1
|
Barth-Maron A, D'Alessandro I, Wilson RI. Interactions between specialized gain control mechanisms in olfactory processing. Curr Biol 2023; 33:5109-5120.e7. [PMID: 37967554 DOI: 10.1016/j.cub.2023.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Gain control is a process that adjusts a system's sensitivity when input levels change. Neural systems contain multiple mechanisms of gain control, but we do not understand why so many mechanisms are needed or how they interact. Here, we investigate these questions in the Drosophila antennal lobe, where we identify several types of inhibitory interneurons with specialized gain control functions. We find that some interneurons are nonspiking, with compartmentalized calcium signals, and they specialize in intra-glomerular gain control. Conversely, we find that other interneurons are recruited by strong and widespread network input; they specialize in global presynaptic gain control. Using computational modeling and optogenetic perturbations, we show how these mechanisms can work together to improve stimulus discrimination while also minimizing temporal distortions in network activity. Our results demonstrate how the robustness of neural network function can be increased by interactions among diverse and specialized mechanisms of gain control.
Collapse
Affiliation(s)
- Asa Barth-Maron
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel D'Alessandro
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Fusca D, Kloppenburg P. Task-specific roles of local interneurons for inter- and intraglomerular signaling in the insect antennal lobe. eLife 2021; 10:65217. [PMID: 34554087 PMCID: PMC8460249 DOI: 10.7554/elife.65217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Local interneurons (LNs) mediate complex interactions within the antennal lobe, the primary olfactory system of insects, and the functional analog of the vertebrate olfactory bulb. In the cockroach Periplaneta americana, as in other insects, several types of LNs with distinctive physiological and morphological properties can be defined. Here, we combined whole-cell patch-clamp recordings and Ca2+ imaging of individual LNs to analyze the role of spiking and nonspiking LNs in inter- and intraglomerular signaling during olfactory information processing. Spiking GABAergic LNs reacted to odorant stimulation with a uniform rise in [Ca2+]i in the ramifications of all innervated glomeruli. In contrast, in nonspiking LNs, glomerular Ca2+ signals were odorant specific and varied between glomeruli, resulting in distinct, glomerulus-specific tuning curves. The cell type-specific differences in Ca2+ dynamics support the idea that spiking LNs play a primary role in interglomerular signaling, while they assign nonspiking LNs an essential role in intraglomerular signaling.
Collapse
Affiliation(s)
- Debora Fusca
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Günzel Y, McCollum J, Paoli M, Galizia CG, Petelski I, Couzin-Fuchs E. Social modulation of individual preferences in cockroaches. iScience 2021; 24:101964. [PMID: 33437942 PMCID: PMC7788088 DOI: 10.1016/j.isci.2020.101964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
In social species, decision-making is both influenced by, and in turn influences, the social context. This reciprocal feedback introduces coupling across scales, from the neural basis of sensing, to individual and collective decision-making. Here, we adopt an integrative approach investigating decision-making in dynamical social contexts. When choosing shelters, isolated cockroaches prefer vanillin-scented (food-associated) shelters over unscented ones, yet in groups, this preference is inverted. We demonstrate that this inversion can be replicated by replacing the full social context with social odors: presented alone food and social odors are attractive, yet when presented as a mixture they are avoided. Via antennal lobe calcium imaging, we show that neural activity in vanillin-responsive regions reduces as social odor concentration increases. Thus, we suggest that the mixture is evaluated as a distinct olfactory object with opposite valence, providing a mechanism that would naturally result in individuals avoiding what they perceive as recently exploited resources.
Collapse
Affiliation(s)
- Yannick Günzel
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Jaclyn McCollum
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Marco Paoli
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- CNRS, Research Centre for Animal Cognition, 31062 Toulouse Cedex 9, France
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Inga Petelski
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| |
Collapse
|
4
|
Fuscà D, Kloppenburg P. Odor processing in the cockroach antennal lobe-the network components. Cell Tissue Res 2021; 383:59-73. [PMID: 33486607 PMCID: PMC7872951 DOI: 10.1007/s00441-020-03387-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Highly interconnected neural networks perform olfactory signal processing in the central nervous system. In insects, the first synaptic processing of the olfactory input from the antennae occurs in the antennal lobe, the functional equivalent of the olfactory bulb in vertebrates. Key components of the olfactory network in the antennal lobe are two main types of neurons: the local interneurons and the projection (output) neurons. Both neuron types have different physiological tasks during olfactory processing, which accordingly require specialized functional phenotypes. This review gives an overview of important cell type-specific functional properties of the different types of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana, which is an experimental system that has elucidated many important biophysical and cellular bases of intrinsic physiological properties of these neurons.
Collapse
Affiliation(s)
- Debora Fuscà
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
5
|
Paoli M, Nishino H, Couzin-Fuchs E, Galizia CG. Coding of odour and space in the hemimetabolous insect Periplaneta americana. J Exp Biol 2020; 223:jeb218032. [PMID: 31932303 DOI: 10.1242/jeb.218032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022]
Abstract
The general architecture of the olfactory system is highly conserved from insects to humans, but neuroanatomical and physiological differences can be observed across species. The American cockroach, inhabiting dark shelters with a rather stable olfactory landscape, is equipped with long antennae used for sampling the surrounding air-space for orientation and navigation. The antennae's exceptional length provides a wide spatial working range for odour detection; however, it is still largely unknown whether and how this is also used for mapping the structure of the olfactory environment. By selectively labelling antennal lobe projection neurons with a calcium-sensitive dye, we investigated the logic of olfactory coding in this hemimetabolous insect. We show that odour responses are stimulus specific and concentration dependent, and that structurally related odorants evoke physiologically similar responses. By using spatially confined stimuli, we show that proximal stimulations induce stronger and faster responses than distal ones. Spatially confined stimuli of the female pheromone periplanone B activate a subregion of the male macroglomerulus. Thus, we report that the combinatorial logic of odour coding deduced from holometabolous insects applies also to this hemimetabolous species. Furthermore, a fast decrease in sensitivity along the antenna, not supported by a proportionate decrease in sensillar density, suggests a neural architecture that strongly emphasizes neuronal inputs from the proximal portion of the antenna.
