes (αPS2βPS and αPS3βPS) are expressed in the different glial layers and form adhesion complexes with integrin-linked kinase and Talin. Knockdown of the common beta subunit (βPS) using inducible RNAi in all glial cells results in lethality and glial defects. Analysis of integrin complex function in specific glial layers showed that loss of βPS in the outermost layer (the perineurial glia) results in a failure to wrap the nerve, a phenotype similar to that of Matrix metalloproteinase 2-mediated degradation of the ECM. Knockdown of βPS integrin in the innermost wrapping glia causes a loss of glial processes around axons. Together, our data suggest that integrins are employed in different glial layers to mediate the development and maintenance of the protective glial sheath in Drosophila peripheral nerves.
Collapse
Affiliation(s)
- Xiaojun Xie
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
15
|
Read RD. Drosophila melanogaster as a model system for human brain cancers. Glia 2011; 59:1364-76. [PMID: 21538561 PMCID: PMC3221733 DOI: 10.1002/glia.21148] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 12/23/2010] [Indexed: 11/09/2022]
Abstract
Glioblastomas (GBM), the most common primary brain tumors, infiltrate the brain, grow rapidly, and are refractory to current therapies. Signature genetic lesions in glioblastomas include mutation of the epidermal growth factor receptor tyrosine kinase (EGFR) receptor tyrosine kinase and activating mutations in components of the PI-3 kinase (PI3K) pathway. Despite years of study, how these pathways specifically regulate glial pathogenesis is unclear. To address the genetic and cellular origins of this disease, a novel Drosophila GBM model has been developed in which glial progenitor cells give rise to proliferative and invasive neoplastic cells that create transplantable tumors in response to constitutive co-activation of the EGFR-Ras and PI3K pathways. Standing with a rich literature demonstrating the direct relevance of Drosophila to studies on human cancer, neurological disease, and neurodevelopment, this model represents a robust cell-type specific Drosophila neurological disease model in which malignant cells are created by mutations in genetic pathways thought to be driving forces in a homologous human disease. Using lineage analysis and cell-type specific markers, neoplastic glial cells were found to originate from committed glial progenitor cells, rather than from multipotent neuroblasts. Genetic analyses demonstrated that EGFR-Ras and PI3K induce fly glial neoplasia through activation of a combinatorial genetic network composed, in part, of other genetic pathways also commonly mutated in human glioblastomas. In the future, large-scale forward genetic screens with this model may reveal new insights into the origins and treatments of human glioblastoma.
Collapse
Affiliation(s)
- Renee D Read
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
16
|
The metabotropic glutamate receptor activates the lipid kinase PI3K in Drosophila motor neurons through the calcium/calmodulin-dependent protein kinase II and the nonreceptor tyrosine protein kinase DFak. Genetics 2011; 188:601-13. [PMID: 21515581 DOI: 10.1534/genetics.111.128561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ligand activation of the metabotropic glutamate receptor (mGluR) activates the lipid kinase PI3K in both the mammalian central nervous system and Drosophila motor nerve terminal. In several subregions of the mammalian brain, mGluR-mediated PI3K activation is essential for a form of synaptic plasticity termed long-term depression (LTD), which is implicated in neurological diseases such as fragile X and autism. In Drosophila larval motor neurons, ligand activation of DmGluRA, the sole Drosophila mGluR, similarly mediates a PI3K-dependent downregulation of neuronal activity. The mechanism by which mGluR activates PI3K remains incompletely understood in either mammals or Drosophila. Here we identify CaMKII and the nonreceptor tyrosine kinase DFak as critical intermediates in the DmGluRA-dependent activation of PI3K at Drosophila motor nerve terminals. We find that transgene-induced CaMKII inhibition or the DFak(CG1) null mutation each block the ability of glutamate application to activate PI3K in larval motor nerve terminals, whereas transgene-induced CaMKII activation increases PI3K activity in motor nerve terminals in a DFak-dependent manner, even in the absence of glutamate application. We also find that CaMKII activation induces other PI3K-dependent effects, such as increased motor axon diameter and increased synapse number at the larval neuromuscular junction. CaMKII, but not PI3K, requires DFak activity for these increases. We conclude that the activation of PI3K by DmGluRA is mediated by CaMKII and DFak.
