1
|
Paudel S, Yue M, Nalamalapu R, Saha MS. Deciphering the Calcium Code: A Review of Calcium Activity Analysis Methods Employed to Identify Meaningful Activity in Early Neural Development. Biomolecules 2024; 14:138. [PMID: 38275767 PMCID: PMC10813340 DOI: 10.3390/biom14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The intracellular and intercellular flux of calcium ions represents an ancient and universal mode of signaling that regulates an extensive array of cellular processes. Evidence for the central role of calcium signaling includes various techniques that allow the visualization of calcium activity in living cells. While extensively investigated in mature cells, calcium activity is equally important in developing cells, particularly the embryonic nervous system where it has been implicated in a wide variety array of determinative events. However, unlike in mature cells, where the calcium dynamics display regular, predictable patterns, calcium activity in developing systems is far more sporadic, irregular, and diverse. This renders the ability to assess calcium activity in a consistent manner extremely challenging, challenges reflected in the diversity of methods employed to analyze calcium activity in neural development. Here we review the wide array of calcium detection and analysis methods used across studies, limiting the extent to which they can be comparatively analyzed. The goal is to provide investigators not only with an overview of calcium activity analysis techniques currently available, but also to offer suggestions for future work and standardization to enable informative comparative evaluations of this fundamental and important process in neural development.
Collapse
Affiliation(s)
- Sudip Paudel
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Michelle Yue
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Rithvik Nalamalapu
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
2
|
Porcu A, Nilsson A, Booreddy S, Barnes SA, Welsh DK, Dulcis D. Seasonal changes in day length induce multisynaptic neurotransmitter switching to regulate hypothalamic network activity and behavior. SCIENCE ADVANCES 2022; 8:eabn9867. [PMID: 36054362 PMCID: PMC10848959 DOI: 10.1126/sciadv.abn9867] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/19/2022] [Indexed: 05/18/2023]
Abstract
Seasonal changes in day length (photoperiod) affect numerous physiological functions. The suprachiasmatic nucleus (SCN)-paraventricular nucleus (PVN) axis plays a key role in processing photoperiod-related information. Seasonal variations in SCN and PVN neurotransmitter expression have been observed in humans and animal models. However, the molecular mechanisms by which the SCN-PVN network responds to altered photoperiod is unknown. Here, we show in mice that neuromedin S (NMS) and vasoactive intestinal polypeptide (VIP) neurons in the SCN display photoperiod-induced neurotransmitter plasticity. In vivo recording of calcium dynamics revealed that NMS neurons alter PVN network activity in response to winter-like photoperiod. Chronic manipulation of NMS neurons is sufficient to induce neurotransmitter switching in PVN neurons and affects locomotor activity. Our findings reveal previously unidentified molecular adaptations of the SCN-PVN network in response to seasonality and the role for NMS neurons in adjusting hypothalamic function to day length via a coordinated multisynaptic neurotransmitter switching affecting behavior.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Anna Nilsson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sathwik Booreddy
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - David K. Welsh
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Dvořáček J, Bednářová A, Krishnan N, Kodrík D. Dopaminergic muhsroom body neurons in Drosophila: flexibility of neuron identity in a model organism? Neurosci Biobehav Rev 2022; 135:104570. [DOI: 10.1016/j.neubiorev.2022.104570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
|
4
|