Collapse
Affiliation(s)
- Marco Paoli
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Einat Couzin-Fuchs
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| | - C Giovanni Galizia
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Systematic Analysis of Transmitter Coexpression Reveals Organizing Principles of Local Interneuron Heterogeneity. eNeuro 2018; 5:eN-NWR-0212-18. [PMID: 30294668 PMCID: PMC6171738 DOI: 10.1523/eneuro.0212-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023] Open
Abstract
Broad neuronal classes are surprisingly heterogeneous across many parameters, and subclasses often exhibit partially overlapping traits including transmitter coexpression. However, the extent to which transmitter coexpression occurs in predictable, consistent patterns is unknown. Here, we demonstrate that pairwise coexpression of GABA and multiple neuropeptide families by olfactory local interneurons (LNs) of the moth Manduca sexta is highly heterogeneous, with a single LN capable of expressing neuropeptides from at least four peptide families and few instances in which neuropeptides are consistently coexpressed. Using computational modeling, we demonstrate that observed coexpression patterns cannot be explained by independent probabilities of expression of each neuropeptide. Our analyses point to three organizing principles that, once taken into consideration, allow replication of overall coexpression structure: (1) peptidergic neurons are highly likely to coexpress GABA; (2) expression probability of allatotropin depends on myoinhibitory peptide expression; and (3) the all-or-none coexpression patterns of tachykinin neurons with several other neuropeptides. For other peptide pairs, the presence of one peptide was not predictive of the presence of the other, and coexpression probability could be replicated by independent probabilities. The stochastic nature of these coexpression patterns highlights the heterogeneity of transmitter content among LNs and argues against clear-cut definition of subpopulation types based on the presence of single neuropeptides. Furthermore, the receptors for all neuropeptides and GABA were expressed within each population of principal neuron type in the antennal lobe (AL). Thus, activation of any given LN results in a dynamic cocktail of modulators that have the potential to influence every level of olfactory processing within the AL.
Collapse
|
7
|
Neupert S, Fusca D, Kloppenburg P, Predel R. Analysis of Single Neurons by Perforated Patch Clamp Recordings and MALDI-TOF Mass Spectrometry. ACS Chem Neurosci 2018; 9:2089-2096. [PMID: 29906100 DOI: 10.1021/acschemneuro.8b00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Single-cell mass spectrometry has become an established technique to study specific molecular properties such as the neuropeptide complement of identified neurons. Here, we describe a strategy to characterize, by MALDI-TOF mass spectrometry, neurochemical composition of neurons that were identified by their electrophysiological and neuroanatomical characteristics. The workflow for the first time combined perforated patch clamp recordings with dye loading by electroporation for electrophysiological and neuroanatomical characterization as well as chemical profiling of somata by MALDI-TOF mass spectrometry with subsequent immunohistochemistry. To develop our protocol, we used identified central olfactory neurons from the American cockroach Periplaneta americana. First, the combined approach was optimized using a relative homogeneous, well-characterized neuron population of uniglomerular projection neurons, which show acetylcholine esterase immunoreactivity. The general applicability of this approach was verified on local interneurons, which are a diverse neuron population expressing highly differentiated neuropeptidomes. Thus, this study shows that the newly established protocol is suitable to comprehensively analyze electrophysiological, neuroanatomical, and molecular properties of single neurons. We consider this approach an important step to foster single-cell analysis in a wide variety of neuron types.
Collapse
|
8
|
Watanabe H, Nishino H, Mizunami M, Yokohari F. Two Parallel Olfactory Pathways for Processing General Odors in a Cockroach. Front Neural Circuits 2017; 11:32. [PMID: 28529476 PMCID: PMC5418552 DOI: 10.3389/fncir.2017.00032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022] Open
Abstract
In animals, sensory processing via parallel pathways, including the olfactory system, is a common design. However, the mechanisms that parallel pathways use to encode highly complex and dynamic odor signals remain unclear. In the current study, we examined the anatomical and physiological features of parallel olfactory pathways in an evolutionally basal insect, the cockroach Periplaneta americana. In this insect, the entire system for processing general odors, from olfactory sensory neurons to higher brain centers, is anatomically segregated into two parallel pathways. Two separate populations of secondary olfactory neurons, type1 and type2 projection neurons (PNs), with dendrites in distinct glomerular groups relay olfactory signals to segregated areas of higher brain centers. We conducted intracellular recordings, revealing olfactory properties and temporal patterns of both types of PNs. Generally, type1 PNs exhibit higher odor-specificities to nine tested odorants than type2 PNs. Cluster analyses revealed that odor-evoked responses were temporally complex and varied in type1 PNs, while type2 PNs exhibited phasic on-responses with either early or late latencies to an effective odor. The late responses are 30–40 ms later than the early responses. Simultaneous intracellular recordings from two different PNs revealed that a given odor activated both types of PNs with different temporal patterns, and latencies of early and late responses in type2 PNs might be precisely controlled. Our results suggest that the cockroach is equipped with two anatomically and physiologically segregated parallel olfactory pathways, which might employ different neural strategies to encode odor information.
Collapse
Affiliation(s)
- Hidehiro Watanabe
- Division of Biology, Department of Earth System Science, Fukuoka UniversityFukuoka, Japan
| | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido UniversitySapporo, Japan
| | | | - Fumio Yokohari
- Division of Biology, Department of Earth System Science, Fukuoka UniversityFukuoka, Japan
| |
Collapse
|
9
|
Paeger L, Bardos V, Kloppenburg P. Transient voltage-activated K + currents in central antennal lobe neurons: cell type-specific functional properties. J Neurophysiol 2017; 117:2053-2064. [PMID: 28179480 PMCID: PMC5434483 DOI: 10.1152/jn.00685.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/01/2023] Open
Abstract
In this study we analyzed transient voltage-activated K+ currents (IA) of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana The antennal lobe is the first synaptic processing station for olfactory information in insects. Local interneurons are crucial for computing olfactory information and form local synaptic connections exclusively in the antennal lobe, whereas a primary task of the projection neurons is the transfer of preprocessed olfactory information from the antennal lobe to higher order centers in the protocerebrum. The different physiological tasks of these neurons require specialized physiological and morphological neuronal phenotypes. We asked if and how the different physiological phenotypes are reflected in the functional properties of IA, which is crucial for shaping intrinsic electrophysiological properties of neurons. Whole cell patch-clamp recordings from adult male P. americana showed that all their central antennal lobe neurons can generate IA The current exhibited marked cell type-specific differences in voltage dependence of steady-state activation and inactivation, and differences in inactivation kinetics during sustained depolarization. Pharmacological experiments revealed that IA in all neuron types was partially blocked by α-dendrotoxin and phrixotoxin-2, which are considered blockers with specificity for Shaker- and Shal-type channels, respectively. These findings suggest that IA in each cell type is a mixed current generated by channels of both families. The functional role of IA was analyzed in experiments under current clamp, in which portions of IA were blocked by α-dendrotoxin or phrixotoxin-2. These experiments showed that IA contributes significantly to the intrinsic electrophysiological properties, such as the action potential waveform and membrane excitability.NEW & NOTEWORTHY In the insect olfactory system, projection neurons and local interneurons have task-specific electrophysiological and morphological phenotypes. Voltage-activated potassium channels play a crucial role in shaping functional properties of these neurons. This study revealed marked cell type-specific differences in the biophysical properties of transient voltage-activated potassium currents in central antennal lobe neurons.
