1
|
Cuentas-Condori A, Chen S, Krout M, Gallik KL, Tipps J, Gailey C, Flautt L, Kim H, Mulcahy B, Zhen M, Richmond JE, Miller DM. The epithelial Na + channel UNC-8 promotes an endocytic mechanism that recycles presynaptic components to new boutons in remodeling neurons. Cell Rep 2023; 42:113327. [PMID: 37906594 PMCID: PMC10921563 DOI: 10.1016/j.celrep.2023.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 06/01/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Circuit refinement involves the formation of new presynaptic boutons as others are dismantled. Nascent presynaptic sites can incorporate material from recently eliminated synapses, but the recycling mechanisms remain elusive. In early-stage C. elegans larvae, the presynaptic boutons of GABAergic DD neurons are removed and new outputs established at alternative sites. Here, we show that developmentally regulated expression of the epithelial Na+ channel (ENaC) UNC-8 in remodeling DD neurons promotes a Ca2+ and actin-dependent mechanism, involving activity-dependent bulk endocytosis (ADBE), that recycles presynaptic material for reassembly at nascent DD synapses. ADBE normally functions in highly active neurons to accelerate local recycling of synaptic vesicles. In contrast, we find that an ADBE-like mechanism results in the distal recycling of synaptic material from old to new synapses. Thus, our findings suggest that a native mechanism (ADBE) can be repurposed to dismantle presynaptic terminals for reassembly at new, distant locations.
Collapse
Affiliation(s)
- Andrea Cuentas-Condori
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Siqi Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kristin L Gallik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - John Tipps
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Casey Gailey
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Leah Flautt
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Hongkyun Kim
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA; Neurosience Program, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
2
|
Chen Y, Li W. Rapid eye movement sleep contributes to the formation of new axonal varicosities in mouse cerebellar parallel fibers after motor training. Neurosci Lett 2023; 810:137349. [PMID: 37327855 DOI: 10.1016/j.neulet.2023.137349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Synaptic structural plasticity is essential for the development, learning and memory. It is well established that sleep plays important roles in synaptic plasticity after motor learning. In cerebellar cortex, parallel fibers of granule cells make excitatory synapses to the dendrites of Purkinje cells. However, the synaptic structural dynamics between parallel and Purkinje cells after motor training and the function of sleep in cerebellar synaptic plasticity remain unclear. Here, we used two-photon microscopy to examine presynaptic axonal structural dynamics at parallel fiber-Purkinje cell synapses and investigated the effect of REM sleep in synaptic plasticity of mouse cerebellar cortex following motor training. We found that motor training induces higher formation of new axonal varicosities in cerebellar parallel fibers. Our results also indicate that calcium activities of granule cells significantly increase during REM sleep, and REM sleep deprivation prevents motor training-induced formation of axonal varicosities in parallel fibers, suggesting that higher calcium activity of granule cells was crucial for promoting newly formed axonal varicosities after motor training. Together, these findings reveal the effect of motor training on parallel fiber presynaptic structural modification and the important role of REM sleep in synaptic plasticity in cerebellar cortex.
Collapse
Affiliation(s)
- Yu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Aimi T, Matsuda K, Yuzaki M. C1ql1-Bai3 signaling is necessary for climbing fiber synapse formation in mature Purkinje cells in coordination with neuronal activity. Mol Brain 2023; 16:61. [PMID: 37488606 PMCID: PMC10367388 DOI: 10.1186/s13041-023-01048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Changes in neural activity induced by learning and novel environments have been reported to lead to the formation of new synapses in the adult brain. However, the underlying molecular mechanism is not well understood. Here, we show that Purkinje cells (PCs), which have established adult-type monosynaptic innervation by climbing fibers (CFs) after elimination of weak CFs during development, can be reinnervated by multiple CFs by increased expression of the synaptic organizer C1ql1 in CFs or Bai3, a receptor for C1ql1, in PCs. In the adult cerebellum, CFs are known to have transverse branches that run in a mediolateral direction without forming synapses with PCs. Electrophysiological, Ca2+-imaging and immunohistochemical studies showed that overexpression of C1ql1 or Bai3 caused these CF transverse branches to elongate and synapse on the distal dendrites of mature PCs. Mature PCs were also reinnervated by multiple CFs when the glutamate receptor GluD2, which is essential for the maintenance of synapses between granule cells and PCs, was deleted. Interestingly, the effect of GluD2 knockout was not observed in Bai3 knockout PCs. In addition, C1ql1 levels were significantly upregulated in CFs of GluD2 knockout mice, suggesting that endogenous, not overexpressed, C1ql1-Bai3 signaling could regulate the reinnervation of mature PCs by CFs. Furthermore, the effects of C1ql1 and Bai3 overexpression required neuronal activity in the PC and CF, respectively. C1ql1 immunoreactivity at CF-PC synapses was reduced when the neuronal activity of CFs was suppressed. These results suggest that C1ql1-Bai3 signaling may mediate CF synaptogenesis in mature PCs, potentially in concert with neuronal activity.