Prakash N, Stark CJ, Keisler MN, Luo L, Der-Avakian A, Dulcis D. Serotonergic Plasticity in the Dorsal Raphe Nucleus Characterizes Susceptibility and Resilience to Anhedonia. J Neurosci 2020; 40:569-584. [PMID: 31792153 PMCID: PMC6961996 DOI: 10.1523/jneurosci.1802-19.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic stress induces anhedonia in susceptible but not resilient individuals, a phenomenon observed in humans as well as animal models, but the molecular mechanisms underlying susceptibility and resilience are not well understood. We hypothesized that the serotonergic system, which is implicated in stress, reward, and antidepressant therapy, may play a role. We found that plasticity of the serotonergic system contributes to the differential vulnerability to stress displayed by susceptible and resilient animals. Stress-induced anhedonia was assessed in adult male rats using social defeat and intracranial self-stimulation, while changes in serotonergic phenotype were investigated using immunohistochemistry and in situ hybridization. Susceptible, but not resilient, rats displayed an increased number of neurons expressing the biosynthetic enzyme for serotonin, tryptophan-hydroxylase-2 (TPH2), in the ventral subnucleus of the dorsal raphe nucleus (DRv). Further, a decrease in the number of DRv glutamatergic (VGLUT3+) neurons was observed in all stressed rats. This neurotransmitter plasticity is activity-dependent, as was revealed by chemogenetic manipulation of the central amygdala, a stress-sensitive nucleus that forms a major input to the DR. Activation of amygdalar corticotropin-releasing hormone (CRH)+ neurons abolished the increase in DRv TPH2+ neurons and ameliorated stress-induced anhedonia in susceptible rats. These findings show that activation of amygdalar CRH+ neurons induces resilience, and suppresses the gain of serotonergic phenotype in the DRv that is characteristic of susceptible rats. This molecular signature of vulnerability to stress-induced anhedonia and the active nature of resilience could be targeted to develop new treatments for stress-related disorders like depression.SIGNIFICANCE STATEMENT Depression and other mental disorders can be induced by chronic or traumatic stressors. However, some individuals are resilient and do not develop depression in response to chronic stress. A complete picture of the molecular differences between susceptible and resilient individuals is necessary to understand how plasticity of limbic circuits is associated with the pathophysiology of stress-related disorders. Using a rodent model, our study identifies a novel molecular marker of susceptibility to stress-induced anhedonia, a core symptom of depression, and a means to modulate it. These findings will guide further investigation into cellular and circuit mechanisms of resilience, and the development of new treatments for depression.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Christiana J Stark
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Maria N Keisler
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Lily Luo
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
5
|
Romoli B, Lozada AF, Sandoval IM, Manfredsson FP, Hnasko TS, Berg DK, Dulcis D. Neonatal Nicotine Exposure Primes Midbrain Neurons to a Dopaminergic Phenotype and Increases Adult Drug Consumption. Biol Psychiatry 2019; 86:344-355. [PMID: 31202491 PMCID: PMC7359410 DOI: 10.1016/j.biopsych.2019.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Nicotine intake induces addiction through neuroplasticity of the reward circuitry, altering the activity of dopaminergic neurons of the ventral tegmental area. Prior work demonstrated that altered circuit activity can change neurotransmitter expression in the developing and adult brain. Here we investigated the effects of neonatal nicotine exposure on the dopaminergic system and nicotine consumption in adulthood. METHODS Male and female mice were used for two-bottle-choice test, progressive ratio breakpoint test, immunohistochemistry, RNAscope, quantitative polymerase chain reaction, calcium imaging, and DREADD (designer receptor exclusively activated by designer drugs)-mediated chemogenic activation/inhibition experiments. RESULTS Neonatal nicotine exposure potentiates drug preference in adult mice, induces alterations in calcium spike activity of midbrain neurons, and increases the number of dopamine-expressing neurons in the ventral tegmental area. Specifically, glutamatergic neurons are first primed to express transcription factor Nurr1, then acquire the dopaminergic phenotype following nicotine re-exposure in adulthood. Enhanced neuronal activity combined with Nurr1 expression is both necessary and sufficient for the nicotine-mediated neurotransmitter plasticity to occur. CONCLUSIONS Our findings illuminate a new mechanism of neuroplasticity by which early nicotine exposure primes the reward system to display increased susceptibility to drug consumption in adulthood.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, California.