Collapse
Affiliation(s)
- Lars Paeger
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Viktor Bardos
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Honeybee locomotion is impaired by Am-Ca V3 low voltage-activated Ca 2+ channel antagonist. Sci Rep 2017; 7:41782. [PMID: 28145504 PMCID: PMC5286435 DOI: 10.1038/srep41782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/29/2016] [Indexed: 11/17/2022] Open
Abstract
Voltage‐gated Ca2+ channels are key transducers of cellular excitability and participate in several crucial physiological responses. In vertebrates, 10 Ca2+ channel genes, grouped in 3 families (CaV1, CaV2 and CaV3), have been described and characterized. Insects possess only one member of each family. These genes have been isolated in a limited number of species and very few have been characterized although, in addition to their crucial role, they may represent a collateral target for neurotoxic insecticides. We have isolated the 3 genes coding for the 3 Ca2+ channels expressed in Apis mellifera. This work provides the first detailed characterization of the honeybee T-type CaV3 Ca2+ channel and demonstrates the low toxicity of inhibiting this channel. Comparing Ca2+ currents recorded in bee neurons and myocytes with Ca2+ currents recorded in Xenopus oocytes expressing the honeybee CaV3 gene suggests native expression in bee muscle cells only. High‐voltage activated Ca2+ channels could be recorded in the somata of different cultured bee neurons. These functional data were confirmed by in situ hybridization, immunolocalization and in vivo analysis of the effects of a CaV3 inhibitor. The biophysical and pharmacological characterization and the tissue distribution of CaV3 suggest a role in honeybee muscle function.
Collapse
|
11
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
12
|
Bradler C, Warren B, Bardos V, Schleicher S, Klein A, Kloppenburg P. Properties and physiological function of Ca2+-dependent K+ currents in uniglomerular olfactory projection neurons. J Neurophysiol 2016; 115:2330-40. [PMID: 26823514 DOI: 10.1152/jn.00840.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/27/2016] [Indexed: 11/22/2022] Open
Abstract
Ca(2+)-activated potassium currents [IK(Ca)] are an important link between the intracellular signaling system and the membrane potential, which shapes intrinsic electrophysiological properties. To better understand the ionic mechanisms that mediate intrinsic firing properties of olfactory uniglomerular projection neurons (uPNs), we used whole cell patch-clamp recordings in an intact adult brain preparation of the male cockroach Periplaneta americana to analyze IK(Ca) In the insect brain, uPNs form the principal pathway from the antennal lobe to the protocerebrum, where centers for multimodal sensory processing and learning are located. In uPNs the activation of IK(Ca) was clearly voltage and Ca(2+) dependent. Thus under physiological conditions IK(Ca) is strongly dependent on Ca(2+) influx kinetics and on the membrane potential. The biophysical characterization suggests that IK(Ca) is generated by big-conductance (BK) channels. A small-conductance (SK) channel-generated current could not be detected. IK(Ca) was sensitive to charybdotoxin (CTX) and iberiotoxin (IbTX) but not to apamin. The functional role of IK(Ca) was analyzed in occlusion experiments under current clamp, in which portions of IK(Ca) were blocked by CTX or IbTX. Blockade of IK(Ca) showed that IK(Ca) contributes significantly to intrinsic electrophysiological properties such as the action potential waveform and membrane excitability.
Collapse
Affiliation(s)
- Cathleen Bradler
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ben Warren
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Viktor Bardos
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sabine Schleicher
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Andreas Klein
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Tabuchi M, Dong L, Inoue S, Namiki S, Sakurai T, Nakatani K, Kanzaki R. Two types of local interneurons are distinguished by morphology, intrinsic membrane properties, and functional connectivity in the moth antennal lobe. J Neurophysiol 2015; 114:3002-13. [PMID: 26378200 DOI: 10.1152/jn.00050.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022] Open
Abstract
Neurons in the silkmoth antennal lobe (AL) are well characterized in terms of their morphology and odor-evoked firing activity. However, their intrinsic electrical properties including voltage-gated ionic currents and synaptic connectivity remain unclear. To address this, whole cell current- and voltage-clamp recordings were made from second-order projection neurons (PNs) and two morphological types of local interneurons (LNs) in the silkmoth AL. The two morphological types of LNs exhibited distinct physiological properties. One morphological type of LN showed a spiking response with a voltage-gated sodium channel gene expression, whereas the other type of LN was nonspiking without a voltage-gated sodium channel gene expression. Voltage-clamp experiments also revealed that both of two types of LNs as well as PNs possessed two types of voltage-gated potassium channels and calcium channels. In dual whole cell recordings of spiking LNs and PNs, activation of the PN elicited depolarization responses in the paired spiking LN, whereas activation of the spiking LN induced no substantial responses in the paired PN. However, simultaneous recording of a nonspiking LN and a PN showed that activation of the nonspiking LN induced hyperpolarization responses in the PN. We also observed bidirectional synaptic transmission via both chemical and electrical coupling in the pairs of spiking LNs. Thus our results indicate that there were two distinct types of LNs in the silkmoth AL, and their functional connectivity to PNs was substantially different. We propose distinct functional roles for these two different types of LNs in shaping odor-evoked firing activity in PNs.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Meguro-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Li Dong
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; and
| | - Shigeki Inoue
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; and
| | - Shigehiro Namiki
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takeshi Sakurai
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Kei Nakatani
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; and
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| |
Collapse
|
14
|
Lavialle-Defaix C, Jacob V, Monsempès C, Anton S, Rospars JP, Martinez D, Lucas P. Firing and intrinsic properties of antennal lobe neurons in the Noctuid moth Agrotis ipsilon. Biosystems 2015; 136:46-58. [PMID: 26126723 DOI: 10.1016/j.biosystems.2015.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/04/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