Collapse
Affiliation(s)
- Takahiro Aimi
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiko Matsuda
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
4
|
Ma S, Zuo Y. Synaptic modifications in learning and memory - A dendritic spine story. Semin Cell Dev Biol 2021; 125:84-90. [PMID: 34020876 DOI: 10.1016/j.semcdb.2021.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/06/2021] [Accepted: 05/12/2021] [Indexed: 11/15/2022]
Abstract
Synapses are specialized sites where neurons connect and communicate with each other. Activity-dependent modification of synaptic structure and function provides a mechanism for learning and memory. The advent of high-resolution time-lapse imaging in conjunction with fluorescent biosensors and actuators enables researchers to monitor and manipulate the structure and function of synapses both in vitro and in vivo. This review focuses on recent imaging studies on the synaptic modification underlying learning and memory.
Collapse
Affiliation(s)
- Shaorong Ma
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
5
|
Lu J, Zuo Y. Shedding light on learning and memory: optical interrogation of the synaptic circuitry. Curr Opin Neurobiol 2020; 67:138-144. [PMID: 33279804 DOI: 10.1016/j.conb.2020.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/02/2023]
Abstract
In the quest for the physical substrate of learning and memory, a consensus gradually emerges that memory traces are stored in specific neuronal populations and the synaptic circuits that connect them. In this review, we discuss recent progresses in understanding the reorganization of synaptic circuits and neuronal assemblies associated with learning and memory, with an emphasis on optical techniques for in vivo interrogations. We also highlight some open questions on the missing link between synaptic modifications and neuronal coding, and how stable memory persists despite synaptic and neuronal fluctuations.
Collapse
Affiliation(s)
- Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
6
|
B cells migrate into remote brain areas and support neurogenesis and functional recovery after focal stroke in mice. Proc Natl Acad Sci U S A 2020; 117:4983-4993. [PMID: 32051245 PMCID: PMC7060723 DOI: 10.1073/pnas.1913292117] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neuroinflammation occurs immediately after stroke onset in the ischemic infarct, but whether neuroinflammation occurs in remote regions supporting plasticity and functional recovery remains unknown. We used advanced imaging to quantify whole-brain diapedesis of B cells, an immune cell capable of producing neurotrophins. We identify bilateral B cell diapedesis into remote regions, outside of the injury, that support motor and cognitive recovery in young male mice. Poststroke depletion of B cells confirms a positive role in neurogenesis, neuronal survival, and recovery of motor coordination, spatial learning, and anxiety. More than 80% of stroke survivors have long-term disability uniquely affected by age and lifestyle factors. Thus, identifying beneficial neuroinflammation during long-term recovery increases the opportunity of therapeutic interventions to support functional recovery. Lymphocytes infiltrate the stroke core and penumbra and often exacerbate cellular injury. B cells, however, are lymphocytes that do not contribute to acute pathology but can support recovery. B cell adoptive transfer to mice reduced infarct volumes 3 and 7 d after transient middle cerebral artery occlusion (tMCAo), independent of changing immune populations in recipient mice. Testing a direct neurotrophic effect, B cells cocultured with mixed cortical cells protected neurons and maintained dendritic arborization after oxygen-glucose deprivation. Whole-brain volumetric serial two-photon tomography (STPT) and a custom-developed image analysis pipeline visualized and quantified poststroke B cell diapedesis throughout the brain, including remote areas supporting functional recovery. Stroke induced significant bilateral B cell diapedesis into remote brain regions regulating motor and cognitive functions and neurogenesis (e.g., dentate gyrus, hypothalamus, olfactory areas, cerebellum) in the whole-brain datasets. To confirm a mechanistic role for B cells in functional recovery, rituximab was given to human CD20+ (hCD20+) transgenic mice to continuously deplete hCD20+-expressing B cells following tMCAo. These mice experienced delayed motor recovery, impaired spatial memory, and increased anxiety through 8 wk poststroke compared to wild type (WT) littermates also receiving rituximab. B cell depletion reduced stroke-induced hippocampal neurogenesis and cell survival. Thus, B cell diapedesis occurred in areas remote to the infarct that mediated motor and cognitive recovery. Understanding the role of B cells in neuronal health and disease-based plasticity is critical for developing effective immune-based therapies for protection against diseases that involve recruitment of peripheral immune cells into the injured brain.
