1
|
Zheng X, Han D, Liu W, Wang X, Pan N, Wang Y, Chen Z. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson's disease. Theranostics 2023; 13:2673-2692. [PMID: 37215566 PMCID: PMC10196819 DOI: 10.7150/thno.80271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Parkinson's disease (PD) is a prevalent neurodegenerative disorder that is characterized by degeneration of dopaminergic neurons (DA) at the substantia nigra pas compacta (SNpc). Cell therapy has been proposed as a potential treatment option for PD, with the aim of replenishing the lost DA neurons and restoring motor function. Fetal ventral mesencephalon tissues (fVM) and stem cell-derived DA precursors cultured in 2-dimentional (2-D) culture conditions have shown promising therapeutic outcomes in animal models and clinical trials. Recently, human induced pluripotent stem cells (hiPSC)-derived human midbrain organoids (hMOs) cultured in 3-dimentional (3-D) culture conditions have emerged as a novel source of graft that combines the strengths of fVM tissues and 2-D DA cells. Methods: 3-D hMOs were induced from three distinct hiPSC lines. hMOs at various stages of differentiation were transplanted as tissue pieces into the striatum of naïve immunodeficient mouse brains, with the aim of identifying the most suitable stage of hMOs for cellular therapy. The hMOs at Day 15 were determined to be the most appropriate stage and were transplanted into a PD mouse model to assess cell survival, differentiation, and axonal innervation in vivo. Behavioral tests were conducted to evaluate functional restoration following hMO treatment and to compare the therapeutic effects between 2-D and 3-D cultures. Rabies virus were introduced to identify the host presynaptic input onto the transplanted cells. Results: hMOs showed a relatively homogeneous cell composition, mostly consisting of dopaminergic cells of midbrain lineage. Analysis conducted 12 weeks post-transplantation of day 15 hMOs revealed that 14.11% of the engrafted cells expressed TH+ and over 90% of these cells were co-labeled with GIRK2+, indicating the survival and maturation of A9 mDA neurons in the striatum of PD mice. Transplantation of hMOs led to a reversal of motor function and establishment of bidirectional connections with natural brain target regions, without any incidence of tumor formation or graft overgrowth. Conclusion: The findings of this study highlight the potential of hMOs as safe and efficacious donor graft sources for cell therapy to treat PD.
Collapse
Affiliation(s)
- Xin Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Deqiang Han
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Weihua Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Xueyao Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Na Pan
- The Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- The Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
2
|
Inositol 1,4,5-Trisphosphate Receptor Type 3 Regulates Neuronal Growth Cone Sensitivity to Guidance Signals. iScience 2020; 23:100963. [PMID: 32199289 PMCID: PMC7082556 DOI: 10.1016/j.isci.2020.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 11/22/2022] Open
Abstract
During neurodevelopment, the growth cone deciphers directional information from extracellular guidance cues presented as shallow concentration gradients via signal amplification. However, it remains unclear how the growth cone controls this amplification process during its navigation through an environment in which basal cue concentrations vary widely. Here, we identified inositol 1,4,5-trisphosphate (IP3) receptor type 3 as a regulator of axonal sensitivity to guidance cues in vitro and in vivo. Growth cones lacking the type 3 subunit are hypersensitive to nerve growth factor (NGF), an IP3-dependent attractive cue, and incapable of turning toward normal concentration ranges of NGF to which wild-type growth cones respond. This is due to globally, but not asymmetrically, activated Ca2+ signaling in the hypersensitive growth cones. Remarkably, lower NGF concentrations can polarize growth cones for turning if IP3 receptor type 3 is deficient. These data suggest a subtype-specific IP3 receptor function in sensitivity adjustment during axon navigation. IP3 receptor type 3 (IP3R3) controls axonal sensitivity to IP3-based guidance cues IP3R3−/− growth cones are not attracted to NGF due to global Ca2+ responses Lower NGF concentrations can polarize IP3R3−/− growth cones for attractive turning NGF knockdown in vivo can revert abnormal trajectory of IP3R3−/− axons
Collapse
|
3
|
Dravid A, Parittotokkaporn S, Aqrawe Z, O’Carroll SJ, Svirskis D. Determining Neurotrophin Gradients in Vitro To Direct Axonal Outgrowth Following Spinal Cord Injury. ACS Chem Neurosci 2020; 11:121-132. [PMID: 31825204 DOI: 10.1021/acschemneuro.9b00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A spinal cord injury can damage neuronal connections required for both motor and sensory function. Barriers to regeneration within the central nervous system, including an absence of neurotrophic stimulation, impair the ability of injured neurons to reestablish their original circuitry. Exogenous neurotrophin administration has been shown to promote axonal regeneration and outgrowth following injury. The neurotrophins possess chemotrophic properties that guide axons toward the region of highest concentration. These growth factors have demonstrated potential to be used as a therapeutic intervention for orienting axonal growth beyond the injury lesion, toward denervated targets. However, the success of this approach is dependent on the appropriate spatiotemporal distribution of these molecules to ensure detection and navigation by the axonal growth cone. A number of in vitro gradient-based assays have been employed to investigate axonal response to neurotrophic gradients. Such platforms have helped elucidate the potential of applying a concentration gradient of neurotrophins to promote directed axonal regeneration toward a functionally significant target. Here, we review these techniques and the principles of gradient detection in axonal guidance, with particular focus on the use of neurotrophins to orient the trajectory of regenerating axons.