Collapse
|
17
|
Rodrigues F, Schmidt I, Klämbt C. Comparing peripheral glial cell differentiation in Drosophila and vertebrates. Cell Mol Life Sci 2011; 68:55-69. [PMID: 20820850 PMCID: PMC11114915 DOI: 10.1007/s00018-010-0512-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 01/08/2023]
Abstract
In all complex organisms, the peripheral nerves ensure the portage of information from the periphery to central computing and back again. Axons are in part amazingly long and are accompanied by several different glial cell types. These peripheral glial cells ensure electrical conductance, most likely nature the long axon, and establish and maintain a barrier towards extracellular body fluids. Recent work has revealed a surprisingly similar organization of peripheral nerves of vertebrates and Drosophila. Thus, the genetic dissection of glial differentiation in Drosophila may also advance our understanding of basic principles underlying the development of peripheral nerves in vertebrates.
Collapse
Affiliation(s)
| | - Imke Schmidt
- Institut für Neurobiologie, Badestr. 9, 48149 Münster, Germany
| | | |
Collapse
|
18
|
Wang HH, Hsieh HL, Wu CY, Sun CC, Yang CM. Oxidized low-density lipoprotein induces matrix metalloproteinase-9 expression via a p42/p44 and JNK-dependent AP-1 pathway in brain astrocytes. Glia 2009; 57:24-38. [PMID: 18661553 DOI: 10.1002/glia.20732] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Upregulation of matrix metalloproteinases (MMPs), especially MMP-9, by oxidized low-density lipoprotein (oxLDL) is implicated in many inflammatory diseases including brain injury. However, the signaling mechanisms underlying oxLDL-induced MMP-9 expression in astrocytes largely remain unknown. Here we report that oxLDL induces expression of proMMP-9 via a MAPK-dependent AP-1 activation in rat brain astrocyte (RBA)-1 cells. Results revealed by gelatin zymography, RT-PCR, and Western blotting analyses showed that oxLDL-induced proMMP-9 gene expression was mediated through Akt, JNK1/2, and p42/p44 MAPK phosphorylation in RBA-1 cells. These responses were attenuated by inhibitors of PI3K (LY294002), JNK (SP600125), and p42/p44 MAPK (PD98059), or transfection with dominant negative mutants and short hairpin RNA. Moreover, we demonstrated that AP-1 (i.e., c-Fos/c-Jun) is crucial for oxLDL-induced proMMP-9 expression which was attenuated by pretreatment with AP-1 inhibitor (curcumin). The regulation of MMP-9 gene transcription by AP-1 was confirmed by oxLDL-stimulated MMP-9 luciferase activity which was totally lost in cells transfected with the AP-1 binding site-mutated MMP-9 promoter construct (mt-AP1-MMP-9). These results suggested that oxLDL-induced proMMP-9 expression is mediated through PI3K/Akt, JNK1/2, and p42/p44 MAPK leading to AP-1 activation. Understanding the regulatory mechanisms underlying oxLDL-induced MMP-9 expression in astrocytes might provide a new therapeutic strategy of brain injuries and diseases.
