1
|
Kotlarz P, Lankinen K, Hakonen M, Turpin T, Polimeni JR, Ahveninen J. Multilayer Network Analysis across Cortical Depths in Resting-State 7T fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.23.573208. [PMID: 38187540 PMCID: PMC10769454 DOI: 10.1101/2023.12.23.573208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In graph theory, "multilayer networks" represent systems involving several interconnected topological levels. One example in neuroscience is the stratification of connections between different cortical depths or "laminae", which is becoming non-invasively accessible in humans using ultra-high-resolution functional MRI (fMRI). Here, we applied multilayer graph theory to examine functional connectivity across different cortical depths in humans, using 7T fMRI (1-mm3 voxels; 30 participants). Blood oxygenation level dependent (BOLD) signals were derived from five depths between the white matter and pial surface. We compared networks where the inter-regional connections were limited to a single cortical depth only ("layer-by-layer matrices") to those considering all possible connections between areas and cortical depths ("multilayer matrix"). We utilized global and local graph theory features that quantitatively characterize network attributes including network composition, nodal centrality, path-based measures, and hub segregation. Detecting functional differences between cortical depths was improved using multilayer connectomics compared to the layer-by-layer versions. Superficial depths of the cortex dominated information transfer and deeper depths drove clustering. These differences were largest in frontotemporal and limbic regions. fMRI functional connectivity across different cortical depths may contain neurophysiologically relevant information; thus, multilayer connectomics could provide a methodological framework for studies on how information flows across this stratification.
Collapse
Affiliation(s)
- Parker Kotlarz
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kaisu Lankinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Maria Hakonen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Clarke S, Da Costa S, Crottaz-Herbette S. Dual Representation of the Auditory Space. Brain Sci 2024; 14:535. [PMID: 38928534 PMCID: PMC11201621 DOI: 10.3390/brainsci14060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Auditory spatial cues contribute to two distinct functions, of which one leads to explicit localization of sound sources and the other provides a location-linked representation of sound objects. Behavioral and imaging studies demonstrated right-hemispheric dominance for explicit sound localization. An early clinical case study documented the dissociation between the explicit sound localizations, which was heavily impaired, and fully preserved use of spatial cues for sound object segregation. The latter involves location-linked encoding of sound objects. We review here evidence pertaining to brain regions involved in location-linked representation of sound objects. Auditory evoked potential (AEP) and functional magnetic resonance imaging (fMRI) studies investigated this aspect by comparing encoding of individual sound objects, which changed their locations or remained stationary. Systematic search identified 1 AEP and 12 fMRI studies. Together with studies of anatomical correlates of impaired of spatial-cue-based sound object segregation after focal brain lesions, the present evidence indicates that the location-linked representation of sound objects involves strongly the left hemisphere and to a lesser degree the right hemisphere. Location-linked encoding of sound objects is present in several early-stage auditory areas and in the specialized temporal voice area. In these regions, emotional valence benefits from location-linked encoding as well.
Collapse
Affiliation(s)
- Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Av. Pierre-Decker 5, 1011 Lausanne, Switzerland; (S.D.C.); (S.C.-H.)
| | | | | |
Collapse
|
3
|
Lankinen K, Ahveninen J, Jas M, Raij T, Ahlfors SP. Neuronal Modeling of Cross-Sensory Visual Evoked Magnetoencephalography Responses in the Auditory Cortex. J Neurosci 2024; 44:e1119232024. [PMID: 38508715 PMCID: PMC11044114 DOI: 10.1523/jneurosci.1119-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024] Open
Abstract
Previous studies have demonstrated that auditory cortex activity can be influenced by cross-sensory visual inputs. Intracortical laminar recordings in nonhuman primates have suggested a feedforward (FF) type profile for auditory evoked but feedback (FB) type for visual evoked activity in the auditory cortex. To test whether cross-sensory visual evoked activity in the auditory cortex is associated with FB inputs also in humans, we analyzed magnetoencephalography (MEG) responses from eight human subjects (six females) evoked by simple auditory or visual stimuli. In the estimated MEG source waveforms for auditory cortex regions of interest, auditory evoked response showed peaks at 37 and 90 ms and visual evoked response at 125 ms. The inputs to the auditory cortex were modeled through FF- and FB-type connections targeting different cortical layers using the Human Neocortical Neurosolver (HNN), which links cellular- and circuit-level mechanisms to MEG signals. HNN modeling suggested that the experimentally observed auditory response could be explained by an FF input followed by an FB input, whereas the cross-sensory visual response could be adequately explained by just an FB input. Thus, the combined MEG and HNN results support the hypothesis that cross-sensory visual input in the auditory cortex is of FB type. The results also illustrate how the dynamic patterns of the estimated MEG source activity can provide information about the characteristics of the input into a cortical area in terms of the hierarchical organization among areas.