Collapse
Affiliation(s)
- Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Zaid Aqrawe
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
4
|
Ghosh B, Zhang C, Ziemba KS, Fletcher AM, Yurek DM, Smith GM. Partial Reconstruction of the Nigrostriatal Circuit along a Preformed Molecular Guidance Pathway. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:217-227. [PMID: 31417940 PMCID: PMC6690717 DOI: 10.1016/j.omtm.2019.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/25/2019] [Indexed: 01/09/2023]
Abstract
The overall goal of our research is to establish a preformed molecular guidance pathway to direct the growth of dopaminergic axons from embryonic ventral mesencephalon (VM), tissue placed within the substantia nigra (SN), into the striatum to reconstruct the nigrostriatal pathway in a hemi-Parkinson's disease rat model. Guidance pathways were prepared by injecting lentivirus encoding either GFP or a combination of glial-cell-line-derived neurotrophic factor (GDNF) with either GDNF family receptor α1 (GFRα1) or netrin1. In another cohort of animals, adeno-associated virus (AAV) encoding brain-derived neurotrophic factor (BDNF) was injected within the striatum after guidance pathway formation. GDNF combined with either GFRα1 or netrin significantly increased growth of dopaminergic axons out of transplants and along the pathway, resulting in a significant reduction in the number of amphetamine-induced rotations. Retrograde tract tracing showed that the dopaminergic axons innervating the striatum were from A9 neurons within the transplant. Increased dopaminergic innervation of the striatum and improved behavioral recovery were observed with the addition of BDNF. Preformed guidance pathways using a combination of GDNF and netrin1 can be used to reconstruct the nigrostriatal pathway and improve motor recovery.
Collapse
Affiliation(s)
- Biswarup Ghosh
- Center for Neural Repair and Rehabilitation, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19104, USA
| | - Chen Zhang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Kristine S. Ziemba
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Anita M. Fletcher
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - David M. Yurek
- Department of Neurosurgery and University of Kentucky Nanobiotechnology Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - George M. Smith
- Center for Neural Repair and Rehabilitation, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19104, USA
- Corresponding author: George M. Smith, Center for Neural Repair and Rehabilitation, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 N. Broad St., MERB 6th Floor, Philadelphia, PA 19140, USA.
| |
Collapse
|
5
|
Wuttke TV, Markopoulos F, Padmanabhan H, Wheeler AP, Murthy VN, Macklis JD. Developmentally primed cortical neurons maintain fidelity of differentiation and establish appropriate functional connectivity after transplantation. Nat Neurosci 2018; 21:517-529. [PMID: 29507412 PMCID: PMC5876138 DOI: 10.1038/s41593-018-0098-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 01/26/2018] [Indexed: 01/06/2023]
Abstract
Repair of complex CNS circuitry requires newly incorporated neurons to become appropriately, functionally integrated. One approach is to direct differentiation of endogenous progenitors in situ, or ex vivo followed by transplantation. Prior studies find that newly incorporated neurons can establish long-distance axon projections, form synapses and functionally integrate in evolutionarily old hypothalamic energy-balance circuitry. We now demonstrate that postnatal neocortical connectivity can be reconstituted with point-to-point precision, including cellular integration of specific, molecularly identified projection neuron subtypes into correct positions, combined with development of appropriate long-distance projections and synapses. Using optogenetics-based electrophysiology, experiments demonstrate functional afferent and efferent integration of transplanted neurons into transcallosal projection neuron circuitry. Results further indicate that 'primed' early postmitotic neurons, including already fate-restricted deep-layer projection neurons and/or plastic postmitotic neuroblasts with partially fate-restricted potential, account for the predominant population of neurons capable of achieving this optimal level of integration.
Collapse
Affiliation(s)
- Thomas V Wuttke
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Departments of Neurosurgery and of Neurology and Epileptology, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Foivos Markopoulos
- Dept. of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Hari Padmanabhan
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Aaron P Wheeler
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Venkatesh N Murthy
- Dept. of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D Macklis
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
DePaul MA, Lin CY, Silver J, Lee YS. Combinatory repair strategy to promote axon regeneration and functional recovery after chronic spinal cord injury. Sci Rep 2017; 7:9018. [PMID: 28827771 PMCID: PMC5567101 DOI: 10.1038/s41598-017-09432-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
Eight weeks post contusive spinal cord injury, we built a peripheral nerve graft bridge (PNG) through the cystic cavity and treated the graft/host interface with acidic fibroblast growth factor (aFGF) and chondroitinase ABC (ChABC). This combinatorial strategy remarkably enhanced integration between host astrocytes and graft Schwann cells, allowing for robust growth, especially of catecholaminergic axons, through the graft and back into the distal spinal cord. In the absence of aFGF+ChABC fewer catecholaminergic axons entered the graft, no axons exited, and Schwann cells and astrocytes failed to integrate. In sharp contrast with the acutely bridge-repaired cord, in the chronically repaired cord only low levels of serotonergic axons regenerated into the graft, with no evidence of re-entry back into the spinal cord. The failure of axons to regenerate was strongly correlated with a dramatic increase of SOCS3 expression. While regeneration was more limited overall than at acute stages, our combinatorial strategy in the chronically injured animals prevented a decline in locomotor behavior and bladder physiology outcomes associated with an invasive repair strategy. These results indicate that PNG+aFGF+ChABC treatment of the chronically contused spinal cord can provide a permissive substrate for the regeneration of certain neuronal populations that retain a growth potential over time, and lead to functional improvements.