| |
Collapse
|
6
|
Calcium Activity Dynamics Correlate with Neuronal Phenotype at a Single Cell Level and in a Threshold-Dependent Manner. Int J Mol Sci 2019; 20:ijms20081880. [PMID: 30995769 PMCID: PMC6515432 DOI: 10.3390/ijms20081880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022] Open
Abstract
Calcium is a ubiquitous signaling molecule that plays a vital role in many physiological processes. Recent work has shown that calcium activity is especially critical in vertebrate neural development. Here, we investigated if calcium activity and neuronal phenotype are correlated only on a population level or on the level of single cells. Using Xenopus primary cell culture in which individual cells can be unambiguously identified and associated with a molecular phenotype, we correlated calcium activity with neuronal phenotype on the single-cell level. This analysis revealed that, at the neural plate stage, a high frequency of low-amplitude spiking activity correlates with an excitatory, glutamatergic phenotype, while high-amplitude spiking activity correlates with an inhibitory, GABAergic phenotype. Surprisingly, we also found that high-frequency, low-amplitude spiking activity correlates with neural progenitor cells and that differentiating cells exhibit higher spike amplitude. Additional methods of analysis suggested that differentiating marker tubb2b-expressing cells exhibit relatively persistent and predictable calcium activity compared to the irregular activity of neural progenitor cells. Our study highlights the value of using a range of thresholds for analyzing calcium activity data and underscores the importance of employing multiple methods to characterize the often irregular, complex patterns of calcium activity during early neural development.
Collapse
|
7
|
Morris M, Shaw A, Lambert M, Perry HH, Lowenstein E, Valenzuela D, Velazquez-Ulloa NA. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:13. [PMID: 29898654 PMCID: PMC6001141 DOI: 10.1186/s12861-018-0172-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/21/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. RESULTS We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. CONCLUSIONS We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila research will allow elucidation of the mechanisms underlying the effects of nicotine exposure during development.
Collapse
Affiliation(s)
- Melanie Morris
- School of Medicine, University of Washington, Seattle, USA
| | - Ariel Shaw
- Biochemistry, Cell and Molecular Biology Program, Lewis & Clark College, Portland, USA
| | | | | | - Eve Lowenstein
- Biology Department, Lewis & Clark College, Portland, USA
| | | | | |
Collapse
|
8
|
Photoperiod-Induced Neuroplasticity in the Circadian System. Neural Plast 2018; 2018:5147585. [PMID: 29681926 PMCID: PMC5851158 DOI: 10.1155/2018/5147585] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/11/2018] [Indexed: 01/01/2023] Open
Abstract
Seasonal changes in light exposure have profound effects on behavioral and physiological functions in many species, including effects on mood and cognitive function in humans. The mammalian brain's master circadian clock, the suprachiasmatic nucleus (SCN), transmits information about external light conditions to other brain regions, including some implicated in mood and cognition. Although the detailed mechanisms are not yet known, the SCN undergoes highly plastic changes at the cellular and network levels under different light conditions. We therefore propose that the SCN may be an essential mediator of the effects of seasonal changes of day length on mental health. In this review, we explore various forms of neuroplasticity that occur in the SCN and other brain regions to facilitate seasonal adaptation, particularly altered phase distribution of cellular circadian oscillators in the SCN and changes in hypothalamic neurotransmitter expression.
Collapse
|
9
|
HIV-1 TAT protein enhances sensitization to methamphetamine by affecting dopaminergic function. Brain Behav Immun 2017; 65:210-221. [PMID: 28495611 PMCID: PMC5537017 DOI: 10.1016/j.bbi.2017.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022] Open
Abstract
Methamphetamine abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein TAT induces dysfunction of mesolimbic dopaminergic systems which may result in impaired reward processes and contribute to methamphetamine abuse. These studies investigated the impact of TAT expression on methamphetamine-induced locomotor sensitization, underlying changes in dopamine function and adenosine receptors in mesolimbic brain areas and neuroinflammation (microgliosis). Transgenic mice with doxycycline-induced TAT protein expression in the brain were tested for locomotor activity in response to repeated methamphetamine injections and methamphetamine challenge after a 7-day abstinence period. Dopamine function in the nucleus accumbens (Acb) was determined using high performance liquid chromatography. Expression of dopamine and/or adenosine A receptors (ADORA) in the Acb and caudate putamen (CPu) was assessed using RT-PCR and immunohistochemistry analyses. Microarrays with pathway analyses assessed dopamine and adenosine signaling in the CPu. Activity-dependent neurotransmitter switching of a reserve pool of non-dopaminergic neurons to a dopaminergic phenotype in the ventral tegmental area (VTA) was determined by immunohistochemistry and quantified with stereology. TAT expression enhanced methamphetamine-induced sensitization. TAT expression alone decreased striatal dopamine (D1, D2, D4, D5) and ADORA1A receptor expression, while increasing ADORA2A receptors expression. Moreover, TAT expression combined with methamphetamine exposure was associated with increased adenosine A receptors (ADORA1A) expression and increased recruitment of dopamine neurons in the VTA. TAT expression and methamphetamine exposure induced microglia activation with the largest effect after combined exposure. Our findings suggest that dopamine-adenosine receptor interactions and reserve pool neuronal recruitment may represent potential targets to develop new treatments for methamphetamine abuse in individuals with HIV.