Collapse
Affiliation(s)
- Kaisu Lankinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Seppo P Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
4
|
Lankinen K, Ahveninen J, Jas M, Raij T, Ahlfors SP. Neuronal modeling of magnetoencephalography responses in auditory cortex to auditory and visual stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.16.545371. [PMID: 37398025 PMCID: PMC10312796 DOI: 10.1101/2023.06.16.545371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Previous studies have demonstrated that auditory cortex activity can be influenced by crosssensory visual inputs. Intracortical recordings in non-human primates (NHP) have suggested a bottom-up feedforward (FF) type laminar profile for auditory evoked but top-down feedback (FB) type for cross-sensory visual evoked activity in the auditory cortex. To test whether this principle applies also to humans, we analyzed magnetoencephalography (MEG) responses from eight human subjects (six females) evoked by simple auditory or visual stimuli. In the estimated MEG source waveforms for auditory cortex region of interest, auditory evoked responses showed peaks at 37 and 90 ms and cross-sensory visual responses at 125 ms. The inputs to the auditory cortex were then modeled through FF and FB type connections targeting different cortical layers using the Human Neocortical Neurosolver (HNN), which consists of a neocortical circuit model linking the cellular- and circuit-level mechanisms to MEG. The HNN models suggested that the measured auditory response could be explained by an FF input followed by an FB input, and the crosssensory visual response by an FB input. Thus, the combined MEG and HNN results support the hypothesis that cross-sensory visual input in the auditory cortex is of FB type. The results also illustrate how the dynamic patterns of the estimated MEG/EEG source activity can provide information about the characteristics of the input into a cortical area in terms of the hierarchical organization among areas.
Collapse
Affiliation(s)
- Kaisu Lankinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- Department of Radiology, Harvard Medical School, Boston, MA 02115
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- Department of Radiology, Harvard Medical School, Boston, MA 02115
| | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- Department of Radiology, Harvard Medical School, Boston, MA 02115
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- Department of Radiology, Harvard Medical School, Boston, MA 02115
| | - Seppo P. Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- Department of Radiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
5
|
Mai A, Riès S, Ben-Haim S, Shih JJ, Gentner TQ. Acoustic and language-specific sources for phonemic abstraction from speech. Nat Commun 2024; 15:677. [PMID: 38263364 PMCID: PMC10805762 DOI: 10.1038/s41467-024-44844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
Spoken language comprehension requires abstraction of linguistic information from speech, but the interaction between auditory and linguistic processing of speech remains poorly understood. Here, we investigate the nature of this abstraction using neural responses recorded intracranially while participants listened to conversational English speech. Capitalizing on multiple, language-specific patterns where phonological and acoustic information diverge, we demonstrate the causal efficacy of the phoneme as a unit of analysis and dissociate the unique contributions of phonemic and spectrographic information to neural responses. Quantitive higher-order response models also reveal that unique contributions of phonological information are carried in the covariance structure of the stimulus-response relationship. This suggests that linguistic abstraction is shaped by neurobiological mechanisms that involve integration across multiple spectro-temporal features and prior phonological information. These results link speech acoustics to phonology and morphosyntax, substantiating predictions about abstractness in linguistic theory and providing evidence for the acoustic features that support that abstraction.