Collapse
Affiliation(s)
- Marc A DePaul
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| | - Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Jerry Silver
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| | - Yu-Shang Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA.
| |
Collapse
|
7
|
Dell'Anno MT, Strittmatter SM. Rewiring the spinal cord: Direct and indirect strategies. Neurosci Lett 2016; 652:25-34. [PMID: 28007647 DOI: 10.1016/j.neulet.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/15/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022]
Abstract
Spinal cord injury is currently incurable. Treatment is limited to minimizing secondary complications and maximizing residual function by rehabilitation. Neurologic recovery is prevented by the poor intrinsic regenerative capacity of neurons in the adult central nervous system and by the presence of growth inhibitors in the adult brain and spinal cord. Here we identify three approaches to rewire the spinal cord after injury: axonal regeneration (direct endogenous reconnection), axonal sprouting (indirect endogenous reconnection) and neural stem cell transplantation (indirect exogenous reconnection). Regeneration and sprouting of axonal fibers can be both enhanced through the neutralization of myelin- and extracellular matrix-associated inhibitors described in the first part of this review. Alternatively, in the second part we focus on the formation of a novel circuit through the grafting of neural stem cells in the lesion site. Transplanted neural stem cells differentiate in vivo into neurons and glial cells which form an intermediate station between the rostral and caudal segment of the recipient spinal cord. In particular, here we describe how neural stem cells-derived neurons are endowed with the ability to extend long-distance axons to regain the transmission of motor and sensory information.
Collapse
Affiliation(s)
- Maria Teresa Dell'Anno
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
8
|
Goganau I, Blesch A. Gene Therapy for Spinal Cord Injury. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Alsmadi NZ, Patil LS, Hor EM, Lofti P, Razal JM, Chuong CJ, Wallace GG, Romero-Ortega MI. Coiled polymeric growth factor gradients for multi-luminal neural chemotaxis. Brain Res 2015; 1619:72-83. [PMID: 25801117 DOI: 10.1016/j.brainres.2015.01.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/14/2015] [Accepted: 01/27/2015] [Indexed: 11/24/2022]
Abstract
In the injured adult nervous system, re-establishment of growth-promoting molecular gradients is known to entice and guide nerve repair. However, incorporation of three-dimensional chemotactic gradients in nerve repair scaffolds, particularly in those with multi-luminal architectures, remains extremely challenging. We developed a method that establishes highly tunable three-dimensional molecular gradients in multi-luminal nerve guides by anchoring growth-factor releasing coiled polymeric fibers onto the walls of collagen-filled hydrogel microchannels. Differential pitch in the coiling of neurotrophin-eluting fibers generated sustained chemotactic gradients that appropriately induced the differentiation of Pheochromocytoma (PC12) cells into neural-like cells along an increasing concentration of nerve growth factor (NGF). Computer modeling estimated the stability of the molecular gradient within the luminal collagen, which we confirmed by observing the significant effects of neurotrophin gradients on axonal growth from dorsal root ganglia (DRG). Neurons growing in microchannels exposed to a NGF gradient showed a 60% increase in axonal length compared to those treated with a linear growth factor concentration. In addition, a two-fold increment in the linearity of axonal growth within the microchannels was observed and confirmed by a significant reduction in the turning angle ratios of individual axons. These data demonstrate the ability of growth factor-loaded polymeric coiled fibers to establish three-dimensional chemotactic gradients to promote and direct nerve regeneration in the nervous system and provides a unique platform for molecularly guided tissue repair.
Collapse
Affiliation(s)
- Nesreen Zoghoul Alsmadi
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd., EC39, Richardson, 75080 TX, USA
| | - Lokesh S Patil
- Department of Bioengineering, University of Texas Arlington, Arlington, TX, USA
| | - Elijah M Hor
- Department of Bioengineering, University of Texas Arlington, Arlington, TX, USA
| | - Parisa Lofti
- Department of Bioengineering, University of Texas Arlington, Arlington, TX, USA
| | - Joselito M Razal
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Cheng-Jen Chuong
- Department of Bioengineering, University of Texas Arlington, Arlington, TX, USA
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mario I Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd., EC39, Richardson, 75080 TX, USA.
| |
Collapse
|
10
|
Bonner JF, Steward O. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Brain Res 2015; 1619:115-23. [PMID: 25591483 DOI: 10.1016/j.brainres.2015.01.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 02/01/2023]
Abstract
Spinal cord injury (SCI) disrupts the long axonal tracts of the spinal cord leading to devastating loss of function. Cell transplantation in the injured spinal cord has the potential to lead to recovery after SCI via a variety of mechanisms. One such strategy is the formation of neuronal relays between injured long tract axons and denervated neurons. The idea of creating a neuronal relay was first proposed over 25 years ago when fetal tissue was first successfully transplanted into the injured rodent spinal cord. Advances in labeling of grafted cells and the development of neural stem cell culturing techniques have improved the ability to create and refine such relays. Several recent studies have examined the ability to create a novel neuronal circuit between injured axons and denervated targets. This approach is an alternative to long-distance regeneration of damaged axons that may provide a meaningful degree of recovery without direct recreation of lost pathways. This brief review will examine the contribution of fetal grafting to current advances in neuronal grafting. Of particular interest will be the ability of transplanted neurons derived from fetal grafts, neural precursor cells and neural stem cells to reconnect long distance motor and sensory pathways of the injured spinal cord. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Joseph F Bonner
- Reeve-Irvine Research Center, University of California, 1105 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4265, USA.
