1
|
Ying R, Stolzberg DJ, Caras ML. Neural Correlates of Perceptual Plasticity in the Auditory Midbrain and Thalamus. J Neurosci 2025; 45:e0691242024. [PMID: 39753303 PMCID: PMC11884394 DOI: 10.1523/jneurosci.0691-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 03/08/2025] Open
Abstract
Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood. Here, we recorded single- and multiunit activity from the central nucleus of the inferior colliculus (ICC) and the ventral subdivision of the medial geniculate nucleus (MGV) of male and female Mongolian gerbils under two different behavioral contexts: as animals performed an amplitude modulation (AM) detection task and as they were passively exposed to AM sounds. Using a signal detection framework to estimate neurometric sensitivity, we found that neural thresholds in both regions improve during task performance, and this improvement is largely driven by changes in the firing rate rather than phase locking. We also found that ICC and MGV neurometric thresholds improve as animals learn to detect small AM depths during a multiday perceptual training paradigm. Finally, we revealed that in the MGV, but not the ICC, context-dependent enhancements in AM sensitivity grow stronger during perceptual training, mirroring prior observations in the ACX. Together, our results suggest that the auditory midbrain and thalamus contribute to changes in sound processing and perception over rapid and slow timescales.
Collapse
Affiliation(s)
- Rose Ying
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland 20742
| | - Daniel J Stolzberg
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Melissa L Caras
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland 20742
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
2
|
Spool JA, Lally AP, Remage-Healey L. Auditory pallial regulation of the social behavior network. Commun Biol 2024; 7:1336. [PMID: 39414913 PMCID: PMC11484815 DOI: 10.1038/s42003-024-07013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Sensory cues such as vocalizations contain important social information. Processing social features of vocalizations (e.g., vocalizer identity, emotional state) necessitates unpacking the complex sound streams in song or speech; this depends on circuits in pallial cortex. But whether and how this information is then transferred to limbic and hypothalamic regions remains a mystery. Here, using gregarious, vocal songbirds (female Zebra finches), we identify a prominent influence of the auditory pallium on one specific node of the Social Behavior Network, the lateral ventromedial nucleus of the hypothalamus (VMHl). Electrophysiological recordings revealed that social and non-social auditory stimuli elicited stimulus-specific spike trains that permitted stimulus differentiation in a large majority of VMHl single units, while transient disruption of auditory pallium elevated immediate early gene activity in VMHl. Descending functional connections such as these may be critical for the range of vertebrate species that rely on nuanced communication signals to guide social decision-making.
Collapse
Affiliation(s)
- Jeremy A Spool
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, 01003, USA
| | - Anna P Lally
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, 01003, USA
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
3
|
Ordiway G, McDonnell M, Sanchez JT. Revisiting the Chicken Auditory Brainstem Response: Frequency Specificity, Threshold Sensitivity, and Cross Species Comparison. Neurosci Insights 2024; 19:26331055241228308. [PMID: 38304551 PMCID: PMC10832403 DOI: 10.1177/26331055241228308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
The auditory brainstem response (ABR) is important for both clinical and basic auditory research. It is a non-invasive measure of hearing function with millisecond-level precision. The ABR can not only measure the synchrony, speed, and efficacy of auditory physiology but also detect different modalities of hearing pathology and hearing loss. ABRs are easily acquired in vertebrate animal models like reptiles, birds, and mammals, and complement existing molecular, developmental, and systems-level research. One such model system is the chicken; an excellent animal for studying auditory development, structure, and function. However, the ABR for chickens was last reported nearly 4 decades ago. The current study examines how decades of ABR characterization in other animal species support findings from the chicken ABR. We replicated and expanded on previous research using 43 chicken hatchlings 1- and 2-day post-hatch. We report that click-evoked chicken ABRs presented with a peak waveform morphology, amplitude, and latency like previous avian studies. Tone-evoked ABRs were found for frequencies from 250 to 4000 Hertz (Hz) and exhibited a range of best sensitivity between 750 and 2000 Hz. Objective click-evoked and tone-evoked ABR thresholds were comparable to subjective thresholds. With these revisited measurements, the chicken ABR still proves to be an excellent example of precocious avian development that complements decades of molecular, neuronal, and systems-level research in the same model organism.