Collapse
|
7
|
Increased Axonal Bouton Stability during Learning in the Mouse Model of MECP2 Duplication Syndrome. eNeuro 2018; 5:eN-NWR-0056-17. [PMID: 30105297 PMCID: PMC6086213 DOI: 10.1523/eneuro.0056-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 02/20/2018] [Accepted: 03/28/2018] [Indexed: 01/25/2023] Open
Abstract
MECP2 duplication syndrome is an X-linked form of syndromic autism caused by genomic duplication of the region encoding methyl-CpG-binding protein 2 (MECP2). Mice overexpressing MECP2 demonstrate social impairment, behavioral inflexibility, and altered patterns of learning and memory. Previous work showed abnormally increased stability of dendritic spines formed during motor training in the apical tuft of primary motor cortex (area M1) corticospinal neurons in the MECP2 duplication mouse model. In the current study, we measure the structural plasticity of axonal boutons in layer 5 pyramidal neuron projections to layer 1 of area M1 during motor training. In wild-type littermate control mice, we find that during rotarod training the bouton formation rate changes minimally, if at all, while the bouton elimination rate more than doubles. Notably, the observed upregulation in bouton elimination with training is absent in MECP2 duplication mice. This result provides further evidence of an imbalance between structural stability and plasticity in this form of syndromic autism. Furthermore, the observation that axonal bouton elimination more than doubles with motor training in wild-type animals contrasts with the increase of dendritic spine consolidation observed in corticospinal neurons at the same layer. This dissociation suggests that different area M1 microcircuits may manifest different patterns of structural synaptic plasticity during motor training.
Collapse
|
8
|
Beckinghausen J, Sillitoe RV. Insights into cerebellar development and connectivity. Neurosci Lett 2018; 688:2-13. [PMID: 29746896 DOI: 10.1016/j.neulet.2018.05.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
The cerebellum has a well-established role in controlling motor functions such coordination, balance, posture, and skilled learning. There is mounting evidence that it might also play a critical role in non-motor functions such as cognition and emotion. It is therefore not surprising that cerebellar defects are associated with a wide array of diseases including ataxia, dystonia, tremor, schizophrenia, dyslexia, and autism spectrum disorder. What is intriguing is that a seemingly uniform circuit that is often described as being "simple" should carry out all of these behaviors. Analyses of how cerebellar circuits develop have revealed that such descriptions massively underestimate the complexity of the cerebellum. The cerebellum is in fact highly patterned and organized around a series of parasagittal stripes and transverse zones. This topographic architecture partitions all cerebellar circuits into functional modules that are thought to enhance processing power during cerebellar dependent behaviors. What are arguably the most remarkable features of cerebellar topography are the developmental processes that produce them. This review is concerned with the genetic and cellular mechanisms that orchestrate cerebellar patterning. We place a major focus on how Purkinje cells control multiple aspects of cerebellar circuit assembly. Using this model, we discuss evidence for how "zebra-like" patterns in Purkinje cells sculpt the cerebellum, how specific genetic cues mediate the process, and how activity refines the patterns into an adult map that is capable of executing various functions. We also discuss how defective Purkinje cell patterning might impact the pathogenesis of neurological conditions.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Synaptic Tenacity or Lack Thereof: Spontaneous Remodeling of Synapses. Trends Neurosci 2018; 41:89-99. [DOI: 10.1016/j.tins.2017.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022]
|
10
|
Circuit changes in motor cortex during motor skill learning. Neuroscience 2017; 368:283-297. [PMID: 28918262 DOI: 10.1016/j.neuroscience.2017.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
Motor cortex is important for motor skill learning, particularly the dexterous skills necessary for our favorite sports and careers. We are especially interested in understanding how plasticity in motor cortex contributes to skill learning. Although human studies have been helpful in understanding the importance of motor cortex in learning skilled tasks, animal models are necessary for achieving a detailed understanding of the circuitry underlying these behaviors and the changes that occur during training. We review data from these models to try to identify sites of plasticity in motor cortex, focusing on rodents asa model system. Rodent neocortex contains well-differentiated motor and sensory regions, as well as neurons expressing similar genetic markers to many of the same circuit components in human cortex. Furthermore, rodents have circuit mapping tools for labeling, targeting, and manipulating these cell types as circuit nodes. Crucially, the projection from rodent primary somatosensory cortex to primary motor cortex is a well-studied corticocortical projection and a model of sensorimotor integration. We first summarize some of the descending pathways involved in making dexterous movements, including reaching. We then describe local and long-range circuitry in mouse motor cortex, summarizing structural and functional changes associated with motor skill acquisition. We then address which specific connections might be responsible for plasticity. For insight into the range of plasticity mechanisms employed by cortex, we review plasticity in sensory systems. The similarities and differences between motor cortex plasticity and critical periods of plasticity in sensory systems are discussed.