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, 1105 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4265, USA; Departments of Anatomy & Neurobiology, Neurobiology & Behavior, and Neurosurgery, University of California at Irvine School of Medicine, Irvine, CA 92697-4265, USA
| |
Collapse
|
11
|
Ultrasmall superparamagnetic iron oxide nanoparticle prelabelling of human neural precursor cells. Biomaterials 2014; 35:5549-64. [PMID: 24726535 DOI: 10.1016/j.biomaterials.2014.03.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/21/2014] [Indexed: 12/31/2022]
Abstract
Stem cells prelabelled with iron oxide nanoparticles can be visualised using magnetic resonance imaging (MRI). This technique allows for noninvasive long-term monitoring of migration, integration and stem cell fate following transplantation into living animals. In order to determine biocompatibility, the present study investigated the biological impact of introducing ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) into primary human fetal neural precursor cells (hNPCs) in vitro. USPIOs with a mean diameter of 10-15 nm maghemite iron oxide core were sterically stabilised by 95% methoxy-poly(ethylene glycol) (MPEG) and either 5% cationic (NH2) end-functionalised, or 5% Rhodamine B end-functionalised, polyacrylamide. The stabilising polymer diblocks were synthesised by reversible addition-fragmentation chain transfer (RAFT) polymerisation. Upon loading, cellular viability, total iron capacity, differentiation, average distance of migration and changes in intracellular calcium ion concentration were measured to determine optimal loading conditions. Taken together we demonstrate that prelabelling of hNPCs with USPIOs has no significant detrimental effect on cell biology and that USPIOs, when utilised at an optimised dosage, are an effective means of noninvasively tracking prelabelled hNPCs.
Collapse
|
12
|
Zhang C, Jin Y, Ziemba KS, Fletcher AM, Ghosh B, Truit E, Yurek DM, Smith GM. Long distance directional growth of dopaminergic axons along pathways of netrin-1 and GDNF. Exp Neurol 2013; 250:156-64. [PMID: 24099728 DOI: 10.1016/j.expneurol.2013.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 12/20/2022]
Abstract
Different experimental and clinical strategies have been used to promote survival of transplanted embryonic ventral mesencephalic (VM) neurons. However, few studies have focused on the long-distance growth of dopaminergic axons from VM transplants. The aim of this study is to identify some of the growth and guidance factors that support directed long-distance growth of dopaminergic axons from VM transplants. Lentivirus encoding either glial cell line-derived neurotrophic factor (GDNF) or netrin-1, or a combination of lenti-GDNF with either lenti-GDNF family receptor α1 (GFRα-1) or lenti-netrin-1 was injected to form a gradient along the corpus callosum. Two weeks later, a piece of embryonic day 14 VM tissue was transplanted into the corpus callosum adjacent to the low end of the gradient. Results showed that tyrosine hydroxylase (TH(+)) axons grew a very short distance from the VM transplants in control groups, with few axons reaching the midline. In GDNF or netrin-1 expressing groups, more TH(+) axons grew out of transplants and reached the midline. Pathways co-expressing GDNF with either GFRα-1 or netrin-1 showed significantly increased axonal outgrowth. Interestingly, only the GDNF/netrin-1 combination resulted in the majority of axons reaching the distal target (80%), whereas along the GDNF/GFRα-1 pathway only 20% of the axons leaving the transplant reached the distal target. This technique of long-distance axon guidance may prove to be a useful strategy in reconstructing damaged neuronal circuits, such as the nigrostriatal pathway in Parkinson's disease.
Collapse
Affiliation(s)
- C Zhang
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nerve regeneration restores supraspinal control of bladder function after complete spinal cord injury. J Neurosci 2013; 33:10591-606. [PMID: 23804083 DOI: 10.1523/jneurosci.1116-12.2013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A life-threatening disability after complete spinal cord injury is urinary dysfunction, which is attributable to lack of regeneration of supraspinal pathways that control the bladder. Although numerous strategies have been proposed that can promote the regrowth of severed axons in the adult CNS, at present, the approaches by which this can be accomplished after complete cord transection are quite limited. In the present study, we modified a classic peripheral nerve grafting technique with the use of chondroitinase to facilitate the regeneration of axons across and beyond an extensive thoracic spinal cord transection lesion in adult rats. The novel combination treatment allows for remarkably lengthy regeneration of certain subtypes of brainstem and propriospinal axons across the injury site and is followed by markedly improved urinary function. Our studies provide evidence that an enhanced nerve grafting strategy represents a potential regenerative treatment after severe spinal cord injury.
Collapse
|
14
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
15
|
Jin Y, Sura K, Fischer I. Differential effects of distinct central nervous system regions on cell migration and axonal extension of neural precursor transplants. J Neurosci Res 2012; 90:2065-73. [PMID: 22740505 DOI: 10.1002/jnr.23099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/11/2012] [Accepted: 05/16/2012] [Indexed: 11/06/2022]
Abstract
Transplantation of neural precursor cells (NPCs) is a promising therapeutic strategy in CNS injury. However, the adult CNS lacks instructive signals present during development and, depending on the region and type of transplant, may be inhibitory for neuron generation and axonal growth. We examined the effects of the white matter in different regions of the adult CNS on the properties of NPC transplants with respect to cell survival, differentiation, migration, and axonal growth. NPCs were prepared from day 13.5 embryonic spinal cord of transgenic rats that express the human placental alkaline phosphatase (AP) reporter. These NPCs were injected unilaterally into the cervical spinal cord white matter and into the corpus callosum of adult rats and were analyzed immunohistochemically 2 weeks later. NPCs survived in both regions and differentiated into astrocytes, oligodendrocytes, and neurons, with no apparent differences in survival or phenotypic composition. However, in the spinal cord white matter, graft-derived cells, identified as precursors and glial cells, migrated from the injection site rostrally and caudally, whereas, in the corpus callosum, graft-derived cells did not migrate and remained at the injection site. Importantly, graft-derived neurons extended axons from the grafting site along the corpus callosum past the midline, entering into the contralateral side of the corpus callosum. These results demonstrate dramatic differences between white matter regions in the spinal cord and brain with respect to cell migration and axonal growth and underscore the importance of considering the effects of the local CNS environment in the design of effective transplantation strategies.