The antennal lobe (AL) of the Noctuid moth Agrotis ipsilon has emerged as an excellent model for studying olfactory processing and its plasticity in the central nervous system. Odor-evoked responses of AL neurons and input-to-output transformations involved in pheromone processing are well characterized in this species. However, the intrinsic electrical properties responsible of the firing of AL neurons are poorly known. To this end, patch-clamp recordings in current- and voltage-clamp mode from neurons located in the two main clusters of cell bodies in the ALs were combined with intracellular staining on A. ipsilon males. Staining indicated that the lateral cluster (LC) is composed of 85% of local neurons (LNs) and 15% of projection neurons (PNs). The medial cluster (MC) contains only PNs. Action potentials were readily recorded from the soma in LNs and PNs located in the LC but not from PNs in the MC where recordings showed small or no action potentials. In the LC, the spontaneous activity of about 20% of the LNs presented irregular bursts while being more regular in PNs. We also identified a small population of LNs lacking voltage-gated Na(+) currents and generating spikelets. We focused on the firing properties of LNs since in about 60% of LNs, but not in PNs, action potentials were followed by depolarizing afterpotentials (DAPs). These DAPs could generate a second action potential, so that the activity was composed of action potential doublets. DAPs depended on voltage, Ca(2+)-channels and possibly on Ca(2+)-activated non-specific cationic channels. During steady state current injection, DAPs occurred after each action potential and did not require high-frequency firing. The amplitude of DAPs increased when the interspike interval was small, typically within bursts, likely arising from a Ca(2+) build up. DAPs were more often found in bursting than in non-bursting LNs but do not support bursting activity. DAPs and spike doublets also occurred during odor-evoked activity suggesting that they can mediate olfactory integration in the AL.
Collapse
Affiliation(s)
- Céline Lavialle-Defaix
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Vincent Jacob
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Christelle Monsempès
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Sylvia Anton
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 42 rue Georges Morel, 49071 Beaucouzé, France
| | - Jean-Pierre Rospars
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Dominique Martinez
- UMR7503, Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS), Vandœuvre-lès-Nancy, France
| | - Philippe Lucas
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France.
| |
Collapse
|
15
|
Modeling the cellular mechanisms and olfactory input underlying the triphasic response of moth pheromone-sensitive projection neurons. PLoS One 2015; 10:e0126305. [PMID: 25962173 PMCID: PMC4427114 DOI: 10.1371/journal.pone.0126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projection neurons (PNs) exhibit a triphasic firing pattern of excitation (E1)-inhibition (I)-excitation (E2) in response to a pulse of the sex pheromone. To understand the mechanisms underlying this stereotypical discharge, we developed a biophysical model of a PN receiving inputs from olfactory receptor neurons (ORNs) via nicotinic cholinergic synapses. The ORN is modeled as an inhomogeneous Poisson process whose firing rate is a function of time and is fitted to extracellular data recorded in response to pheromone stimulations at various concentrations and durations. The PN model is based on the Hodgkin-Huxley formalism with realistic ionic currents whose parameters were derived from previous studies. Simulations revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small conductance K+ current) and that the excitatory phase E2 can result from the long-lasting response of the ORNs. Parameter analysis further revealed that the ending time of E1 depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly depends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends differentially on the interaction of various currents. Thus it is likely that the interplay between PN intrinsic currents and feedforward synaptic currents are sufficient to generate the triphasic firing patterns observed in the noctuid moth A. ipsilon.
Collapse
|
16
|
Fusca D, Schachtner J, Kloppenburg P. Colocalization of allatotropin and tachykinin-related peptides with classical transmitters in physiologically distinct subtypes of olfactory local interneurons in the cockroach (Periplaneta americana). J Comp Neurol 2015; 523:1569-86. [PMID: 25678036 DOI: 10.1002/cne.23757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 11/06/2022]
Abstract
In the insect antennal lobe different types of local interneurons mediate complex excitatory and inhibitory interactions between the glomerular pathways to structure the spatiotemporal representation of odors. Mass spectrometric and immunohistochemical studies have shown that in local interneurons classical neurotransmitters are likely to colocalize with a variety of substances that can potentially act as cotransmitters or neuromodulators. In the antennal lobe of the cockroach Periplaneta americana, gamma-aminobutyric acid (GABA) has been identified as the potential inhibitory transmitter of spiking type I local interneurons, whereas acetylcholine is most likely the excitatory transmitter of nonspiking type IIa1 local interneurons. This study used whole-cell patch clamp recordings combined with single-cell labeling and immunohistochemistry to test if the GABAergic type I local interneurons and the cholinergic type IIa1 local interneurons express allatotropin and tachykinin-related neuropeptides (TKRPs). These are two of the most abundant types of peptides in the insect antennal lobe. GABA-like and choline acetyltransferase (ChAT)-like immunoreactivity were used as markers for GABAergic and cholinergic neurons, respectively. About 50% of the GABA-like immunoreactive (-lir) spiking type I local interneurons were allatotropin-lir, and ∼ 40% of these neurons were TKRP-lir. About 20% of nonspiking ChAT-lir type IIa1 local interneurons were TKRP-lir. Our results suggest that in subpopulations of GABAergic and cholinergic local interneurons, allatotropin and TKRPs might act as cotransmitters or neuromodulators. To unequivocally assign neurotransmitters, cotransmitters, and neuromodulators to identified classes of antennal lobe neurons is an important step to deepen our understanding of information processing in the insect olfactory system.