Collapse
Affiliation(s)
- George Ordiway
- Roxelyn and Richard Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Central Auditory Physiology Laboratory, Northwestern University, Evanston, IL, USA
| | - Miranda McDonnell
- Roxelyn and Richard Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Central Auditory Physiology Laboratory, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Central Auditory Physiology Laboratory, Northwestern University, Evanston, IL, USA
- Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Rogers LS, Coffin AB, Sisneros JA. Reproductive state modulates utricular auditory sensitivity in a vocal fish. J Neurophysiol 2022; 128:1344-1354. [PMID: 36286323 PMCID: PMC9678424 DOI: 10.1152/jn.00315.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022] Open
Abstract
The plainfin midshipman, Porichthys notatus, is a seasonally breeding vocal fish that relies on acoustic communication to mediate nocturnal reproductive behaviors. Reproductive females use their auditory senses to detect and localize "singing" males that produce multiharmonic advertisement (mate) calls during the breeding season. Previous work showed that the midshipman saccule, which is considered the primary end organ used for hearing in midshipman and most other fishes, exhibits reproductive state and hormone-dependent changes that enhance saccular auditory sensitivity. In contrast, the utricle was previously posited to serve primarily a vestibular function, but recent evidence in midshipman and related toadfish suggests that it may also serve an auditory function and aid in the detection of behaviorally relevant acoustic stimuli. Here, we characterized the auditory-evoked potentials recorded from utricular hair cells in reproductive and nonreproductive female midshipman in response to underwater sound to test the hypothesis that variation in reproductive state affects utricular auditory sensitivity. We show that utricular hair cells in reproductive females exhibit up to a sixfold increase in the utricular potential magnitude and have thresholds based on measures of particle acceleration (re: 1 ms-2) that are 7-10 dB lower than nonreproductive females across a broad range of frequencies, which include the dominant harmonics of male advertisement calls. This enhanced auditory sensitivity of the utricle likely plays an essential role in facilitating midshipman social and reproductive acoustic communication.NEW & NOTEWORTHY In many animals, vocal-acoustic communication is fundamental for facilitating social behaviors. For the vocal plainfin midshipman fish, the detection and localization of social acoustic signals are critical to the species' reproductive success. Here, we show that the utricle, an inner ear end organ often thought to primarily serve a vestibular function, serves an auditory function that is seasonally plastic and modulated by the animal's reproductive state effectively enhancing auditory sensitivity to courting male advertisement calls.
Collapse
Affiliation(s)
- Loranzie S Rogers
- Department of Psychology, University of Washington, Seattle, Washington
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, Washington
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, Washington
- Department of Biology, University of Washington, Seattle, Washington
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington
| |
Collapse
|
5
|
Spool JA, Macedo-Lima M, Scarpa G, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Genetically identified neurons in avian auditory pallium mirror core principles of their mammalian counterparts. Curr Biol 2021; 31:2831-2843.e6. [PMID: 33989528 DOI: 10.1016/j.cub.2021.04.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.
Collapse
Affiliation(s)
- Jeremy A Spool
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Matheus Macedo-Lima
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil
| | - Garrett Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
6
|
Perelmuter JT, Hom KN, Mohr RA, Demis L, Kim S, Chernenko A, Timothy M, Middleton MA, Sisneros JA, Forlano PM. Testosterone Treatment Mimics Seasonal Downregulation of Dopamine Innervation in the Auditory System of Female Midshipman Fish. Integr Comp Biol 2021; 61:269-282. [PMID: 33974077 DOI: 10.1093/icb/icab070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In seasonally breeding vertebrates, hormones coordinate changes in nervous system structure and function to facilitate reproductive readiness and success. Steroid hormones often exert their effects indirectly via regulation of neuromodulators, which in turn can coordinate the modulation of sensory input with appropriate motor output. Female plainfin midshipman fish (Porichthys notatus) undergo increased peripheral auditory sensitivity in time for the summer breeding season, improving their ability to detect mates, which is regulated by steroid hormones. Reproductive females also show differences in catecholaminergic innervation of auditory circuitry compared with winter, non-reproductive females as measured by tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholaminergic synthesis. Importantly, catecholaminergic input to the inner ear from a dopaminergic-specific forebrain nucleus is decreased in the summer and dopamine inhibits the sensitivity of the inner ear, suggesting that gonadal steroids may alter auditory sensitivity by regulating dopamine innervation. In this study, we gonadectomized non-reproductive females, implanted them with estradiol (E2) or testosterone (T), and measured TH immunoreactive (TH-ir) fibers in auditory nuclei where catecholaminergic innervation was previously shown to be seasonally plastic. We found that treatment with T, but not E2, reduced TH-ir innervation in the auditory hindbrain. T-treatment also reduced TH-ir fibers in the forebrain dopaminergic cell group that projects to the inner ear, and likely to the auditory hindbrain. Higher T plasma in the treatment group was correlated with reduced-ir TH terminals in the inner ear. These T-treatment induced changes in TH-ir fibers mimic the seasonal downregulation of dopamine in the midshipman inner ear and provide evidence that steroid hormone regulation of peripheral auditory sensitivity is mediated, in part, by dopamine.