Collapse
Affiliation(s)
- Anna Mai
- University of California, San Diego, Linguistics, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| | - Stephanie Riès
- San Diego State University, School of Speech, Language, and Hearing Sciences, 5500 Campanile Drive, San Diego, CA, 92182, USA
- San Diego State University, Center for Clinical and Cognitive Sciences, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Sharona Ben-Haim
- University of California, San Diego, Neurological Surgery, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jerry J Shih
- University of California, San Diego, Neurosciences, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Timothy Q Gentner
- University of California, San Diego, Psychology, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- University of California, San Diego, Neurobiology, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- University of California, San Diego, Kavli Institute for Brain and Mind, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Jia K, Goebel R, Kourtzi Z. Ultra-High Field Imaging of Human Visual Cognition. Annu Rev Vis Sci 2023; 9:479-500. [PMID: 37137282 DOI: 10.1146/annurev-vision-111022-123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Functional magnetic resonance imaging (fMRI), the key methodology for mapping the functions of the human brain in a noninvasive manner, is limited by low temporal and spatial resolution. Recent advances in ultra-high field (UHF) fMRI provide a mesoscopic (i.e., submillimeter resolution) tool that allows us to probe laminar and columnar circuits, distinguish bottom-up versus top-down pathways, and map small subcortical areas. We review recent work demonstrating that UHF fMRI provides a robust methodology for imaging the brain across cortical depths and columns that provides insights into the brain's organization and functions at unprecedented spatial resolution, advancing our understanding of the fine-scale computations and interareal communication that support visual cognition.
Collapse
Affiliation(s)
- Ke Jia
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
7
|
Lankinen K, Ahlfors SP, Mamashli F, Blazejewska AI, Raij T, Turpin T, Polimeni JR, Ahveninen J. Cortical depth profiles of auditory and visual 7 T functional MRI responses in human superior temporal areas. Hum Brain Mapp 2023; 44:362-372. [PMID: 35980015 PMCID: PMC9842898 DOI: 10.1002/hbm.26046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 02/02/2023] Open
Abstract
Invasive neurophysiological studies in nonhuman primates have shown different laminar activation profiles to auditory vs. visual stimuli in auditory cortices and adjacent polymodal areas. Means to examine the underlying feedforward vs. feedback type influences noninvasively have been limited in humans. Here, using 1-mm isotropic resolution 3D echo-planar imaging at 7 T, we studied the intracortical depth profiles of functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) signals to brief auditory (noise bursts) and visual (checkerboard) stimuli. BOLD percent-signal-changes were estimated at 11 equally spaced intracortical depths, within regions-of-interest encompassing auditory (Heschl's gyrus, Heschl's sulcus, planum temporale, and posterior superior temporal gyrus) and polymodal (middle and posterior superior temporal sulcus) areas. Effects of differing BOLD signal strengths for auditory and visual stimuli were controlled via normalization and statistical modeling. The BOLD depth profile shapes, modeled with quadratic regression, were significantly different for auditory vs. visual stimuli in auditory cortices, but not in polymodal areas. The different depth profiles could reflect sensory-specific feedforward versus cross-sensory feedback influences, previously shown in laminar recordings in nonhuman primates. The results suggest that intracortical BOLD profiles can help distinguish between feedforward and feedback type influences in the human brain. Further experimental studies are still needed to clarify how underlying signal strength influences BOLD depth profiles under different stimulus conditions.