Collapse
|
11
|
Wefelmeyer W, Puhl CJ, Burrone J. Homeostatic Plasticity of Subcellular Neuronal Structures: From Inputs to Outputs. Trends Neurosci 2016; 39:656-667. [PMID: 27637565 PMCID: PMC5236059 DOI: 10.1016/j.tins.2016.08.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023]
Abstract
Neurons in the brain are highly plastic, allowing an organism to learn and adapt to its environment. However, this ongoing plasticity is also inherently unstable, potentially leading to aberrant levels of circuit activity. Homeostatic forms of plasticity are thought to provide a means of controlling neuronal activity by avoiding extremes and allowing network stability. Recent work has shown that many of these homeostatic modifications change the structure of subcellular neuronal compartments, ranging from changes to synaptic inputs at both excitatory and inhibitory compartments to modulation of neuronal output through changes at the axon initial segment (AIS) and presynaptic terminals. Here we review these different forms of structural plasticity in neurons and the effects they may have on network function.
Collapse
Affiliation(s)
- Winnie Wefelmeyer
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Hospital Campus, London, SE1 1UL, UK.
| | - Christopher J Puhl
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Hospital Campus, London, SE1 1UL, UK
| | - Juan Burrone
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Hospital Campus, London, SE1 1UL, UK.
| |
Collapse
|
12
|
Spatiotemporal dynamics of lesion-induced axonal sprouting and its relation to functional architecture of the cerebellum. Nat Commun 2016; 7:12938. [PMID: 27651000 PMCID: PMC5036008 DOI: 10.1038/ncomms12938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/15/2016] [Indexed: 01/14/2023] Open
Abstract
Neurodegenerative lesions induce sprouting of new collaterals from surviving axons, but the extent to which this form of axonal remodelling alters brain functional structure remains unclear. To understand how collateral sprouting proceeds in the adult brain, we imaged post-lesion sprouting of cerebellar climbing fibres (CFs) in mice using in vivo time-lapse microscopy. Here we show that newly sprouted CF collaterals innervate multiple Purkinje cells (PCs) over several months, with most innervations emerging at 3–4 weeks post lesion. Simultaneous imaging of cerebellar functional structure reveals that surviving CFs similarly innervate functionally relevant and non-relevant PCs, but have more synaptic area on PCs near the collateral origin than on distant PCs. These results suggest that newly sprouted axon collaterals do not preferentially innervate functionally relevant postsynaptic targets. Nonetheless, the spatial gradient of collateral innervation might help to loosely maintain functional synaptic circuits if functionally relevant neurons are clustered in the lesioned area. Neurodegenerative lesions induce sprouting from surviving axons, but the patterns of re-innervation of these collaterals in relation to existing functional networks remains unclear. Here the authors performed long term in vivo imaging in mice, of sprouts from cerebellar climbing fibers after a lesion, and describe the patterns of connectivity relative to functionally active zones.