Collapse
Affiliation(s)
- Jonathan T Perelmuter
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.,Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA
| | - Kelsey N Hom
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Doctoral Program in Biology, The Graduate Center, The City University of New York, New York, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA
| | - Robert A Mohr
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Lina Demis
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Spencer Kim
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Alena Chernenko
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Miky Timothy
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Mollie A Middleton
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA.,Virginia Merrill Bloedel Hearing Research Center, Seattle, WA, USA
| | - Paul M Forlano
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA.,Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY, USA
| |
Collapse
|
7
|
Schroeder KM, Remage-Healey L. Adult-like neural representation of species-specific songs in the auditory forebrain of zebra finch nestlings. Dev Neurobiol 2021; 81:123-138. [PMID: 33369121 PMCID: PMC7969438 DOI: 10.1002/dneu.22802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Encoding of conspecific signals during development can reinforce species barriers as well as set the stage for learning and production of species-typical vocalizations. In altricial songbirds, the development of the auditory system is not complete at hatching, so it is unknown the degree to which recently hatched young can process auditory signals like birdsong. We measured in vivo extracellular responses to song stimuli in a zebra finch (Taeniopygia guttata) secondary auditory forebrain region, the caudomedial nidopallium (NCM). We recorded from three age groups between 13 days post-hatch and adult to identify possible shifts in stimulus encoding that occur before the opening of the sensitive period of song motor learning. We did not find differences in putative cell type composition, firing rate, response strength, and selectivity across ages. Across ages narrow-spiking units had higher firing rates, response strength, accuracy, and trial-by-trial reliability along with lower selectivity than broad-spiking units. In addition, we showed that stimulus-specific adaptation, a characteristic of adult NCM, was also present in nestlings and fledglings. These results indicate that most features of secondary auditory processing are already adult-like shortly after hatching. Furthermore, we showed that selectivity for species-specific stimuli is similar across all ages, with the greatest fidelity in temporal coding in response to conspecific song and domesticated Bengalese finch song, and reduced fidelity in response to owl finch song, a more ecologically relevant heterospecific, and white noise. Our study provides the first evidence that the electrophysiological properties of higher-order auditory neurons are already mature in nestling songbirds.
Collapse
Affiliation(s)
- Katie M. Schroeder
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Luke Remage-Healey
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
8
|
Macedo-Lima M, Remage-Healey L. Auditory learning in an operant task with social reinforcement is dependent on neuroestrogen synthesis in the male songbird auditory cortex. Horm Behav 2020; 121:104713. [PMID: 32057821 PMCID: PMC7198363 DOI: 10.1016/j.yhbeh.2020.104713] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
Animals continually assess their environment for cues associated with threats, competitors, allies, mates or prey, and experience is crucial for those associations. The auditory cortex is important for these computations to enable valence assignment and associative learning. The caudomedial nidopallium (NCM) is part of the songbird auditory association cortex and it is implicated in juvenile song learning, song memorization, and song perception. Like human auditory cortex, NCM is a site of action of estradiol (E2) and is enriched with the enzyme aromatase (E2-synthase). However, it is unclear how E2 modulates auditory learning and perception in the vertebrate auditory cortex. In this study we employ a novel, auditory-dependent operant task governed by social reinforcement to test the hypothesis that neuro-E2 synthesis supports auditory learning in adult male zebra finches. We show that local suppression of aromatase activity in NCM disrupts auditory association learning. By contrast, post-learning performance is unaffected by either NCM aromatase blockade or NCM pharmacological inactivation, suggesting that NCM E2 production and even NCM itself are not required for post-learning auditory discrimination or memory retrieval. Therefore, neuroestrogen synthesis in auditory cortex supports the association between sounds and behaviorally relevant consequences.
Collapse
Affiliation(s)
- Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil.