Collapse
Affiliation(s)
- Kaisu Lankinen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Seppo P. Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Anna I. Blazejewska
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Tori Turpin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
- Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
8
|
Lage-Castellanos A, De Martino F, Ghose GM, Gulban OF, Moerel M. Selective attention sharpens population receptive fields in human auditory cortex. Cereb Cortex 2022; 33:5395-5408. [PMID: 36336333 PMCID: PMC10152083 DOI: 10.1093/cercor/bhac427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Selective attention enables the preferential processing of relevant stimulus aspects. Invasive animal studies have shown that attending a sound feature rapidly modifies neuronal tuning throughout the auditory cortex. Human neuroimaging studies have reported enhanced auditory cortical responses with selective attention. To date, it remains unclear how the results obtained with functional magnetic resonance imaging (fMRI) in humans relate to the electrophysiological findings in animal models. Here we aim to narrow the gap between animal and human research by combining a selective attention task similar in design to those used in animal electrophysiology with high spatial resolution ultra-high field fMRI at 7 Tesla. Specifically, human participants perform a detection task, whereas the probability of target occurrence varies with sound frequency. Contrary to previous fMRI studies, we show that selective attention resulted in population receptive field sharpening, and consequently reduced responses, at the attended sound frequencies. The difference between our results to those of previous fMRI studies supports the notion that the influence of selective attention on auditory cortex is diverse and may depend on context, stimulus, and task.
Collapse
Affiliation(s)
- Agustin Lage-Castellanos
- Department of Cognitive Neuroscience , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht University , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht Brain Imaging Center (MBIC) , 6200 MD, Maastricht , The Netherlands
- Department of NeuroInformatics, Cuban Neuroscience Center , Havana City 11600 , Cuba
| | - Federico De Martino
- Department of Cognitive Neuroscience , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht University , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht Brain Imaging Center (MBIC) , 6200 MD, Maastricht , The Netherlands
- Center for Magnetic Resonance Research , Department of Radiology, , Minneapolis, MN 55455 , United States
- University of Minnesota , Department of Radiology, , Minneapolis, MN 55455 , United States
| | - Geoffrey M Ghose
- Center for Magnetic Resonance Research , Department of Radiology, , Minneapolis, MN 55455 , United States
- University of Minnesota , Department of Radiology, , Minneapolis, MN 55455 , United States
| | | | - Michelle Moerel
- Department of Cognitive Neuroscience , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht University , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht Brain Imaging Center (MBIC) , 6200 MD, Maastricht , The Netherlands
- Maastricht Centre for Systems Biology, Maastricht University , 6200 MD, Maastricht , The Netherlands
| |
Collapse
|
9
|
Moerel M, Yacoub E, Gulban OF, Lage-Castellanos A, De Martino F. Using high spatial resolution fMRI to understand representation in the auditory network. Prog Neurobiol 2021; 207:101887. [PMID: 32745500 PMCID: PMC7854960 DOI: 10.1016/j.pneurobio.2020.101887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/27/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022]
Abstract
Following rapid methodological advances, ultra-high field (UHF) functional and anatomical magnetic resonance imaging (MRI) has been repeatedly and successfully used for the investigation of the human auditory system in recent years. Here, we review this work and argue that UHF MRI is uniquely suited to shed light on how sounds are represented throughout the network of auditory brain regions. That is, the provided gain in spatial resolution at UHF can be used to study the functional role of the small subcortical auditory processing stages and details of cortical processing. Further, by combining high spatial resolution with the versatility of MRI contrasts, UHF MRI has the potential to localize the primary auditory cortex in individual hemispheres. This is a prerequisite to study how sound representation in higher-level auditory cortex evolves from that in early (primary) auditory cortex. Finally, the access to independent signals across auditory cortical depths, as afforded by UHF, may reveal the computations that underlie the emergence of an abstract, categorical sound representation based on low-level acoustic feature processing. Efforts on these research topics are underway. Here we discuss promises as well as challenges that come with studying these research questions using UHF MRI, and provide a future outlook.
Collapse
Affiliation(s)
- Michelle Moerel
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands.
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA; Brain Innovation B.V., Maastricht, the Netherlands.
| | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Department of NeuroInformatics, Cuban Center for Neuroscience, Cuba.