Collapse
|
10
|
Dulcis D, Lippi G, Stark CJ, Do LH, Berg DK, Spitzer NC. Neurotransmitter Switching Regulated by miRNAs Controls Changes in Social Preference. Neuron 2017; 95:1319-1333.e5. [PMID: 28867550 PMCID: PMC5893310 DOI: 10.1016/j.neuron.2017.08.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/12/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023]
Abstract
Changes in social preference of amphibian larvae result from sustained exposure to kinship odorants. To understand the molecular and cellular mechanisms of this neuroplasticity, we investigated the effects of olfactory system activation on neurotransmitter (NT) expression in accessory olfactory bulb (AOB) interneurons during development. We show that protracted exposure to kin or non-kin odorants changes the number of dopamine (DA)- or gamma aminobutyric acid (GABA)-expressing neurons, with corresponding changes in attraction/aversion behavior. Changing the relative number of dopaminergic and GABAergic AOB interneurons or locally introducing DA or GABA receptor antagonists alters kinship preference. We then isolate AOB microRNAs (miRs) differentially regulated across these conditions. Inhibition of miR-375 and miR-200b reveals that they target Pax6 and Bcl11b to regulate the dopaminergic and GABAergic phenotypes. The results illuminate the role of NT switching governing experience-dependent social preference. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Davide Dulcis
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA.
| | - Giordano Lippi
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA
| | - Christiana J Stark
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Long H Do
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093-0649, USA
| | - Darwin K Berg
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA
| |
Collapse
|
11
|
Picton LD, Sillar KT. Mechanisms underlying the endogenous dopaminergic inhibition of spinal locomotor circuit function in Xenopus tadpoles. Sci Rep 2016; 6:35749. [PMID: 27760989 PMCID: PMC5071771 DOI: 10.1038/srep35749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023] Open
Abstract
Dopamine plays important roles in the development and modulation of motor control circuits. Here we show that dopamine exerts potent effects on the central pattern generator circuit controlling locomotory swimming in post-embryonic Xenopus tadpoles. Dopamine (0.5–100 μM) reduced fictive swim bout occurrence and caused both spontaneous and evoked episodes to become shorter, slower and weaker. The D2-like receptor agonist quinpirole mimicked this repertoire of inhibitory effects on swimming, whilst the D4 receptor antagonist, L745,870, had the opposite effects. The dopamine reuptake inhibitor bupropion potently inhibited fictive swimming, demonstrating that dopamine constitutes an endogenous modulatory system. Both dopamine and quinpirole also inhibited swimming in spinalised preparations, suggesting spinally located dopamine receptors. Dopamine and quinpirole hyperpolarised identified rhythmically active spinal neurons, increased rheobase and reduced spike probability both during swimming and in response to current injection. The hyperpolarisation was TTX-resistant and was accompanied by decreased input resistance, suggesting that dopamine opens a K+ channel. The K+ channel blocker barium chloride (but not TEA, glybenclamide or tertiapin-Q) significantly occluded the hyperpolarisation. Overall, we show that endogenously released dopamine acts upon spinally located D2-like receptors, leading to a rapid inhibitory modulation of swimming via the opening of a K+ channel.
Collapse
Affiliation(s)
- Laurence D Picton
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, United Kingdom
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, United Kingdom
| |
Collapse
|
12
|
Abstract
The 'one neuron, one neurotransmitter' doctrine states that synaptic communication between two neurons occurs through the release of a single chemical transmitter. However, recent findings suggest that neurons that communicate using more than one classical neurotransmitter are prevalent throughout the adult mammalian CNS. In particular, several populations of neurons previously thought to release only glutamate, acetylcholine, dopamine or histamine also release the major inhibitory neurotransmitter GABA. Here, we review these findings and discuss the implications of GABA co-release for synaptic transmission and plasticity.