Collapse
Affiliation(s)
- Ying Jin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.
| | | | | |
Collapse
|
16
|
Abstract
While ultimately, focus must be placed on experimentation using adult systems, vastly important clues to regeneration can be found in the study of the embryonic nervous system. In embryonic systems, axonal regeneration is successful before a critical period, and numerous advances have resulted from the study of isolated cells and tissues in vitro. Studies over many decades from the laboratory of Paul C. Letourneau have probed the cellular and molecular phenomena involved in axon outgrowth and guidance in the embryonic central and peripheral nervous system and have laid the framework for many current advances in regeneration research. Letourneau’s pioneering work related to growth cone behavior, guidance, and regeneration has resulted in considerable contributions toward our understanding not only of cellular mechanisms that underlie axon growth, but also of the specific areas of study that require attention to accomplish future breakthroughs. The present article summarizes some of the major contributions from Paul Letourneau and his team in the area of axonal regeneration.
Collapse
Affiliation(s)
- Diane M Snow
- Department of Anatomy and Neurobiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA.
| |
Collapse
|
17
|
McCall J, Weidner N, Blesch A. Neurotrophic factors in combinatorial approaches for spinal cord regeneration. Cell Tissue Res 2012; 349:27-37. [PMID: 22526621 DOI: 10.1007/s00441-012-1388-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/23/2012] [Indexed: 01/09/2023]
Abstract
Axonal regeneration is inhibited by a plethora of different mechanisms in the adult central nervous system (CNS). While neurotrophic factors have been shown to stimulate axonal growth in numerous animal models of nervous system injury, a lack of suitable growth substrates, an insufficient activation of neuron-intrinsic regenerative programs, and extracellular inhibitors of regeneration limit the efficacy of neurotrophic factor delivery for anatomical and functional recovery after spinal cord injury. Thus, growth-stimulating factors will likely have to be combined with other treatment approaches to tap into the full potential of growth factor therapy for axonal regeneration. In addition, the temporal and spatial distribution of growth factors have to be tightly controlled to achieve biologically active concentrations, to allow for the chemotropic guidance of axons, and to prevent adverse effects related to the widespread distribution of neurotrophic factors. Here, we will review the rationale for combinatorial treatments in axonal regeneration and summarize some recent progress in promoting axonal regeneration in the injured CNS using such approaches.
Collapse
Affiliation(s)
- Julianne McCall
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstrasse 200 a, 69118 Heidelberg, Germany
| | | | | |
Collapse
|
18
|
Abstract
Spinal cord injury (SCI) has multiple consequences, ranging from molecular imbalances to glial scar formation to functional impairments. It is logical to think that a combination of single treatments implemented in the right order and at the right time will be required to repair the spinal cord. However, the single treatments that compose the combination therapy will need to be chosen with caution as many have multiple outcomes that may or may not be synergistic. Single treatments may also elicit unwanted side-effects and/or effects that would decrease the repair potential of other components and/or the entire combination therapy. In this chapter a number of single treatments are discussed with respect to their multiplicity of action. These include strategies to boost growth and survival (such as neurotrophins and cyclic AMP) and strategies to reduce inhibitory factors (such as antimyelin-associated growth inhibitors and digestion of glial scar-associated inhibitors). We also present an overview of combination therapies that have successfully or unsuccessfully been tested in the laboratory using animal models. To effectively design a combination therapy a number of considerations need to be made such as the nature and timing of the treatments and the method for delivery. This chapter discusses these issues as well as considerations related to chronic SCI and the logistics of bringing combination therapies to the clinic.
Collapse
Affiliation(s)
- M Oudega
- Departments of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
19
|
Gene therapy, neurotrophic factors and spinal cord regeneration. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:563-74. [PMID: 23098737 DOI: 10.1016/b978-0-444-52137-8.00035-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significant advances have been made in understanding the mechanisms that limit axon regeneration in the adult mammalian central nervous system and in addressing some of the obstacles for axon growth. Despite this progress numerous challenges remain to achieve regeneration of a large number of axons sufficient to mediate functional improvement. Given the complexity of injury-induced changes in axon, cell body, and parenchyma surrounding a spinal cord lesion, it seems likely that multiple factors both intrinsic and extrinsic to injured neurons have to be addressed to augment axon regeneration and useful reorganization of spared circuitry. Neurotrophic factors have been shown to be one potent means to increase the number and range of regenerating axons, to guide regenerating axons across a lesion site, and to augment regenerative cell body responses to injury. In this chapter we will review the potential and current limitations of neurotrophic factors and gene therapy, in combination with cellular transplants, for axon regeneration and sprouting in the injured spinal cord.
Collapse
|
20
|
van Velthoven CTJ, Kavelaars A, van Bel F, Heijnen CJ. Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain. Brain Behav Immun 2011; 25:1342-8. [PMID: 21473911 DOI: 10.1016/j.bbi.2011.03.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem cell (MSC) treatment is an effective strategy to reduce brain damage after neonatal hypoxia-ischemia (HI) in mice. We recently showed that a single injection with MSC at either 3 or 10 days after HI (MSC-3 or MSC-10) increases neurogenesis. In case of two injections (MSC-3+10), the second MSC application does not increase neurogenesis, but promotes corticospinal tract remodeling. Here we investigated GFP(+)-MSC engraftment level in the brain using quantitative-PCR analysis. We show for the first time that in the neonatal ischemic brain survival of transplanted MSC is very limited. At 3 days after injection ∼22% of transplanted MSC were still detectable and 18 days after the last administration barely ∼1%. These findings indicate that engraftment of MSC is not likely the underlying mechanism of the efficient regenerative process. Therefore, we tested the hypothesis that the effects of MSC-treatment on regenerative processes are related to specific changes in the gene expression of growth factors and cytokines in the damaged area of the brain using PCR-array analysis. We compared the effect of one (MSC-10) or two (MSC-3+10) injections of 10(5) MSC on gene expression in the brain. Our data show that MSC-10 induced expression of genes regulating proliferation/survival. In response to MSC-3+10-treatment a pattern functionally categorized as growth stimulating genes was increased. Collectively, our data indicate that specific regulation of the endogenous growth factor milieu rather than replacement of damaged tissue by exogenous MSC mediates regeneration of the damaged neonatal brain by MSC-treatment.