Collapse
Affiliation(s)
- Hui-Hsin Wang
- Department of Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Cuscó I, Medrano A, Gener B, Vilardell M, Gallastegui F, Villa O, González E, Rodríguez-Santiago B, Vilella E, Del Campo M, Pérez-Jurado LA. Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder. Hum Mol Genet 2009; 18:1795-804. [PMID: 19246517 PMCID: PMC2671988 DOI: 10.1093/hmg/ddp092] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/17/2009] [Accepted: 02/23/2009] [Indexed: 11/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) constitute a group of severe neurodevelopmental conditions with complex multifactorial etiology. In order to explore the hypothesis that submicroscopic genomic rearrangements underlie some ASD cases, we have analyzed 96 Spanish patients with idiopathic ASD after extensive clinical and laboratory screening, by array comparative genomic hybridization (aCGH) using a homemade bacterial artificial chromosome (BAC) array. Only 13 of the 238 detected copy number alterations, ranging in size from 89 kb to 2.4 Mb, were present specifically in the autistic population (12 out of 96 individuals, 12.5%). Following validation by additional molecular techniques, we have characterized these novel candidate regions containing 24 different genes including alterations in two previously reported regions of chromosome 7 associated with the ASD phenotype. Some of the genes located in ASD-specific copy number variants act in common pathways, most notably the phosphatidylinositol signaling and the glutamatergic synapse, both known to be affected in several genetic syndromes related with autism and previously associated with ASD. Our work supports the idea that the functional alteration of genes in related neuronal networks is involved in the etiology of the ASD phenotype and confirms a significant diagnostic yield for aCGH, which should probably be included in the diagnostic workup of idiopathic ASD.
Collapse
Affiliation(s)
- Ivon Cuscó
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Andrés Medrano
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Blanca Gener
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- Unidad de Genética Clínica, Hospital de Cruces, Barakaldo, Bizkaia, Spain
| | - Mireia Vilardell
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Fátima Gallastegui
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Olaya Villa
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Eva González
- Centre de Regulació Genòmica (CRG), Barcelona 08003, Spain
| | - Benjamín Rodríguez-Santiago
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
| | - Elisabet Vilella
- Hospital Psiquiatric Universitari Institut Pere Mata, Reus, Spain
| | - Miguel Del Campo
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
- Programa de Medicina Molecular i Genètica, Hospital Vall d’Hebron, Barcelona 08039, Spain
| | - Luis A. Pérez-Jurado
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona 08003, Spain
- CIBER de enfermedades raras (CIBERER), Barcelona 08003, Spain
- Programa de Medicina Molecular i Genètica, Hospital Vall d’Hebron, Barcelona 08039, Spain
| |
Collapse
|
20
|
Read RD, Cavenee WK, Furnari FB, Thomas JB. A drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet 2009; 5:e1000374. [PMID: 19214224 PMCID: PMC2636203 DOI: 10.1371/journal.pgen.1000374] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 01/09/2009] [Indexed: 11/19/2022] Open
Abstract
Gliomas, the most common malignant tumors of the nervous system, frequently harbor mutations that activate the epidermal growth factor receptor (EGFR) and phosphatidylinositol-3 kinase (PI3K) signaling pathways. To investigate the genetic basis of this disease, we developed a glioma model in Drosophila. We found that constitutive coactivation of EGFR-Ras and PI3K pathways in Drosophila glia and glial precursors gives rise to neoplastic, invasive glial cells that create transplantable tumor-like growths, mimicking human glioma. Our model represents a robust organotypic and cell-type-specific Drosophila cancer model in which malignant cells are created by mutations in signature genes and pathways thought to be driving forces in a homologous human cancer. Genetic analyses demonstrated that EGFR and PI3K initiate malignant neoplastic transformation via a combinatorial genetic network composed primarily of other pathways commonly mutated or activated in human glioma, including the Tor, Myc, G1 Cyclins-Cdks, and Rb-E2F pathways. This network acts synergistically to coordinately stimulate cell cycle entry and progression, protein translation, and inappropriate cellular growth and migration. In particular, we found that the fly orthologs of CyclinE, Cdc25, and Myc are key rate-limiting genes required for glial neoplasia. Moreover, orthologs of Sin1, Rictor, and Cdk4 are genes required only for abnormal neoplastic glial proliferation but not for glial development. These and other genes within this network may represent important