Collapse
|
13
|
Nedelescu H, Chowdhury TG, Wable GS, Arbuthnott G, Aoki C. Cerebellar sub-divisions differ in exercise-induced plasticity of noradrenergic axons and in their association with resilience to activity-based anorexia. Brain Struct Funct 2016; 222:317-339. [PMID: 27056728 PMCID: PMC5215061 DOI: 10.1007/s00429-016-1220-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/24/2016] [Indexed: 11/01/2022]
Abstract
The vermis or "spinocerebellum" receives input from the spinal cord and motor cortex for controlling balance and locomotion, while the longitudinal hemisphere region or "cerebro-cerebellum" is interconnected with non-motor cortical regions, including the prefrontal cortex that underlies decision-making. Noradrenaline release in the cerebellum is known to be important for motor plasticity but less is known about plasticity of the cerebellar noradrenergic (NA) system, itself. We characterized plasticity of dopamine β-hydroxylase-immunoreactive NA fibers in the cerebellum of adolescent female rats that are evoked by voluntary wheel running, food restriction (FR) or by both, in combination. When 8 days of wheel access was combined with FR during the last 4 days, some responded with excessive exercise, choosing to run even during the hours of food access: this exacerbated weight loss beyond that due to FR alone. In the vermis, exercise, with or without FR, shortened the inter-varicosity intervals and increased varicosity density along NA fibers, while excessive exercise, due to FR, also shortened NA fibers. In contrast, the hemisphere required the FR-evoked excessive exercise to evoke shortened inter-varicosity intervals along NA fibers and this change was exhibited more strongly by rats that suppressed the FR-evoked excessive exercise, a behavior that minimized weight loss. Presuming that shortened inter-varicosity intervals translate to enhanced NA release and synthesis of norepinephrine, this enhancement in the cerebellar hemisphere may contribute towards protection of individuals from the life-threatening activity-based anorexia via relays with higher-order cortical areas that mediate the animal's decision to suppress the innate FR-evoked hyperactivity.
Collapse
Affiliation(s)
- Hermina Nedelescu
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan. .,Center for Neural Science, New York University, New York, NY, 10003, USA. .,Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| | - Tara G Chowdhury
- Center for Neural Science, New York University, New York, NY, 10003, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gauri S Wable
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Gordon Arbuthnott
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
14
|
Gaffield MA, Amat SB, Bito H, Christie JM. Chronic imaging of movement-related Purkinje cell calcium activity in awake behaving mice. J Neurophysiol 2015; 115:413-22. [PMID: 26561609 DOI: 10.1152/jn.00834.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/05/2015] [Indexed: 01/28/2023] Open
Abstract
Purkinje cells (PCs) are a major site of information integration and plasticity in the cerebellum, a brain region involved in motor task refinement. Thus PCs provide an ideal location for studying the mechanisms necessary for cerebellum-dependent motor learning. Increasingly, sophisticated behavior tasks, used in combination with genetic reporters and effectors of activity, have opened up the possibility of studying cerebellar circuits during voluntary movement at an unprecedented level of quantitation. However, current methods used to monitor PC activity do not take full advantage of these advances. For example, single-unit or multiunit electrode recordings, which provide excellent temporal information regarding electrical activity, only monitor a small population of cells and can be quite invasive. Bolus loading of cell-permeant calcium (Ca(2+)) indicators is short-lived, requiring same-day imaging immediately after surgery and/or indicator injection. Genetically encoded Ca(2+) indicators (GECIs) overcome many of these limits and have garnered considerable use in many neuron types but only limited use in PCs. Here we employed these indicators to monitor Ca(2+) activity in PCs over several weeks. We could repeatedly image from the same cerebellar regions across multiple days and observed stable activity. We used chronic imaging to monitor PC activity in crus II, an area previously linked to licking behavior, and identified a region of increased activity at the onset of licking. We then monitored this same region after training tasks to initiate voluntary licking behavior in response to different sensory stimuli. In all cases, PC Ca(2+) activity increased at the onset of rhythmic licking.