Collapse
Affiliation(s)
- Debora Fusca
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Rapid and slow chemical synaptic interactions of cholinergic projection neurons and GABAergic local interneurons in the insect antennal lobe. J Neurosci 2014; 34:13039-46. [PMID: 25253851 DOI: 10.1523/jneurosci.0765-14.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The antennal lobe (AL) of insects constitutes the first synaptic relay and processing center of olfactory information, received from olfactory sensory neurons located on the antennae. Complex synaptic connectivity between olfactory neurons of the AL ultimately determines the spatial and temporal tuning profile of (output) projection neurons to odors. Here we used paired whole-cell patch-clamp recordings in the cockroach Periplaneta americana to characterize synaptic interactions between cholinergic uniglomerular projection neurons (uPNs) and GABAergic local interneurons (LNs), both of which are key components of the insect olfactory system. We found rapid, strong excitatory synaptic connections between uPNs and LNs. This rapid excitatory transmission was blocked by the nicotinic acetylcholine receptor blocker mecamylamine. IPSPs, elicited by synaptic input from a presynaptic LN, were recorded in both uPNs and LNs. IPSPs were composed of both slow, sustained components and fast, transient components which were coincident with presynaptic action potentials. The fast IPSPs were blocked by the GABAA receptor chloride channel blocker picrotoxin, whereas the slow sustained IPSPs were blocked by the GABAB receptor blocker CGP-54626. This is the first study to directly show the predicted dual fast- and slow-inhibitory action of LNs, which was predicted to be key in shaping complex odor responses in the AL of insects. We also provide the first direct characterization of rapid postsynaptic potentials coincident with presynaptic spikes between olfactory processing neurons in the AL.
Collapse
|
18
|
Fusca D, Husch A, Baumann A, Kloppenburg P. Choline acetyltransferase-like immunoreactivity in a physiologically distinct subtype of olfactory nonspiking local interneurons in the cockroach (periplaneta americana). J Comp Neurol 2014; 521:3556-69. [PMID: 23749599 DOI: 10.1002/cne.23371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 11/10/2022]
Abstract
Behavioral and physiological studies have shown that local interneurons are pivotal for processing odor information in the insect antennal lobe. They mediate inhibitory and excitatory interactions between the glomerular pathways and ultimately shape the tuning profile of projection neurons. To identify putative cholinergic local interneurons in the antennal lobe of Periplaneta americana, an antibody raised against the biosynthetic enzyme choline acetyltransferase (ChAT) was applied to individual morphologically and electrophysiologically characterized local interneurons. In nonspiking type IIa1 local interneurons, which were classified in this study, we found ChAT-like immunoreactivity suggesting that they are most likely excitatory. This is a well-defined population of neurons that generates Ca(2+) -driven spikelets upon depolarization and stimulation with odorants, but not Na(+) -driven action potentials, because they lack voltage-activated transient Na(+) currents. The nonspiking type IIa2 and type IIb local interneurons, in which Ca(2+) -driven spikelets were absent, had no ChAT-like immunoreactivity. The GABA-like immunoreactive, spiking type I local interneurons had no ChAT-like immunoreactivity. In addition, we showed that uniglomerular projection neurons with cell bodies located in the ventral portion of the ventrolateral somata group and projections along the inner antennocerebral tract exhibited ChAT-like immunoreactivity. Assigning potential transmitters and neuromodulators to distinct morphological and electrophysiological types of antennal lobe neurons is an important prerequisite for a detailed understanding of odor information processing in insects.
Collapse
Affiliation(s)
- Debora Fusca
- Biocenter, Institute for Zoology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674, Cologne, Germany
| | | | | | | |
Collapse
|
19
|
Cens T, Rousset M, Collet C, Raymond V, Démares F, Quintavalle A, Bellis M, Le Conte Y, Chahine M, Charnet P. Characterization of the first honeybee Ca²⁺ channel subunit reveals two novel species- and splicing-specific modes of regulation of channel inactivation. Pflugers Arch 2013; 465:985-96. [PMID: 23588376 DOI: 10.1007/s00424-013-1223-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
The honeybee is a model system to study learning and memory, and Ca(2+) signals play a key role in these processes. We have cloned, expressed, and characterized the first honeybee Ca(2+) channel subunit. We identified two splice variants of the Apis CaVβ Ca(2+) channel subunit (Am-CaVβ) and demonstrated expression in muscle and neurons. Although AmCaVβ shares with vertebrate CaVβ subunits the SH3 and GK domains, it beholds a unique N terminus that is alternatively spliced in the first exon to produce a long (a) and short (b) variant. When expressed with the CaV2 channels both, AmCaVβa and AmCaVβb, increase current amplitude, shift the voltage-sensitivity of the channel, and slow channel inactivation as the vertebrate CaVβ2a subunit does. However, as opposed to CaVβ2a, slow inactivation induced by Am-CaVβa was insensitive to palmitoylation but displayed a unique PI3K sensitivity. Inactivation produced by the b variant was PI3K-insensitive but staurosporine/H89-sensitive. Deletion of the first exon suppressed the sensitivity to PI3K inhibitors, staurosporine, or H89. Recording of Ba(2+) currents in Apis neurons or muscle cells evidenced a sensitivity to PI3K inhibitors and H89, suggesting that both AmCaVβ variants may be important to couple cell signaling to Ca(2+) entry in vivo. Functional interactions with phospho-inositide and identification of phosphorylation sites in AmCaVβa and AmCaVβb N termini, respectively, suggest that AmCaVβ splicing promoted two novel and alternative modes of regulation of channel activity with specific signaling pathways. This is the first description of a splicing-dependent kinase switch in the regulation of Ca(2+) channel activity by CaVβ subunit.
Collapse
Affiliation(s)
- Thierry Cens
- CRBM, UMR 5237, CNRS, Université de Montpellier I&II, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Watanabe H, Haupt SS, Nishino H, Nishikawa M, Yokohari F. Sensillum-specific, topographic projection patterns of olfactory receptor neurons in the antennal lobe of the cockroach Periplaneta americana. J Comp Neurol 2012; 520:1687-701. [PMID: 22121009 DOI: 10.1002/cne.23007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In vertebrates and many invertebrates, olfactory signals detected by peripheral olfactory receptor neurons (ORNs) are conveyed to a primary olfactory center with glomerular organization in which odor-specific activity patterns are generated. In the cockroach, Periplaneta americana, ORNs in antennal olfactory sensilla project to 205 unambiguously identifiable antennal lobe (AL) glomeruli that are classified into 10 glomerular clusters (T1-T10 glomeruli) innervated by distinct sensory tracts. In this study we employed single sensillum staining techniques and investigated the topographic projection patterns of individual ORNs to elucidate the relationship between sensillum types and glomerular organization in the AL. Axons of almost all ORNs projected to individual glomeruli. Axons of ORNs in perforated basiconic sensilla selectively innervated the anterodorsal T1-T4 glomeruli, whereas those in trichoid and grooved basiconic sensilla innervated the posteroventral T5-T9 glomeruli. About 90% of stained ORNs in trichoid sensilla sent axons to the T5 glomeruli and more than 90% of ORNs in grooved basiconic sensilla innervated the T6, T8, and T9 glomeruli. The T5 and T9 glomeruli exclusively receive sensory inputs from the trichoid and grooved basiconic sensilla, respectively. All investigated glomeruli received convergent input from a single type of sensillum except F11 glomerulus in the T6 glomeruli, which was innervated from both trichoid and grooved basiconic sensilla. These results suggest that ORNs in distinct sensillum types project to glomeruli in distinct glomerular clusters. Since ORNs in distinct sensillum types are each tuned to distinct subsets of odorant molecules, the AL is functionally compartmentalized into groups of glomeruli.