therapeutic targets in human glioma. Malignant gliomas, tumors composed of glial cells and their precursors, are the most common and deadly human brain tumors. These tumors infiltrate the brain and proliferate rapidly, properties that render them largely incurable even with current therapies. Mutations in genes within the EGFR-Ras and PI3K signaling pathways are common in malignant gliomas, although how these genes specifically control glial pathogenesis is unclear. To investigate the genetic basis of this disease, we developed a glioma model in the fruit fly, Drosophila melanogaster. We found that constitutive coactivation of the EGFR-Ras and PI3K pathways in Drosophila glia gives rise to highly proliferative and invasive neoplastic cells that create transplantable tumor-like growths, mimicking human glioma. This represents a robust cell-type-specific Drosophila cancer model in which malignant cells are created by mutations in genetic pathways thought to be driving forces in a homologous human cancer. Genetic analyses demonstrated that EGFR-Ras and PI3K induce fly glial neoplasia through activation of a combinatorial genetic network composed, in part, of other genetic pathways also commonly mutated in human glioma. This network acts synergistically to coordinately stimulate cellular proliferation, protein translation, and inappropriate migration. Rate-limiting genes within this network may represent important therapeutic targets in human glioma.
Collapse
Affiliation(s)
- Renee D. Read
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (RDR); (JBT)
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Center for Molecular Genetics, University of California San Diego, La Jolla, California, United States of America
| | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - John B. Thomas
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (RDR); (JBT)
| |
Collapse
|
21
|
Abstract
The ensheathment of neurons and their axons creates an ion-sensitive microenvironment that allows rapid conduction of nerve impulses. One of the fundamental questions about axonal ensheathment is how insulating glial cells wrap around axons. The mechanisms that underlie insulation of axons in invertebrates and vertebrates are not fully understood. In the present article we address cellular aspects of axonal ensheathment in Drosophila by taking advantage of glial mutants that illustrate a range of phenotypic defects including ensheathment of axons. From the findings of these mutant studies, we summarize that loss of glial cells, defects in glial membrane wrapping, failure of glial migration, and loss of specialized ladderlike septate junctions between ensheathing glial membranes result in axon-glial functional defects. These studies provide a broad perspective on glial ensheathment of axons in Drosophila and key insights into the anatomical and cellular aspects of axonal insulation. Given the powerful genetic approaches available in Drosophila, the axonal ensheathment process can be dissected in great detail to reveal the fundamental principles of ensheathment. These observations will be relevant to understanding the very similar processes in vertebrates, where defects in glial cell functions lead to devastating neurological diseases.
Collapse
Affiliation(s)
- Swati Banerjee
- Department of Cell and Molecular Physiology, Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7545, USA
| | | |
Collapse
|
22
|
Abstract
The function of a complex nervous system depends on an intricate interplay between neuronal and glial cell types. One of the many functions of glial cells is to provide an efficient insulation of the nervous system and thereby allowing a fine tuned homeostasis of ions and other small molecules. Here, we present a detailed cellular analysis of the glial cell complement constituting the blood-brain barrier in Drosophila. Using electron microscopic analysis and single cell-labeling experiments, we characterize different glial cell layers at the surface of the nervous system, the perineurial glial layer, the subperineurial glial layer, the wrapping glial cell layer, and a thick layer of extracellular matrix, the neural lamella. To test the functional roles of these sheaths we performed a series of dye penetration experiments in the nervous systems of wild-type and mutant embryos. Comparing the kinetics of uptake of different sized fluorescently labeled dyes in different mutants allowed to conclude that most of the barrier function is mediated by the septate junctions formed by the subperineurial cells, whereas the perineurial glial cell layer and the neural lamella contribute to barrier selectivity against much larger particles (i.e., the size of proteins). We further compare the requirements of different septate junction components for the integrity of the blood-brain barrier and provide evidence that two of the six Claudin-like proteins found in Drosophila are needed for normal blood-brain barrier function.
Collapse
|