Collapse
|
13
|
Aumann TD. Environment- and activity-dependent dopamine neurotransmitter plasticity in the adult substantia nigra. J Chem Neuroanat 2015; 73:21-32. [PMID: 26718607 DOI: 10.1016/j.jchemneu.2015.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/10/2023]
Abstract
The ability of neurons to change the amount or type of neurotransmitter they use, or 'neurotransmitter plasticity', is an emerging new form of adult brain plasticity. For example, it has recently been shown that neurons in the adult rat hypothalamus up- or down-regulate dopamine (DA) neurotransmission in response to the amount of light the animal receives (photoperiod), and that this in turn affects anxiety- and depressive-like behaviors (Dulcis et al., 2013). In this Chapter I consolidate recent evidence from my laboratory suggesting neurons in the adult mouse substantia nigra pars compacta (SNc) also undergo DA neurotransmitter plasticity in response to persistent changes in their electrical activity, including that driven by the mouse's environment or behavior. Specifically, we have shown that the amounts of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) gene promoter activity, TH mRNA and TH protein in SNc neurons increases or decreases after ∼20h of altered electrical activity. Also, infusion of ion-channel agonists or antagonists into the midbrain for 2 weeks results in ∼10% (∼500 neurons) more or fewer TH immunoreactive (TH+) SNc neurons, with no change in the total number of SNc neurons (TH+ and TH-). Targeting ion-channels mediating cell-autonomous pacemaker activity in, or synaptic input and afferent pathways to, SNc neurons are equally effective in this regard. In addition, exposing mice to different environments (sex pairing or environment enrichment) for 1-2 weeks induces ∼10% more or fewer TH+ SNc (and ventral tegmental area or VTA) neurons and this is abolished by concurrent blockade of synaptic transmission in midbrain. Although further research is required to establish SNc (and VTA) DA neurotransmitter plasticity, and to determine whether it alters brain function and behavior, it is an exciting prospect because: (1) It may play important roles in movement, motor learning, reward, motivation, memory and cognition; and (2) Imbalances in midbrain DA cause symptoms associated with several prominent brain and behavioral disorders such as schizophrenia, addiction, obsessive-compulsive disorder, depression, Parkinson's disease and attention-deficit and hyperactivity disorder. Midbrain DA neurotransmitter plasticity may therefore play a role in the etiology of these symptoms, and might also offer new treatment options.
Collapse
Affiliation(s)
- Tim D Aumann
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
14
|
Abstract
Among the many forms of brain plasticity, changes in synaptic strength and changes in synapse number are particularly prominent. However, evidence for neurotransmitter respecification or switching has been accumulating steadily, both in the developing nervous system and in the adult brain, with observations of transmitter addition, loss, or replacement of one transmitter with another. Natural stimuli can drive these changes in transmitter identity, with matching changes in postsynaptic transmitter receptors. Strikingly, they often convert the synapse from excitatory to inhibitory or vice versa, providing a basis for changes in behavior in those cases in which it has been examined. Progress has been made in identifying the factors that induce transmitter switching and in understanding the molecular mechanisms by which it is achieved. There are many intriguing questions to be addressed.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences & Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Balaraman Y, Lahiri DK, Nurnberger JI. Variants in Ion Channel Genes Link Phenotypic Features of Bipolar Illness to Specific Neurobiological Process Domains. MOLECULAR NEUROPSYCHIATRY 2015; 1:23-35. [PMID: 27602355 DOI: 10.1159/000371886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/05/2015] [Indexed: 11/19/2022]
Abstract
Recent advances in genome-wide association studies are pointing towards a major role for voltage-gated ion channels in neuropsychiatric disorders and, in particular, bipolar disorder (BD). The phenotype of BD is complex, with symptoms during mood episodes and deficits persisting between episodes. We have tried to elucidate the common neurobiological mechanisms associated with ion channel signaling in order to provide a new perspective on the clinical symptoms and possible endophenotypes seen in BD patients. We propose a model in which the multiple variants in genes coding for ion channel proteins would perturb motivational circuits, synaptic plasticity, myelination, hypothalamic-pituitary-adrenal axis function, circadian neuronal rhythms, and energy regulation. These changes in neurobiological mechanisms would manifest in endophenotypes of aberrant reward processing, white matter hyperintensities, deficits in executive function, altered frontolimbic connectivity, increased amygdala activity, increased melatonin suppression, decreased REM latency, and aberrant myo-inositol/ATP shuttling. The endophenotypes result in behaviors of poor impulse control, motivational changes, cognitive deficits, abnormal stress response, sleep disturbances, and energy changes involving different neurobiological process domains. The hypothesis is that these disturbances start with altered neural circuitry during development, following which multiple environmental triggers may disrupt the neuronal excitability balance through an activity-dependent molecular process, resulting in clinical mood episodes.