Collapse
Affiliation(s)
- Cindy T J van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
21
|
Gallo G. Paul Letourneau reloaded: a forward-looking retrospective. Dev Neurobiol 2011; 71:775-9. [PMID: 21805683 DOI: 10.1002/dneu.20922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 2011; 31:4675-86. [PMID: 21430166 DOI: 10.1523/jneurosci.4130-10.2011] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transplantation of neural progenitor cells (NPC) is a promising therapeutic strategy for replacing neurons lost after spinal cord injury, but significant challenges remain regarding neuronal integration and functional connectivity. Here we tested the ability of graft-derived neurons to reestablish connectivity by forming neuronal relays between injured dorsal column (DC) sensory axons and the denervated dorsal column nuclei (DCN). A mixed population of neuronal and glial restricted precursors (NRP/GRP) derived from the embryonic spinal cord of alkaline phosphatase (AP) transgenic rats were grafted acutely into a DC lesion at C1. One week later, BDNF-expressing lentivirus was injected into the DCN to guide graft axons to the intended target. Six weeks later, we observed anterogradely traced sensory axons regenerating into the graft and robust growth of graft-derived AP-positive axons along the neurotrophin gradient into the DCN. Immunoelectron microscopy revealed excitatory synaptic connections between regenerating host axons and graft-derived neurons at C1 as well as between graft axons and DCN neurons in the brainstem. Functional analysis by stimulus-evoked c-Fos expression and electrophysiological recording showed that host axons formed active synapses with graft neurons at the injury site with the signal propagating by graft axons to the DCN. We observed reproducible electrophysiological activity at the DCN with a temporal delay predicted by our relay model. These findings provide the first evidence for the ability of NPC to form a neuronal relay by extending active axons across the injured spinal cord to the intended target establishing a critical step for neural repair with stem cells.
Collapse
|
23
|
Nangle MR, Keast JR. Semaphorin 3A inhibits growth of adult sympathetic and parasympathetic neurones via distinct cyclic nucleotide signalling pathways. Br J Pharmacol 2011; 162:1083-95. [PMID: 21054346 DOI: 10.1111/j.1476-5381.2010.01108.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Semaphorin 3A (Sema3A) is an important secreted repulsive guidance factor for many developing neurones. Sema3A continues to be expressed in adulthood, and expression of its receptor, neuropilin-1 (Nrp-1), can be altered by nerve injury. Autonomic neurones innervating the pelvic viscera are particularly susceptible to damage during pelvic surgical procedures, and failure to regenerate or aberrant growth of sympathetic and parasympathetic nerves lead to organ dysfunction. However, it is not known if adult pelvic neurones are potential targets for Sema3A. EXPERIMENTAL APPROACH The effects of Sema3A and activation or inhibition of cyclic nucleotide signalling were assessed in adult rat pelvic ganglion neurones in culture using a growth cone collapse assay. KEY RESULTS Sema3A caused growth cone collapse in both parasympathetic and sympathetic neurones expressing Nrp-1. However, the effect of Sema3A was mediated by distinct cyclic nucleotide signalling pathways in each neurone type. In parasympathetic neurones, cAMP and downstream activation of protein kinase A were required for growth cone collapse. In sympathetic neurones, cGMP was required for Sema3A-induced collapse; cAMP can also cause collapse but was not required. Sema3A-mediated, cGMP-dependent collapse in sympathetic neurones may require activation of cyclic nucleotide-gated ion channels (CNGCs). CONCLUSIONS AND IMPLICATIONS We propose that Sema3A is an important guidance factor for adult pelvic autonomic neurones, and that manipulation of their distinct signalling mechanisms could potentially promote functional selective regeneration or attenuate aberrant growth. To our knowledge, this is also the first study to implicate CNGCs in regulating growth cone dynamics of adult neurones.
Collapse
Affiliation(s)
- M R Nangle
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia.
| | | |
Collapse
|
24
|
Wang X, Smith GM, Xu XM. Preferential and bidirectional labeling of the rubrospinal tract with adenovirus-GFP for monitoring normal and injured axons. J Neurotrauma 2011; 28:635-47. [PMID: 21299337 DOI: 10.1089/neu.2010.1566] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rodent rubrospinal tract (RST) has been studied extensively to investigate regeneration and remodeling of central nervous system (CNS) axons. Currently no retrograde tracers can specifically label rubrospinal axons and neurons (RSNs). The RST can be anterogradely labeled by injecting tracers into the red nucleus (RN), but accurately locating the RN is a technical challenge. Here we developed a recombinant adenovirus carrying a green fluorescent protein reporter gene (Adv-GFP) which can preferentially, intensely, and bi-directionally label the RST. When Adv-GFP was injected into the second lumbar spinal cord, the GFP was specifically transported throughout the entire RST, with peak labeling seen at 2 weeks post-injection. When Adv-GFP was injected directly into the RN, GFP was anterogradely transported throughout the RST. Following spinal cord injury (SCI), injection of Adv-GFP resulted in visualization of GFP in transected, spared, or sprouted RST axons bi-directionally. Thus Adv-GFP could be used as a novel tool for monitoring and evaluating strategies designed to maximize RST axonal regeneration and remodeling following SCI.