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
10
|
Huber LR, Poser BA, Bandettini PA, Arora K, Wagstyl K, Cho S, Goense J, Nothnagel N, Morgan AT, van den Hurk J, Müller AK, Reynolds RC, Glen DR, Goebel R, Gulban OF. LayNii: A software suite for layer-fMRI. Neuroimage 2021; 237:118091. [PMID: 33991698 PMCID: PMC7615890 DOI: 10.1016/j.neuroimage.2021.118091] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/19/2021] [Accepted: 04/16/2021] [Indexed: 01/06/2023] Open
Abstract
High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of conventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed opensource and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain 'layerification' and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based vein mitigation of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data.
Collapse
Affiliation(s)
| | - Benedikt A Poser
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | | | - Kabir Arora
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Shinho Cho
- CMRR, University of Minneapolis, MN, USA
| | | | | | | | | | | | | | | | - Rainer Goebel
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Brain Innovation, Maastricht, the Netherlands
| | - Omer Faruk Gulban
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Brain Innovation, Maastricht, the Netherlands
| |
Collapse
|
11
|
Stanley OW, Kuurstra AB, Klassen LM, Menon RS, Gati JS. Effects of phase regression on high-resolution functional MRI of the primary visual cortex. Neuroimage 2020; 227:117631. [PMID: 33316391 DOI: 10.1016/j.neuroimage.2020.117631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
High-resolution functional MRI studies have become a powerful tool to non-invasively probe the sub-millimeter functional organization of the human cortex. Advances in MR hardware, imaging techniques and sophisticated post-processing methods have allowed high resolution fMRI to be used in both the clinical and academic neurosciences. However, consensus within the community regarding the use of gradient echo (GE) or spin echo (SE) based acquisition remains largely divided. On one hand, GE provides a high temporal signal-to-noise ratio (tSNR) technique sensitive to both the macro- and micro-vascular signal while SE based methods are more specific to microvasculature but suffer from lower tSNR and specific absorption rate limitations, especially at high field and with short repetition times. Fortunately, the phase of the GE-EPI signal is sensitive to vessel size and this provides a potential avenue to reduce the macrovascular weighting of the signal (phase regression, Menon 2002). In order to determine the efficacy of this technique at high-resolution, phase regression was applied to GE-EPI timeseries and compared to SE-EPI to determine if GE-EPI's specificity to the microvascular compartment improved. To do this, functional data was collected from seven subjects on a neuro-optimized 7 T system at 800 μm isotropic resolution with both GE-EPI and SE-EPI while observing an 8 Hz contrast reversing checkerboard. Phase data from the GE-EPI was used to create a microvasculature-weighted time series (GE-EPI-PR). Anatomical imaging (MP2RAGE) was also collected to allow for surface segmentation so that the functional results could be projected onto a surface. A multi-echo gradient echo sequence was collected and used to identify venous vasculature. The GE-EPI-PR surface activation maps showed a high qualitative similarity with SE-EPI and also produced laminar activity profiles similar to SE-EPI. When the GE-EPI and GE-EPI-PR distributions were compared to SE-EPI it was shown that GE-EPI-PR had similar distribution characteristics to SE-EPI (p < 0.05) across the top 60% of cortex. Furthermore, it was shown that GE-EPI-PR has a higher contrast-to-noise ratio (0.5 ± 0.2, mean ± std. dev. across layers) than SE-EPI (0.27 ± 0.07) demonstrating the technique has higher sensitivity than SE-EPI. Taken together this evidence suggests phase regression is a useful method in low SNR studies such as high-resolution fMRI.
Collapse
Affiliation(s)
- Olivia W Stanley
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Medical Biophysics, The University of Western Ontario, London, Ontario, Canada.