Collapse
Affiliation(s)
- Yokesh Balaraman
- Institute of Psychiatric Research, Department of Psychiatry, Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - Debomoy K Lahiri
- Institute of Psychiatric Research, Department of Psychiatry, Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - John I Nurnberger
- Institute of Psychiatric Research, Department of Psychiatry, Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, Ind., USA
| |
Collapse
|
16
|
Borodinsky LN, Belgacem YH, Swapna I, Visina O, Balashova OA, Sequerra EB, Tu MK, Levin JB, Spencer KA, Castro PA, Hamilton AM, Shim S. Spatiotemporal integration of developmental cues in neural development. Dev Neurobiol 2014; 75:349-59. [PMID: 25484201 DOI: 10.1002/dneu.22254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022]
Abstract
Nervous system development relies on the generation of neurons, their differentiation and establishment of synaptic connections. These events exhibit remarkable plasticity and are regulated by many developmental cues. Here, we review the mechanisms of three classes of these cues: morphogenetic proteins, electrical activity, and the environment. We focus on second messenger dynamics and their role as integrators of the action of diverse cues, enabling plasticity in the process of neural development.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, California, 95817
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Carloni M, Nasuti C, Fedeli D, Montani M, Vadhana MSD, Amici A, Gabbianelli R. Early life permethrin exposure induces long-term brain changes in Nurr1, NF-kB and Nrf-2. Brain Res 2013; 1515:19-28. [PMID: 23566817 DOI: 10.1016/j.brainres.2013.03.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/19/2013] [Accepted: 03/29/2013] [Indexed: 12/15/2022]
Abstract
Pesticide exposure during brain development represents an important risk factor for the onset of brain-aging processes. Here, the impact of permethrin administered to rats from 6th to 21st day of life, at a dose near to "no observed adverse effect level" (NOAEL), was studied when animals reached 500 day-old. The permethrin treatment induced a decrease in Nurr1 gene expression in striatum, an increase in hippocampus and cerebellum, while the protein level changed only in striatum where it was increased. NF-kB p65 gene expression was increased in cerebellum, while its protein level augmented in cerebellum and in prefrontal cortex and decreased in hippocampus of treated rats compared to control ones. Nrf-2 gene expression resulted significantly higher only in cerebellum of treated animals. The results suggest that early life permethrin treatment induces long-lasting effects leading to dopaminergic neuronal disorders, monitored by Nurr1 alteration. Moreover the impairment of NF-kB and Nrf-2, important for the balance between pro- and anti-inflammatory systems, confirms that the neonatal permethrin treatment can influence genes involved with the onset of brain-ageing processes.
Collapse
|
18
|
Changes in brainstem serotonergic and dopaminergic cell populations in experimental and clinical Huntington's disease. Neuroscience 2013; 238:71-81. [PMID: 23403175 DOI: 10.1016/j.neuroscience.2013.01.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/20/2013] [Accepted: 01/27/2013] [Indexed: 12/14/2022]
Abstract
The predominant motor symptom in Huntington's disease (HD) is chorea. The patho-anatomical basis for the chorea is not well known, but a link with the dopaminergic system has been suggested by post-mortem and clinical studies. Our previous work revealed an increased number of dopamine-containing cells in the substantia nigra and ventral tegmental area in a transgenic rat model of HD (tgHD). Since there were no changes in the total number of cells in those regions, we hypothesized that changes in cell phenotype were taking place. Here, we tested this hypothesis by studying the dorsal raphe nucleus (DRN), which houses dopaminergic and non-dopaminergic (mainly serotonergic) neurons in tgHD rat tissue and postmortem HD human tissue. We found an increased number of dopamine and reduced number of serotonin-containing cells in the DRN of tgHD rats. Similar findings in postmortem HD brain tissue indicate that these changes also occur in patients. Further investigations in the tgHD animal tissue revealed the presence of dopaminergic cell bodies in the B6 raphe region, while in control animals exclusively serotonin-containing cells were found. These data suggest the existence of phenotype changes in monoaminergic neurons in the DRN in HD and shed new light on the neurobiology of clinical neurological symptoms such as chorea and mood changes.