Collapse
Affiliation(s)
- Xiaofei Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
25
|
Jin Y, Zhang C, Ziemba KS, Goldstein GA, Sullivan PG, Smith GM. Directing dopaminergic fiber growth along a preformed molecular pathway from embryonic ventral mesencephalon transplants in the rat brain. J Neurosci Res 2011; 89:619-27. [PMID: 21337366 DOI: 10.1002/jnr.22575] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/21/2010] [Accepted: 11/07/2010] [Indexed: 12/23/2022]
Abstract
To identify guidance molecules to promote long-distance growth of dopaminergic axons from transplanted embryonic ventral mesencephalon (VM) tissue, three pathways were created by expressing green fluorescent protein (GFP), glial cell line-derived neurotrophic factor (GDNF), or a combination of GDNF/GDNF receptor α1 (GFRα1) along the corpus callosum. To generate the guidance pathway, adenovirus encoding these transcripts was injected at four positions along the corpus callosum. In all groups, GDNF adenovirus was also injected on the right side 2.5 mm from the midline at the desired transplant site. Four days later, a piece of VM tissue from embryonic day 14 rats was injected at the transplant site. All rats also received daily subcutaneous injections of N-acetyl-L-cysteinamide (NACA; 100 μg per rat) as well as chondroitinase ABC at transplant site (10 U/ml, 2 μl). Two weeks after transplantation, the rats were perfused and the brains dissected out. Coronal sections were cut and immunostained with antibody to tyrosine hydroxylase (TH) to identify and count dopaminergic fibers in the corpus callosum. In GFP-expressing pathways, TH(+) fibers grew out of the transplants for a short distance in the corpus callosum. Very few TH(+) fibers grew across the midline. However, pathways expressing GDNF supported more TH(+) fiber growth across the midline into the contralateral hemisphere. Significantly greater numbers of TH(+) fibers grew across the midline in animals expressing a combination of GDNF and GFRα1 in the corpus callosum. These data suggest that expression of GDNF or a combination of GDNF and GFRα1 can support the long-distance dopaminergic fiber growth from a VM transplant, with the combination having a superior effect.
Collapse
Affiliation(s)
- Y Jin
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
26
|
Franz S, Weidner N, Blesch A. Gene therapy approaches to enhancing plasticity and regeneration after spinal cord injury. Exp Neurol 2011; 235:62-9. [PMID: 21281633 DOI: 10.1016/j.expneurol.2011.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 01/09/2023]
Abstract
During the past decades, new insights into mechanisms that limit plasticity and functional recovery after spinal cord injury have spurred the development of novel approaches to enhance axonal regeneration and rearrangement of spared circuitry. Gene therapy may provide one means to address mechanisms that underlie the insufficient regenerative response of injured neurons and can also be used to identify factors important for axonal growth. Several genetic approaches aimed to modulate the environment of injured axons, for example by localized expression of growth factors, to enhance axonal sprouting and regeneration and to guide regenerating axons towards their target have been described. In addition, genetic modification of injured neurons via intraparenchymal injection, or via retrograde transport of viral vectors has been used to manipulate the intrinsic growth capacity of injured neurons. In this review we will summarize some of the progress and limitations of cell transplantation and gene therapy to enhance axonal bridging and regeneration across a lesion site, and to maximize the function, collateral sprouting and connectivity of spared axonal systems.
Collapse
Affiliation(s)
- Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Germany
| | | | | |
Collapse
|
27
|
Wen HZ, Jiang H, Li L, Xie P, Li JY, Lu ZB, He B. Semaphorin 3A Attenuates Electrical Remodeling at Infarct Border Zones in Rats after Myocardial Infarction. TOHOKU J EXP MED 2011; 225:51-7. [DOI: 10.1620/tjem.225.51] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hua-Zhi Wen
- Department of Cardiology, Renmin Hospital of Gansu Province
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Li Li
- Department of Cardiology, Renmin Hospital of Gansu Province
| | - Ping Xie
- Department of Cardiology, Renmin Hospital of Gansu Province
| | - Jin-Yao Li
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Zhi-Bing Lu
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Bo He
- Department of Cardiology, Renmin Hospital of Wuhan University
| |
Collapse
|
28
|
Vetter I, Pujic Z, Goodhill GJ. The response of dorsal root ganglion axons to nerve growth factor gradients depends on spinal level. J Neurotrauma 2010; 27:1379-86. [PMID: 20504159 DOI: 10.1089/neu.2010.1279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Directed sensory axon regeneration has the potential to promote functional recovery after peripheral nerve injury. Using a novel guidance assay to generate precisely controllable nerve growth factor gradients, we show for the first time that the guidance and outgrowth response of rat dorsal root ganglion neurons to identical nerve growth factor gradients depends on the rostrocaudal origin of the dorsal root ganglion explant. These findings have implications for the study of peripheral nerve regeneration in response to exogenous neurotrophins such as nerve growth factor, and provide new insight into the clinical potential of nerve growth factor in the treatment of nerve injury.