Collapse
Affiliation(s)
| | - Samantha B Amat
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida; and
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida; and
| |
Collapse
|
15
|
González-Tapia D, Velázquez-Zamora DA, Olvera-Cortés ME, González-Burgos I. The motor learning induces plastic changes in dendritic spines of Purkinje cells from the neocerebellar cortex of the rat. Restor Neurol Neurosci 2015; 33:639-45. [DOI: 10.3233/rnn-140462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- David González-Tapia
- Laboratorio de Psicobiología, División de Neurociencias, CIBO, IMSS, Guadalajara, Jal, México
- Universidad Politécnica de la Zona Metropolitana de Guadalajara, Guadalajara, Jal, México
| | - Dulce A. Velázquez-Zamora
- Laboratorio de Psicobiología, División de Neurociencias, CIBO, IMSS, Guadalajara, Jal, México
- Universidad Politécnica de la Zona Metropolitana de Guadalajara, Guadalajara, Jal, México
| | | | - Ignacio González-Burgos
- Laboratorio de Psicobiología, División de Neurociencias, CIBO, IMSS, Guadalajara, Jal, México
| |
Collapse
|
16
|
Lesion-induced and activity-dependent structural plasticity of Purkinje cell dendritic spines in cerebellar vermis and hemisphere. Brain Struct Funct 2015; 221:3405-26. [PMID: 26420278 DOI: 10.1007/s00429-015-1109-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Neuroplasticity allows the brain to encode experience and learn behaviors, and also to re-acquire lost functions after damage. The cerebellum is a suitable structure to address this topic because of its strong involvement in learning processes and compensation of lesion-induced deficits. This study was aimed to characterize the effects of a hemicerebellectomy (HCb) combined or not with the exposition to environmental enrichment (EE) on dendritic spine density and size in Purkinje cell proximal and distal compartments of cerebellar vermian and hemispherical regions. Male Wistar rats were housed in enriched or standard environments from the 21st post-natal day (pnd) onwards. At the 75th pnd, rats were submitted to HCb or sham lesion. Neurological symptoms and spatial performance in the Morris water maze were evaluated. At the end of testing, morphological analyses assessed dendritic spine density, area, length, and head diameter on vermian and hemispherical Purkinje cells. All hemicerebellectomized (HCbed) rats showed motor compensation, but standard-reared HCbed animals exhibited cognitive impairment that was almost completely compensated in enriched HCbed rats. The standard-reared HCbed rats showed decreased density with augmented size of Purkinje cell spines in the vermis, and augmented both density and size in the hemisphere. Enriched HCbed rats almost completely maintained the spine density and size induced by EE. Both lesion-induced and activity-dependent cerebellar plastic changes may be interpreted as "beneficial" brain reactions, aimed to support behavioral performance rescuing.
Collapse
|
17
|
Nishiyama H. Learning-Induced Structural Plasticity in the Cerebellum. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 117:1-19. [DOI: 10.1016/b978-0-12-420247-4.00001-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
18
|
Lee KJ, Rhyu IJ, Pak DT. Synapses need coordination to learn motor skills. Rev Neurosci 2014; 25:223-30. [DOI: 10.1515/revneuro-2013-0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 01/17/2014] [Indexed: 11/15/2022]
|
19
|
Nishiyama N, Colonna J, Shen E, Carrillo J, Nishiyama H. Long-term in vivo time-lapse imaging of synapse development and plasticity in the cerebellum. J Neurophysiol 2013; 111:208-16. [PMID: 24133221 DOI: 10.1152/jn.00588.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synapses are continuously formed and eliminated throughout life in the mammalian brain, and emerging evidence suggests that this structural plasticity underlies experience-dependent changes of brain functions such as learning and long-term memory formation. However, it is generally difficult to understand how the rewiring of synaptic circuitry observed in vivo eventually relates to changes in animal's behavior. This is because afferent/efferent connections and local synaptic circuitries are very complicated in most brain regions, hence it is largely unclear how sensorimotor information is conveyed, integrated, and processed through a brain region that is imaged. The cerebellar cortex provides a particularly useful model to challenge this problem because of its simple and well-defined synaptic circuitry. However, owing to the technical difficulty of chronic in vivo imaging in the cerebellum, it remains unclear how cerebellar neurons dynamically change their structures over a long period of time. Here, we showed that the commonly used method for neocortical in vivo imaging was not ideal for long-term imaging of cerebellar neurons, but simple optimization of the procedure significantly improved the success rate and the maximum time window of chronic imaging. The optimized method can be used in both neonatal and adult mice and allows time-lapse imaging of cerebellar neurons for more than 5 mo in ∼80% of animals. This method allows vital observation of dynamic cellular processes such as developmental refinement of synaptic circuitry as well as long-term changes of neuronal structures in adult cerebellum under longitudinal behavioral manipulations.
Collapse
Affiliation(s)
- Naoko Nishiyama
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas
| | | | | | | | | |
Collapse
|