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
9
|
Yao JD, Sanes DH. Developmental deprivation-induced perceptual and cortical processing deficits in awake-behaving animals. eLife 2018; 7:33891. [PMID: 29873632 PMCID: PMC6005681 DOI: 10.7554/elife.33891] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/04/2018] [Indexed: 01/02/2023] Open
Abstract
Sensory deprivation during development induces lifelong changes to central nervous system function that are associated with perceptual impairments. However, the relationship between neural and behavioral deficits is uncertain due to a lack of simultaneous measurements during task performance. Therefore, we telemetrically recorded from auditory cortex neurons in gerbils reared with developmental conductive hearing loss as they performed an auditory task in which rapid fluctuations in amplitude are detected. These data were compared to a measure of auditory brainstem temporal processing from each animal. We found that developmental HL diminished behavioral performance, but did not alter brainstem temporal processing. However, the simultaneous assessment of neural and behavioral processing revealed that perceptual deficits were associated with a degraded cortical population code that could be explained by greater trial-to-trial response variability. Our findings suggest that the perceptual limitations that attend early hearing loss are best explained by an encoding deficit in auditory cortex.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, United States
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, United States.,Department of Psychology, New York University, New York, United States.,Department of Biology, New York University, New York, United States.,Neuroscience Institute, NYU Langone Medical Center, New York, United States
| |
Collapse
|
10
|
Krentzel AA, Macedo-Lima M, Ikeda MZ, Remage-Healey L. A Membrane G-Protein-Coupled Estrogen Receptor Is Necessary but Not Sufficient for Sex Differences in Zebra Finch Auditory Coding. Endocrinology 2018; 159:1360-1376. [PMID: 29351614 PMCID: PMC5839738 DOI: 10.1210/en.2017-03102] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
Abstract
Estradiol acts as a neuromodulator in brain regions important for cognition and sensory processing. Estradiol also shapes brain sex differences but rarely have these concepts been considered simultaneously. In male and female songbirds, estradiol rapidly increases within the auditory forebrain during song exposure and enhances local auditory processing. We tested whether G-protein-coupled estrogen receptor 1 (GPER1), a membrane-bound estrogen receptor, is necessary and sufficient for neuroestrogen regulation of forebrain auditory processing in male and female zebra finches (Taeniopygia guttata). At baseline, we observed that females had elevated single-neuron responses to songs vs males. In males, narrow-spiking (NS) neurons were more responsive to conspecific songs than broad-spiking (BS) neurons, yet cell types were similarly auditory responsive in females. Following acute inactivation of GPER1, auditory responsiveness and coding were suppressed in male NS yet unchanged in female NS and in BS of both sexes. By contrast, GPER1 activation did not mimic previously established estradiol actions in either sex. Lastly, the expression of GPER1 and its coexpression with an inhibitory neuron marker were similarly abundant in males and females, confirming anatomical similarity in the auditory forebrain. In this study, we found: (1) a role for GPER1 in regulating sensory processing and (2) a sex difference in auditory processing of complex vocalizations in a cell type-specific manner. These results reveal sex specificity of a rapid estrogen signaling mechanism in which neuromodulation accounts and/or compensates for brain sex differences, dependent on cell type, in brain regions that are anatomically similar in both sexes.
Collapse
Affiliation(s)
- Amanda A. Krentzel
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts 01002
- Correspondence: Amanda A. Krentzel, PhD, David Clark Laboratories, North Carolina State University, 100 Eugene Brooks Avenue, Raleigh, North Carolina 27607. E-mail:
| | - Matheus Macedo-Lima
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts 01002
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Foundation, Ministry of Education of Brazil, DF 70040-020 Brasília, Brazil
| | - Maaya Z. Ikeda
- Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01002
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts 01002
- Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01002
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01002
| |
Collapse
|
11
|
Sensory Coding and Sensitivity to Local Estrogens Shift during Critical Period Milestones in the Auditory Cortex of Male Songbirds. eNeuro 2017; 4:eN-NWR-0317-17. [PMID: 29255797 PMCID: PMC5732019 DOI: 10.1523/eneuro.0317-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022] Open
Abstract
Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor's song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM's established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches (Taeniopygia guttata) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E2 administration on sensory processing. In sensory-aged subjects, E2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E2 sensitivity that each precisely track a key neural "switch point" from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds.