Collapse
Affiliation(s)
- Hidehiro Watanabe
- Division of Biology, Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | | | | | | |
Collapse
|
21
|
Watanabe H, Ai H, Yokohari F. Spatio-temporal activity patterns of odor-induced synchronized potentials revealed by voltage-sensitive dye imaging and intracellular recording in the antennal lobe of the cockroach. Front Syst Neurosci 2012; 6:55. [PMID: 22848191 PMCID: PMC3404411 DOI: 10.3389/fnsys.2012.00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 07/08/2012] [Indexed: 11/13/2022] Open
Abstract
In animals, odor qualities are represented as both spatial activity patterns of glomeruli and temporal patterns of synchronized oscillatory signals in the primary olfactory centers. By optical imaging of a voltage-sensitive dye (VSD) and intracellular recording from secondary olfactory interneurons, we examined possible neural correlates of the spatial and temporal odor representations in the primary olfactory center, the antennal lobe (AL), of the cockroach Periplaneta americana. Voltage-sensitive dye imaging revealed that all used odorants induced odor-specific temporal patterns of depolarizing potentials in specific combinations of anterior glomeruli of the AL. The depolarizing potentials evoked by different odorants were temporally synchronized across glomeruli and were termed "synchronized potentials." These observations suggest that odor qualities are represented by spatio-temporal activity patterns of the synchronized potentials across glomeruli. We also performed intracellular recordings and stainings from secondary olfactory interneurons, namely projection neurons and local interneurons. We analyzed the temporal structures of enanthic acid-induced action potentials of secondary olfactory interneurons using simultaneous paired intracellular recording from two given neurons. Our results indicated that the multiple local interneurons synchronously fired in response to the olfactory stimulus. In addition, all stained enanthic acid-responsive projection neurons exhibited dendritic arborizations within the glomeruli where the synchronized potentials were evoked. Since multiple local interneurons are known to synapse to a projection neuron in each glomerulus in the cockroach AL, converging inputs from local interneurons to the projection neurons appear to contribute the odorant specific spatio-temporal activity patterns of the synchronized potentials.
Collapse
Affiliation(s)
- Hidehiro Watanabe
- Division of Biology, Department of Earth System Science, Fukuoka University Fukuoka, Japan
| | | | | |
Collapse
|
22
|
Schulze J, Neupert S, Schmidt L, Predel R, Lamkemeyer T, Homberg U, Stengl M. Myoinhibitory peptides in the brain of the cockroach Leucophaea maderae and colocalization with pigment-dispersing factor in circadian pacemaker cells. J Comp Neurol 2012; 520:1078-97. [DOI: 10.1002/cne.22785] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Neupert S, Fusca D, Schachtner J, Kloppenburg P, Predel R. Toward a single-cell-based analysis of neuropeptide expression in Periplaneta americana antennal lobe neurons. J Comp Neurol 2012; 520:694-716. [DOI: 10.1002/cne.22745] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Lei H, Reisenman CE, Wilson CH, Gabbur P, Hildebrand JG. Spiking patterns and their functional implications in the antennal lobe of the tobacco hornworm Manduca sexta. PLoS One 2011; 6:e23382. [PMID: 21897842 PMCID: PMC3163580 DOI: 10.1371/journal.pone.0023382] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/15/2011] [Indexed: 11/18/2022] Open
Abstract
Bursting as well as tonic firing patterns have been described in various sensory systems. In the olfactory system, spontaneous bursts have been observed in neurons distributed across several synaptic levels, from the periphery, to the olfactory bulb (OB) and to the olfactory cortex. Several in vitro studies indicate that spontaneous firing patterns may be viewed as “fingerprints” of different types of neurons that exhibit distinct functions in the OB. It is still not known, however, if and how neuronal burstiness is correlated with the coding of natural olfactory stimuli. We thus conducted an in vivo study to probe this question in the OB equivalent structure of insects, the antennal lobe (AL) of the tobacco hornworm Manduca sexta. We found that in the moth's AL, both projection (output) neurons (PNs) and local interneurons (LNs) are spontaneously active, but PNs tend to produce spike bursts while LNs fire more regularly. In addition, we found that the burstiness of PNs is correlated with the strength of their responses to odor stimulation – the more bursting the stronger their responses to odors. Moreover, the burstiness of PNs was also positively correlated with the spontaneous firing rate of these neurons, and pharmacological reduction of bursting resulted in a decrease of the neurons' responsiveness. These results suggest that neuronal burstiness reflects a physiological state of these neurons that is directly linked to their response characteristics.
Collapse
Affiliation(s)
- Hong Lei
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America.
| | | | | | | | | |
Collapse
|
25
|
Zavada A, Buckley CL, Martinez D, Rospars JP, Nowotny T. Competition-based model of pheromone component ratio detection in the moth. PLoS One 2011; 6:e16308. [PMID: 21373177 PMCID: PMC3040183 DOI: 10.1371/journal.pone.0016308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/22/2010] [Indexed: 11/19/2022] Open
Abstract
For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy.