| | - Alan B Kuurstra
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Qi J, Zhang Z, He N, Liu X, Zhang C, Yan J. Cortical Stimulation Induces Excitatory Postsynaptic Potentials of Inferior Colliculus Neurons in a Frequency-Specific Manner. Front Neural Circuits 2020; 14:591986. [PMID: 33192337 PMCID: PMC7649762 DOI: 10.3389/fncir.2020.591986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022] Open
Abstract
Corticofugal modulation of auditory responses in subcortical nuclei has been extensively studied whereas corticofugal synaptic transmission must still be characterized. This study examined postsynaptic potentials of the corticocollicular system, i.e., the projections from the primary auditory cortex (AI) to the central nucleus of the inferior colliculus (ICc) of the midbrain, in anesthetized C57 mice. We used focal electrical stimulation at the microampere level to activate the AI (ESAI) and in vivo whole-cell current-clamp to record the membrane potentials of ICc neurons. Following the whole-cell patch-clamp recording of 88 ICc neurons, 42 ICc neurons showed ESAI-evoked changes in the membrane potentials. We found that the ESAI induced inhibitory postsynaptic potentials in 6 out of 42 ICc neurons but only when the stimulus current was 96 μA or higher. In the remaining 36 ICc neurons, excitatory postsynaptic potentials (EPSPs) were induced at a much lower stimulus current. The 36 ICc neurons exhibiting EPSPs were categorized into physiologically matched neurons (n = 12) when the characteristic frequencies of the stimulated AI and recorded ICc neurons were similar (≤1 kHz) and unmatched neurons (n = 24) when they were different (>1 kHz). Compared to unmatched neurons, matched neurons exhibited a significantly lower threshold of evoking noticeable EPSP, greater EPSP amplitude, and shorter EPSP latency. Our data allow us to propose that corticocollicular synaptic transmission is primarily excitatory and that synaptic efficacy is dependent on the relationship of the frequency tunings between AI and ICc neurons.
Collapse
Affiliation(s)
- Jiyao Qi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Na He
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xiuping Liu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Caseng Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jun Yan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Weldon KB, Olman CA. Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging. Philos Trans R Soc Lond B Biol Sci 2020; 376:20200040. [PMID: 33190599 PMCID: PMC7741029 DOI: 10.1098/rstb.2020.0040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies with ultra-high field (UHF, 7+ Tesla) technology enable the acquisition of high-resolution images. In this work, we discuss recent achievements in UHF fMRI at the mesoscopic scale, on the order of cortical columns and layers, and examine approaches to addressing common challenges. As researchers push to smaller and smaller voxel sizes, acquisition and analysis decisions have greater potential to degrade spatial accuracy, and UHF fMRI data must be carefully interpreted. We consider the impact of acquisition decisions on the spatial specificity of the MR signal with a representative dataset with 0.8 mm isotropic resolution. We illustrate the trade-offs in contrast with noise ratio and spatial specificity of different acquisition techniques and show that acquisition blurring can increase the effective voxel size by as much as 50% in some dimensions. We further describe how different sources of degradations to spatial resolution in functional data may be characterized. Finally, we emphasize that progress in UHF fMRI depends not only on scientific discovery and technical advancement, but also on informal discussions and documentation of challenges researchers face and overcome in pursuit of their goals. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kimberly B Weldon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA.,Center for Magnetic Resonance Imaging, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cheryl A Olman
- Center for Magnetic Resonance Imaging, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Bowen Z, Winkowski DE, Kanold PO. Functional organization of mouse primary auditory cortex in adult C57BL/6 and F1 (CBAxC57) mice. Sci Rep 2020; 10:10905. [PMID: 32616766 PMCID: PMC7331716 DOI: 10.1038/s41598-020-67819-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/05/2022] Open
Abstract
The primary auditory cortex (A1) plays a key role for sound perception since it represents one of the first cortical processing stations for sounds. Recent studies have shown that on the cellular level the frequency organization of A1 is more heterogeneous than previously appreciated. However, many of these studies were performed in mice on the C57BL/6 background which develop high frequency hearing loss with age making them a less optimal choice for auditory research. In contrast, mice on the CBA background retain better hearing sensitivity in old age. Since potential strain differences could exist in A1 organization between strains, we performed comparative analysis of neuronal populations in A1 of adult (~ 10 weeks) C57BL/6 mice and F1 (CBAxC57) mice. We used in vivo 2-photon imaging of pyramidal neurons in cortical layers L4 and L2/3 of awake mouse primary auditory cortex (A1) to characterize the populations of neurons that were active to tonal stimuli. Pure tones recruited neurons of widely ranging frequency preference in both layers and strains with neurons in F1 (CBAxC57) mice exhibiting a wider range of frequency preference particularly to higher frequencies. Frequency selectivity was slightly higher in C57BL/6 mice while neurons in F1 (CBAxC57) mice showed a greater sound-level sensitivity. The spatial heterogeneity of frequency preference was present in both strains with F1 (CBAxC57) mice exhibiting higher tuning diversity across all measured length scales. Our results demonstrate that the tone evoked responses and frequency representation in A1 of adult C57BL/6 and F1 (CBAxC57) mice are largely similar.