Collapse
|
12
|
Lee V, Pawlisch BA, Macedo-Lima M, Remage-Healey L. Norepinephrine enhances song responsiveness and encoding in the auditory forebrain of male zebra finches. J Neurophysiol 2017; 119:209-220. [PMID: 29021389 DOI: 10.1152/jn.00251.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Norepinephrine (NE) can dynamically modulate excitability and functional connectivity of neural circuits in response to changes in external and internal states. Regulation by NE has been demonstrated extensively in mammalian sensory cortices, but whether NE-dependent modulation in sensory cortex alters response properties in downstream sensorimotor regions is less clear. Here we examine this question in male zebra finches, a songbird species with complex vocalizations and a well-defined neural network for auditory processing of those vocalizations. We test the hypothesis that NE modulates auditory processing and encoding, using paired extracellular electrophysiology recordings and pattern classifier analyses. We report that a NE infusion into the auditory cortical region NCM (caudomedial nidopallium; analogous to mammalian secondary auditory cortex) enhances the auditory responses, burst firing, and coding properties of single NCM neurons. Furthermore, we report that NE-dependent changes in NCM coding properties, but not auditory response strength, are transmitted downstream to the sensorimotor nucleus HVC. Finally, NE modulation in the NCM of males is qualitatively similar to that observed in females: in both sexes, NE increases auditory response strengths. However, we observed a sex difference in the mechanism of enhancement: whereas NE increases response strength in females by decreasing baseline firing rates, NE increases response strength in males by increasing auditory-evoked activity. Therefore, NE signaling exhibits a compensatory sex difference to achieve a similar, state-dependent enhancement in signal-to-noise ratio and coding accuracy in males and females. In summary, our results provide further evidence for adrenergic regulation of sensory processing and modulation of auditory/sensorimotor functional connectivity. NEW & NOTEWORTHY This study documents that the catecholamine norepinephrine (also known as noradrenaline) acts in the auditory cortex to shape local processing of complex sound stimuli. Moreover, it also enhances the coding accuracy of neurons in the auditory cortex as well as in the downstream sensorimotor cortex. Finally, this study shows that while the sensory-enhancing effects of norepinephrine are similar in males and females, there are sex differences in the mode of action.
Collapse
Affiliation(s)
- Vanessa Lee
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Massachusetts.,Psychological and Brain Sciences, University of Massachusetts Amherst, Massachusetts
| | - Benjamin A Pawlisch
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Massachusetts.,Psychological and Brain Sciences, University of Massachusetts Amherst, Massachusetts.,Neuroscience and Behavior Program, University of Massachusetts Amherst, Massachusetts
| | - Matheus Macedo-Lima
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Massachusetts.,Psychological and Brain Sciences, University of Massachusetts Amherst, Massachusetts.,Neuroscience and Behavior Program, University of Massachusetts Amherst, Massachusetts.,CAPES Foundation, Ministry of Education of Brazil , Brasilia , Brazil
| | - Luke Remage-Healey
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Massachusetts.,Psychological and Brain Sciences, University of Massachusetts Amherst, Massachusetts.,Neuroscience and Behavior Program, University of Massachusetts Amherst, Massachusetts
| |
Collapse
|
13
|
Anesthesia and brain sensory processing: impact on neuronal responses in a female songbird. Sci Rep 2016; 6:39143. [PMID: 27966648 PMCID: PMC5155427 DOI: 10.1038/srep39143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022] Open
Abstract
Whether anesthesia impacts brain sensory processing is a highly debated and important issue. There is a general agreement that anesthesia tends to diminish neuronal activity, but its potential impact on neuronal “tuning” is still an open question. Here we show, based on electrophysiological recordings in the primary auditory area of a female songbird, that anesthesia induces neuronal responses towards biologically irrelevant sounds and prevents the seasonal neuronal tuning towards functionally relevant species-specific song elements.