Collapse
Affiliation(s)
- Andrei Zavada
- Informatics, University of Sussex, Brighton, United Kingdom
| | | | | | | | - Thomas Nowotny
- Informatics, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Watanabe H, Nishino H, Nishikawa M, Mizunami M, Yokohari F. Complete mapping of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach Periplaneta americana. J Comp Neurol 2010; 518:3907-30. [PMID: 20737592 DOI: 10.1002/cne.22452] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glomeruli are structural and functional units in the primary olfactory center in vertebrates and insects. In the cockroach Periplaneta americana, axons of different types of sensory neurons housed in sensilla on antennae form dorsal and ventral antennal nerves and then project to a number of glomeruli. In this study, we identified all antennal lobe (AL) glomeruli based on detailed innervation patterns of sensory tracts in addition to the shape, size, and locations in the cockroach. The number of glomeruli is approximately 205, and no sex-specific difference is observed. Anterograde dye injections into the antennal nerves revealed that axons supplying the AL are divided into 10 sensory tracts (T1-T10). Each of T1-T3 innervates small, oval glomeruli in the anteroventral region of the AL, with sensory afferents invading each glomerulus from multiple directions, whereas each of T4-T10 innervates large glomeruli with various shapes in the posterodorsal region, with a bundle of sensory afferents invading each glomerulus from one direction. The topographic branching patterns of all these tracts are conserved among individuals. Sensory afferents in a sub-tract of T10 had axon terminals in the dorsal margin of the AL and the protocerebrum, where they form numerous small glomerular structures. Sensory nerve branching pattern should reflect developmental processes to determine spatial arrangement of glomeruli, and thus the complete map of glomeruli based on sensory nerve branching pattern should provide a basis for studying the functional significance of spatial arrangement of glomeruli and its developmental basis.
Collapse
|
27
|
Dacks AM, Reisenman CE, Paulk AC, Nighorn AJ. Histamine-immunoreactive local neurons in the antennal lobes of the hymenoptera. J Comp Neurol 2010; 518:2917-33. [PMID: 20533353 DOI: 10.1002/cne.22371] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neural networks receive input that is transformed before being sent as output to higher centers of processing. These transformations are often mediated by local interneurons (LNs) that influence output based on activity across the network. In primary olfactory centers, the LNs that mediate these lateral interactions are extremely diverse. For instance, the antennal lobes (ALs) of bumblebees possess both gamma-aminobutyric acid (GABA)- and histamine-immunoreactive (HA-ir) LNs, and both are neurotransmitters associated with fast forms of inhibition. Although the GABAergic network of the AL has been extensively studied, we sought to examine the anatomical features of the HA-ir LNs in relation to the other cellular elements of the bumblebee AL. As a population, HA-ir LNs densely innervate the glomerular core and sparsely arborize in the outer glomerular rind, overlapping with the terminals of olfactory receptor neurons. Individual fills of HA-ir LNs revealed heavy arborization of the outer ring of a single "principal" glomerulus and sparse arborization in the core of other glomeruli. In contrast, projection neurons and GABA-immunoreactive LNs project throughout the glomerular volume. To provide insight into the selective pressures that resulted in the evolution of HA-ir LNs, we determined the phylogenetic distribution of HA-ir LNs in the AL. HA-ir LNs were present in all but the most basal hymenopteran examined, although there were significant morphological differences between major groups within the Hymenoptera. The ALs of other insect taxa examined lacked HA-ir LNs, suggesting that this population of LNs arose within the Hymenoptera and underwent extensive morphological modification.
Collapse
Affiliation(s)
- Andrew M Dacks
- Department of Neuroscience, The University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | |
Collapse
|
28
|
Seki Y, Rybak J, Wicher D, Sachse S, Hansson BS. Physiological and morphological characterization of local interneurons in the Drosophila antennal lobe. J Neurophysiol 2010; 104:1007-19. [PMID: 20505124 DOI: 10.1152/jn.00249.2010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Drosophila antennal lobe (AL) has become an excellent model for studying early olfactory processing mechanisms. Local interneurons (LNs) connect a large number of glomeruli and are ideally positioned to increase computational capabilities of odor information processing in the AL. Although the neural circuit of the Drosophila AL has been intensively studied at both the input and the output level, the internal circuit is not yet well understood. An unambiguous characterization of LNs is essential to remedy this lack of knowledge. We used whole cell patch-clamp recordings and characterized four classes of LNs in detail using electrophysiological and morphological properties at the single neuron level. Each class of LN displayed unique characteristics in intrinsic electrophysiological properties, showing differences in firing patterns, degree of spike adaptation, and amplitude of spike afterhyperpolarization. Notably, one class of LNs had characteristic burst firing properties, whereas the others were tonically active. Morphologically, neurons from three classes innervated almost all glomeruli, while LNs from one class innervated a specific subpopulation of glomeruli. Three-dimensional reconstruction analyses revealed general characteristics of LN morphology and further differences in dendritic density and distribution within specific glomeruli between the different classes of LNs. Additionally, we found that LNs labeled by a specific enhancer trap line (GAL4-Krasavietz), which had previously been reported as cholinergic LNs, were mostly GABAergic. The current study provides a systematic characterization of olfactory LNs in Drosophila and demonstrates that a variety of inhibitory LNs, characterized by class-specific electrophysiological and morphological properties, construct the neural circuit of the AL.
Collapse
Affiliation(s)
- Yoichi Seki
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany.
| | | | | | | | | |
Collapse
|
29
|
Galizia CG, Rössler W. Parallel olfactory systems in insects: anatomy and function. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:399-420. [PMID: 19737085 DOI: 10.1146/annurev-ento-112408-085442] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A striking commonality across insects and vertebrates is the recurring presence of parallel olfactory subsystems, suggesting that such an organization has a highly adaptive value. Conceptually, two different categories of parallel systems must be distinguished. In one, specific sensory organs or processing streams analyze different chemical stimuli (segregate parallel systems). In the other, similar odor stimuli are processed but analyzed with respect to different features (dual parallel systems). Insects offer many examples for both categories. For example, segregate parallel systems for different chemical stimuli are realized in specialized neuronal streams for processing sex pheromones and CO(2). Dual parallel streams related to similar or overlapping odor stimuli are prominent in Hymenoptera. Here, a clear separation of sensory tracts to higher-order brain centers is present despite no apparent differences regarding the classes or categories of olfactory stimuli being processed. In this paper, we review the situation across insect species and offer hypotheses for the function and evolution of parallel olfactory systems.