Collapse
|
19
|
Dulcis D, Spitzer NC. Reserve pool neuron transmitter respecification: Novel neuroplasticity. Dev Neurobiol 2012; 72:465-74. [PMID: 21595049 DOI: 10.1002/dneu.20920] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The identity of the neurotransmitters expressed by neurons has been thought to be fixed and immutable, but recent studies demonstrate that changes in electrical activity can rapidly and reversibly reconfigure the transmitters and corresponding transmitter receptors that neurons express. Induction of transmitter expression can be achieved by selective activation of afferents recruited by a physiological range of sensory input. Strikingly, neurons acquiring an additional transmitter project to appropriate targets prior to transmitter respecification in some cases, indicating the presence of reserve pools of neurons that can boost circuit function. We discuss the evidence for such reserve pools, their likely locations and ways to test for their existence, and the potential clinical value of such circuit-specific neurotransmitter respecification for treatments of neurological disorders.
Collapse
Affiliation(s)
- Davide Dulcis
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California-San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
20
|
Sadaf S, Birman S, Hasan G. Synaptic activity in serotonergic neurons is required for air-puff stimulated flight in Drosophila melanogaster. PLoS One 2012; 7:e46405. [PMID: 23029511 PMCID: PMC3459902 DOI: 10.1371/journal.pone.0046405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/01/2012] [Indexed: 12/23/2022] Open
Abstract
Background Flight is an integral component of many complex behavioral patterns in insects. The giant fiber circuit has been well studied in several insects including Drosophila. However, components of the insect flight circuit that respond to an air-puff stimulus and comprise the flight central pattern generator are poorly defined. Aminergic neurons have been implicated in locust, moth and Drosophila flight. Here we have investigated the requirement of neuronal activity in serotonergic neurons, during development and in adults, on air-puff induced flight in Drosophila. Methodology/Principal Findings To target serotonergic neurons specifically, a Drosophila strain that contains regulatory regions from the TRH (Tryptophan Hydroxylase) gene linked to the yeast transcription factor GAL4 was used. By blocking synaptic transmission from serotonergic neurons with a tetanus toxin transgene or by hyperpolarisation with Kir2.1, close to 50% adults became flightless. Temporal expression of a temperature sensitive Dynamin mutant transgene (Shits) suggests that synaptic function in serotonergic neurons is required both during development and in adults. Depletion of IP3R in serotonergic neurons via RNAi did not affect flight. Interestingly, at all stages a partial requirement for synaptic activity in serotonergic neurons was observed. The status of serotonergic neurons was investigated in the central nervous system of larvae and adults expressing tetanus toxin. A small but significant reduction was observed in serotonergic cell number in adult second thoracic segments from flightless tetanus toxin expressing animals. Conclusions These studies show that loss of synaptic activity in serotonergic neurons causes a flight deficit. The temporal focus of the flight deficit is during pupal development and in adults. The cause of the flight deficit is likely to be loss of neurons and reduced synaptic function. Based on the partial phenotypes, serotonergic neurons appear to be modulatory, rather than an intrinsic part of the flight circuit.