Collapse
Affiliation(s)
- Zac Bowen
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA.
| |
Collapse
|
15
|
Havlicek M, Uludağ K. A dynamical model of the laminar BOLD response. Neuroimage 2020; 204:116209. [DOI: 10.1016/j.neuroimage.2019.116209] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/11/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
|
16
|
Yi HG, Leonard MK, Chang EF. The Encoding of Speech Sounds in the Superior Temporal Gyrus. Neuron 2019; 102:1096-1110. [PMID: 31220442 PMCID: PMC6602075 DOI: 10.1016/j.neuron.2019.04.023] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/02/2023]
Abstract
The human superior temporal gyrus (STG) is critical for extracting meaningful linguistic features from speech input. Local neural populations are tuned to acoustic-phonetic features of all consonants and vowels and to dynamic cues for intonational pitch. These populations are embedded throughout broader functional zones that are sensitive to amplitude-based temporal cues. Beyond speech features, STG representations are strongly modulated by learned knowledge and perceptual goals. Currently, a major challenge is to understand how these features are integrated across space and time in the brain during natural speech comprehension. We present a theory that temporally recurrent connections within STG generate context-dependent phonological representations, spanning longer temporal sequences relevant for coherent percepts of syllables, words, and phrases.
Collapse
Affiliation(s)
- Han Gyol Yi
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Matthew K Leonard
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Moerel M, De Martino F, Uğurbil K, Yacoub E, Formisano E. Processing complexity increases in superficial layers of human primary auditory cortex. Sci Rep 2019; 9:5502. [PMID: 30940888 PMCID: PMC6445291 DOI: 10.1038/s41598-019-41965-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/20/2019] [Indexed: 11/29/2022] Open
Abstract
The layers of the neocortex each have a unique anatomical connectivity and functional role. Their exploration in the human brain, however, has been severely restricted by the limited spatial resolution of non-invasive measurement techniques. Here, we exploit the sensitivity and specificity of ultra-high field fMRI at 7 Tesla to investigate responses to natural sounds at deep, middle, and superficial cortical depths of the human auditory cortex. Specifically, we compare the performance of computational models that represent different hypotheses on sound processing inside and outside the primary auditory cortex (PAC). We observe that while BOLD responses in deep and middle PAC layers are equally well represented by a simple frequency model and a more complex spectrotemporal modulation model, responses in superficial PAC are better represented by the more complex model. This indicates an increase in processing complexity in superficial PAC, which remains present throughout cortical depths in the non-primary auditory cortex. These results suggest that a relevant transformation in sound processing takes place between the thalamo-recipient middle PAC layers and superficial PAC. This transformation may be a first computational step towards sound abstraction and perception, serving to form an increasingly more complex representation of the physical input.
Collapse
Affiliation(s)
- Michelle Moerel
- Maastricht Centre for Systems Biology, Maastricht University, Universiteitssingel 60, 6229 ER, Maastricht, The Netherlands.
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands.
- Maastricht Brain Imaging Center (MBIC), Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands.
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN, 55455, USA.
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (MBIC), Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN, 55455, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN, 55455, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN, 55455, USA
| | - Elia Formisano
- Maastricht Centre for Systems Biology, Maastricht University, Universiteitssingel 60, 6229 ER, Maastricht, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (MBIC), Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
| |
Collapse
|