Collapse
|
30
|
Husch A, Paehler M, Fusca D, Paeger L, Kloppenburg P. Distinct Electrophysiological Properties in Subtypes of Nonspiking Olfactory Local Interneurons Correlate With Their Cell Type–Specific Ca2+ Current Profiles. J Neurophysiol 2009; 102:2834-45. [DOI: 10.1152/jn.00627.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A diverse population of local interneurons (LNs) helps to process, structure, and spatially represent olfactory information in the insect antennal lobe. In Periplaneta americana, we identified two subtypes of nonspiking local interneurons (type II LNs) by their distinct morphological and intrinsic electrophysiological properties. As an important step toward a better understanding of the cellular mechanisms that mediate odor information processing, we present a detailed analysis of their distinct voltage-activated Ca2+ currents, which clearly correlated with their distinct intrinsic electrophysiological properties. Both type II LNs did not posses voltage-activated Na+ currents and apparently innervated all glomeruli including the macroglomerulus. Type IIa LNs had significant longer and thicker low-order neurites and innervated each glomerulus entirely and homogeneously, whereas type IIb LNs innervated only parts of each glomerulus. All type II LNs were broadly tuned and responded to odorants of many chemical classes with graded changes in the membrane potential. Type IIa LNs responded with odor-specific elaborate patterns of excitation that could also include “spikelets” riding on the depolarizations and periods of inhibition. In contrast, type IIb LNs responded mostly with sustained, relatively smooth depolarizations. Consistent with the strong active membrane properties of type IIa LNs versus type IIb LNs, the voltage-activated Ca2+ current of type IIa LNs activated at more hyperpolarized membrane potentials and had a larger transient component.
Collapse
Affiliation(s)
- Andreas Husch
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Moritz Paehler
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Debora Fusca
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lars Paeger
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Demmer H, Kloppenburg P. Intrinsic Membrane Properties and Inhibitory Synaptic Input of Kenyon Cells as Mechanisms for Sparse Coding? J Neurophysiol 2009; 102:1538-50. [DOI: 10.1152/jn.00183.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The insect mushroom bodies (MBs) are multimodal signal processing centers and are essential for olfactory learning. Electrophysiological recordings from the MBs' principal component neurons, the Kenyon cells (KCs), showed a sparse representation of olfactory signals. It has been proposed that the intrinsic and synaptic properties of the KC circuitry combine to reduce the firing of action potentials and to generate relatively brief windows for synaptic integration in the KCs, thus causing them to operate as coincidence detectors. To better understand the ionic mechanisms that mediate the KC intrinsic firing properties, we used whole cell patch-clamp recordings from KCs in the adult, intact brain of Periplaneta americana to analyze voltage- and/or Ca2+-dependent inward ( ICa, INa) and outward currents [ IA, IK(V), IK,ST, IO(Ca)]. In general the currents had properties similar to those of currents in other insect neurons. Certain functional parameters of ICaand IO(Ca), however, had unusually high values, allowing them to assist sparse coding. ICahad a low-activation threshold and a very high current density compared with those of ICain other insect neurons. Together these parameters make ICasuitable for boosting and sharpening the excitatory postsynaptic potentials as reported in previous studies. IO(Ca)also had a large current density and a very depolarized activation threshold. In combination, the large ICaand IO(Ca)are likely to mediate the strong spike frequency adaptation. These intrinsic properties of the KCs are likely to be supported by their tonic, inhibitory synaptic input, which was revealed by specific GABA antagonists and which contributes significantly to the hyperpolarized membrane potential at rest.
Collapse
|
32
|
Pippow A, Husch A, Pouzat C, Kloppenburg P. Differences of Ca2+ handling properties in identified central olfactory neurons of the antennal lobe. Cell Calcium 2009; 46:87-98. [PMID: 19545897 DOI: 10.1016/j.ceca.2009.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 11/15/2022]
Abstract
Information processing in neurons depends on highly localized Ca2+ signals. The spatial and temporal dynamics of these signals are determined by a variety of cellular parameters including the calcium influx, calcium buffering and calcium extrusion. Our long-term goal is to better understand how intracellular Ca2+ dynamics are controlled and contribute to information processing in defined interneurons of the insect olfactory system. The latter has served as an excellent model to study general mechanisms of olfaction. Using patch-clamp recordings and fast optical imaging in combination with the 'added buffer approach', we analyzed the Ca2+ handling properties of different identified neuron types in Periplaneta americana's olfactory system. Our focus was on two types of local interneurons (LNs) with significant differences in intrinsic electrophysiological properties: (1) spiking LNs that generate 'normal' Na+ driven action potentials and (2) non-spiking LNs that do not express voltage-activated Na+ channels. We found that the distinct electrophysiological properties from different types of central olfactory interneurons are strongly correlated with their cell specific calcium handling properties: non-spiking LNs, in which Ca2+ is the only cation that enters the cell to contribute to membrane depolarization, had the highest endogenous Ca2+ binding ratio and Ca2+ extrusion rate.
Collapse
Affiliation(s)
- Andreas Pippow
- Institute of Zoology and Physiology, Center for Molecular Medicine Cologne and Cologne Excellence Cluster in Aging Associated Diseases, University of Cologne, Weyertal 119, Cologne 50931, Germany
| | | | | | | |
Collapse
|
33
|
A 4-dimensional representation of antennal lobe output based on an ensemble of characterized projection neurons. J Neurosci Methods 2009; 180:208-23. [PMID: 19464513 DOI: 10.1016/j.jneumeth.2009.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 03/04/2009] [Accepted: 03/13/2009] [Indexed: 11/20/2022]
Abstract
A central problem facing studies of neural encoding in sensory systems is how to accurately quantify the extent of spatial and temporal responses. In this study, we take advantage of the relatively simple and stereotypic neural architecture found in invertebrates. We combine standard electrophysiological techniques, recently developed population analysis techniques, and novel anatomical methods to form an innovative 4-dimensional view of odor output representations in the antennal lobe of the moth Manduca sexta. This novel approach allows quantification of olfactory responses of characterized neurons with spike time resolution. Additionally, arbitrary integration windows can be used for comparisons with other methods such as imaging. By assigning statistical significance to changes in neuronal firing, this method can visualize activity across the entire antennal lobe. The resulting 4-dimensional representation of antennal lobe output complements imaging and multi-unit experiments yet provides a more comprehensive and accurate view of glomerular activation patterns in spike time resolution.
Collapse
|