Collapse
Affiliation(s)
- Sufia Sadaf
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Serge Birman
- Laboratoire de Neurobiologie, Centre National de la Recherche Scientifique, Ecole Supérieure de Physique et de Chimie Industrielles, ParisTech, Paris, France
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
21
|
Clemens S, Belin-Rauscent A, Simmers J, Combes D. Opposing modulatory effects of D1- and D2-like receptor activation on a spinal central pattern generator. J Neurophysiol 2012; 107:2250-9. [DOI: 10.1152/jn.00366.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of dopamine in regulating spinal cord function is receiving increasing attention, but its actions on spinal motor networks responsible for rhythmic behaviors remain poorly understood. Here, we have explored the modulatory influence of dopamine on locomotory central pattern generator (CPG) circuitry in the spinal cord of premetamorphic Xenopus laevis tadpoles. Bath application of exogenous dopamine to isolated brain stem-spinal cords exerted divergent dose-dependent effects on spontaneous episodic patterns of locomotory-related activity recorded extracellularly from spinal ventral roots. At low concentration (2 μM), dopamine reduced the occurrence of bursts and fictive swim episodes and increased episode cycle periods. In contrast, at high concentration (50 μM) dopamine reversed its actions on fictive swimming, now increasing both burst and swim episode occurrences while reducing episode periods. The low-dopamine effects were mimicked by the D2-like receptor agonists bromocriptine and quinpirole, whereas the D1-like receptor agonist SKF 38393 reproduced the effects of high dopamine. Furthermore, the motor response to the D1-like antagonist SCH 23390 resembled that to the D2 agonists, whereas the D2-like antagonist raclopride mimicked the effects of the D1 agonist. Together, these findings indicate that dopamine plays an important role in modulating spinal locomotor activity. Moreover, the transmitter's opposing influences on the same target CPG are likely to be accomplished by a specific, concentration-dependent recruitment of independent D2- and D1-like receptor signaling pathways that differentially mediate inhibitory and excitatory actions.
Collapse
Affiliation(s)
- S. Clemens
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina; and
| | - A. Belin-Rauscent
- Université de Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Bordeaux, France
| | - J. Simmers
- Université de Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Bordeaux, France
| | - D. Combes
- Université de Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Bordeaux, France
| |
Collapse
|
22
|
Demarque M, Spitzer NC. Neurotransmitter phenotype plasticity: an unexpected mechanism in the toolbox of network activity homeostasis. Dev Neurobiol 2012; 72:22-32. [PMID: 21557513 DOI: 10.1002/dneu.20909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transmitter phenotype of a neuron has long been thought to be stable for the lifespan. Much as eyes have one color and do not change it over time, neurons have been thought to have one neurotransmitter and retain it for their lifetime. Both principles, exclusivity and stability, are challenged by recent data. More and more neurons in different regions of the brain appear to coexpress two or more neurotransmitters. Moreover, the profile of neurotransmitter expression of a given neuron has been shown to change over time, both during development and in response to changes in activity. The present review summarizes recent studies of this neurotransmitter phenotype plasticity (NPP). Homeostatic mechanisms of plasticity are aimed at maintaining the system within a functional range. They appear to be critical for optimal network operations and have been thought to operate largely by regulating intrinsic excitability, synapse number and synaptic strength. NPP provides a new and unexpected level of regulation of network homeostasis. We propose that it provides the basis for NT coexpression and discuss emerging issues and new questions for further studies in coming years.
Collapse
Affiliation(s)
- Michaël Demarque
- Neurobiology Section, Division of Biological Sciences, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
23
|
Aumann T, Horne M. Activity‐dependent regulation of the dopamine phenotype in substantia nigra neurons. J Neurochem 2012; 121:497-515. [DOI: 10.1111/j.1471-4159.2012.07703.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tim Aumann
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Neuroscience, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Mal Horne
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- St Vincent’s Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
24
|
Abstract
For many years it has been assumed that the identity of the transmitters expressed by neurons is stable and unchanging. Recent work, however, shows that electrical activity can respecify neurotransmitter expression during development and in the mature nervous system, and an understanding is emerging of the molecular mechanisms underlying activity-dependent transmitter respecification. Changes in postsynaptic neurotransmitter receptor expression accompany and match changes in transmitter specification, thus enabling synaptic transmission. The functional roles of neurotransmitter respecification are beginning to be understood and appear to involve homeostatic synaptic regulation, which in turn influences behaviour. Activation of this novel form of plasticity by sensorimotor stimuli may provide clinical benefits.
Collapse
|