Collapse
|
14
|
Hanson JL, Hurley LM. Serotonin, estrus, and social context influence c-Fos immunoreactivity in the inferior colliculus. Behav Neurosci 2016; 130:600-613. [PMID: 27657308 PMCID: PMC5114148 DOI: 10.1037/bne0000165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fundamental task of sensory systems is to extract relevant social information from a range of environmental stimuli in the face of changing behavioral contexts and reproductive states. Neuromodulatory pathways that interact with such contextual variables are 1 mechanism for achieving this. In the mouse inferior colliculus (IC), a midbrain auditory region, the neuromodulator serotonin increases in females interacting with courting males, but events downstream of serotonin release have not been investigated. Here, we manipulated serotonin levels in female mice with the serotonin releaser fenfluramine or the serotonin depleter para-chlorophenylalaninemethyl ester (pCPA). Females were then exposed to an empty cage, a male partner, or a playback of courtship vocalizations, and the numbers of neurons in the IC with positive immunoreactivity for the immediate early gene product c-Fos were measured. The effects of drug treatments depended on social context and estrous state. Fenfluramine had greater effects in the nonsocial than in the partner social treatments. Females in proestrus or estrus and given fenfluramine had higher densities of c-Fos immunoreactive neurons, while females in diestrus had fewer immunoreactive neurons. The drug pCPA had the expected opposite effect of fenfluramine, causing a decreased response in pro/estrus females and an increased response in diestrus females. These findings show that the effects of serotonin on c-Fos activity in the IC of females is dependent on both external context and reproductive state, and suggest that these effects occur downstream of serotonin release. (PsycINFO Database Record
Collapse
|
15
|
Miller KE, Barr K, Krawczyk M, Covey E. Seasonal variations in auditory processing in the inferior colliculus of Eptesicus fuscus. Hear Res 2016; 341:91-99. [PMID: 27473507 DOI: 10.1016/j.heares.2016.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/18/2016] [Accepted: 07/24/2016] [Indexed: 12/28/2022]
Abstract
Eptesicus fuscus is typical of temperate zone bats in that both sexes undergo marked seasonal changes in behavior, endocrine status, and reproductive status. Acoustic communication plays a key role in many seasonal behaviors. For example, males emit specialized vocalizations during mating in the fall, and females use different specialized vocalizations to communicate with infants in late spring. Bats of both sexes use echolocation for foraging during times of activity, but engage in little sound-directed behavior during torpor and hibernation in winter. Auditory processing might be expected to reflect these marked seasonal changes. To explore the possibility that seasonal changes in hormonal status could drive functional plasticity in the central auditory system, we examined responses of single neurons in the inferior colliculus throughout the year. The average first spike latency in females varied seasonally, almost doubling in spring compared to other times of year. First spike latencies in males remained relatively stable throughout the year. Latency jitter for both sexes was higher in winter and spring than in summer or fall. Females had more burst responders than other discharge patterns throughout the year whereas males had more transient responders at all times of year except fall, when burst responses were the predominant type. The percentage of simple discharge patterns (sustained and transient) was higher in males than females in the spring and higher in females than males in the fall. In females, the percentage of shortpass duration-tuned neurons doubled in summer and remained elevated through fall and early winter. In males, the percentage of shortpass duration-tuned cells increased in spring and the percentage of bandpass duration-tuned cells doubled in the fall. These findings suggest that there are clear seasonal changes in basic response characteristics of midbrain auditory neurons in Eptesicus, especially in temporal response properties and duration sensitivity. Moreover, the pattern of changes is different in males and females, suggesting that hormone-driven plasticity adjusts central auditory processing to fit the characteristics of vocalizations specific to seasonal behavioral patterns.
Collapse
Affiliation(s)
- Kimberly E Miller
- University of Washington, Dept. of Psychology, Box 351525, Seattle, WA 98195, USA; University of Washington, Dept. of Otolaryngology, Box 356525, Seattle, WA 98195, USA.
| | - Kaitlyn Barr
- University of Washington, Dept. of Psychology, Box 351525, Seattle, WA 98195, USA
| | - Mitchell Krawczyk
- University of Washington, Dept. of Psychology, Box 351525, Seattle, WA 98195, USA
| | - Ellen Covey
- University of Washington, Dept. of Psychology, Box 351525, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Brenowitz EA, Remage-Healey L. It takes a seasoned bird to be a good listener: communication between the sexes. Curr Opin Neurobiol 2016; 38:12-7. [PMID: 26820470 DOI: 10.1016/j.conb.2016.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 12/29/2022]
Abstract
Birds commonly use sound for communication between the sexes. In many songbird species, only males sing and there are pronounced sex differences in the neural song control circuits. By contrast, the auditory circuitry is largely similar in males and females. Both sexes learn to recognize vocalizations heard as juveniles and this shapes auditory response selectivity. Mating vocalizations are restricted to the breeding season, when sex steroid levels are elevated. Auditory cells, from the ear to the cortex, are hormone sensitive. Estrogens are synthesized in the brain and can modulate the activity of auditory neurons. In species that breed seasonally, elevated levels of estradiol in females transiently enhance their auditory responses to conspecific vocalizations, resulting in sex differences in audition.
Collapse
Affiliation(s)
- Eliot A Brenowitz
- Department of Psychology, University of Washington, Box 351525, Seattle, WA 98195, USA; Department of Biology, University of Washington, Box 351525, Seattle, WA 98195, USA; Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 351525, Seattle, WA 98195, USA.
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|