Collapse
Affiliation(s)
- Irina Vetter
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
29
|
Bonner JF, Blesch A, Neuhuber B, Fischer I. Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J Neurosci Res 2010; 88:1182-92. [PMID: 19908250 DOI: 10.1002/jnr.22288] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition characterized by disruption of axonal connections, failure of axonal regeneration, and loss of motor and sensory function. The therapeutic promise of neural stem cells has been focused on cell replacement, but many obstacles remain in obtaining neuronal integration following transplantation into the injured CNS. This study investigated the neurotransmitter identity and axonal growth potential of neural progenitors following grafting into adult rats with a dorsal column lesion. We found that using a combination of neuronal and glial restricted progenitors (NRP and GRP) produced graft-derived glutamatergic and GABAergic neurons within the injury site, with minimal axonal extension. Administration of brain-derived neurotrophic factor (BDNF) with the graft promoted modest axonal growth from grafted cells. In contrast, injecting a lentiviral vector expressing BDNF rostral into the injured area generated a neurotrophin gradient and promoted directional growth of axons for up to 9 mm. Animals injected with BDNF lentivirus (at 2.5 and 5.0 mm) showed significantly more axons and significantly longer axons than control animals injected with GFP lentivirus. However, only the 5.0-mm-BDNF group showed a preference for extension in the rostral direction. We concluded that NRP/GRP grafts can be used to produce excitatory and inhibitory neurons, and neurotrophin gradients can guide axonal growth from graft-derived neurons toward putative targets. Together they can serve as a building block for neuronal cell replacement of local circuits and formation of neuronal relays.
Collapse
Affiliation(s)
- Joseph F Bonner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
30
|
Smith GM, Onifer SM. Construction of pathways to promote axon growth within the adult central nervous system. Brain Res Bull 2010; 84:300-5. [PMID: 20554000 DOI: 10.1016/j.brainresbull.2010.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/25/2010] [Accepted: 05/31/2010] [Indexed: 12/12/2022]
Abstract
Inducing significant axon growth or regeneration after spinal cord injury has been difficult, primarily due to the poor growth supportive environment and low intrinsic growth ability of neurons within the CNS. Neurotrophins alone have been shown to readily induce regeneration of sensory axons after dorsal root lesions, however if neurotrophin gradients are expressed within the spinal cord these axons fail to terminate within appropriate target regions. Under such conditions, addition of a "stop" signal reduces growth into deeper dorsal laminae to support more specific targeting. Such neurotrophin gradients alone lose their effectiveness when lesions are within the spinal cord, requiring a combined treatment regime. Construction of pathways using combined treatments support good regeneration when they increase the intrinsic growth properties of neurons, provide a bridge across the lesion site, and supply a growth supportive substrate to induce axon growth out of the bridge and back into the host. Neurotrophin gradients distal to the bridge greatly enhance axon outgrowth. In disorders where neuronal circuits are lost, construction of preformed growth supportive pathways sustain long distance axon growth from a neuronal transplant to distal target locations.
Collapse
Affiliation(s)
- George M Smith
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, 40536, USA.
| | | |
Collapse
|
31
|
Hu X, Cai J, Yang J, Smith GM. Sensory axon targeting is increased by NGF gene therapy within the lesioned adult femoral nerve. Exp Neurol 2009; 223:153-65. [PMID: 19733564 DOI: 10.1016/j.expneurol.2009.08.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/24/2009] [Accepted: 08/26/2009] [Indexed: 01/18/2023]
Abstract
Even though peripheral nerves regenerate well, axons are often misrouted and reinnervate inappropriate distal pathways post-injury. Misrouting most likely occurs at branch points where regenerating axons make choices. Here, we show that the accuracy of sensory axon reinnervation is enhanced by overexpression of the guidance molecule nerve growth factor (NGF) distal to the bifurcation. We used the femoral nerve as a model, which contains both sensory and motor axons that intermingle in the parent trunk and distally segregate into the saphenous (SB) and motor branches (MB). Transection of the parent trunk resulted in misrouting of axon reinnervation to SB and MB. To enhance sensory axon targeting, recombinant adenovirus encoding NGF was injected along the SB close to the bifurcation 1 week post-injury. The accuracy of axon reinnervation was assessed by retrograde tracing at 3 or 8 weeks after nerve injury. NGF overexpression significantly increased the accuracy of SB axon reinnervation to the appropriate nerve branch, in a manner independent of enhancing axon regeneration. This novel finding provides in vivo evidence that gradient expression of neurotrophin can be used to enhance targeting of distal peripheral pathways to increase axon regeneration into the appropriate nerve branch.
Collapse
Affiliation(s)
- Xinhua Hu
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
32
|
Schmidt ER, Pasterkamp RJ, van den Berg LH. Axon guidance proteins: Novel therapeutic targets for ALS? Prog Neurobiol 2009; 88:286-301. [DOI: 10.1016/j.pneurobio.2009.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 04/06/2009] [Accepted: 05/27/2009] [Indexed: 12/12/2022]
|
33
|
Semaphorin function in neural plasticity and disease. Curr Opin Neurobiol 2009; 19:263-74. [PMID: 19541473 DOI: 10.1016/j.conb.2009.06.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 12/28/2022]
Abstract
The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and the density and maturation of dendritic spines. In addition, semaphorins and their downstream signaling components regulate synaptic physiology and neuronal excitability in the mature hippocampus, and these proteins are also implicated in a number of developmental, psychiatric, and neurodegenerative disorders. Significant inroads have been made in defining the mechanisms by which semaphorins regulate dynamic changes in the neuronal cytoskeleton at the molecular and cellular levels during embryonic nervous system development. However, comparatively little is known about how semaphorins influence neuronal structure and synaptic plasticity during adult nervous system homeostasis or following injury and disease. A detailed understanding of how semaphorins function beyond initial phases of neural network assembly is revealing novel insights into key aspects of nervous system physiology and pathology.
Collapse
|
34
|
Curinga G, Snow DM, Smith GM. Mechanisms regulating interpretation of guidance cues during development, maturation, and following injury. Rev Neurosci 2009; 19:213-26. [PMID: 19145984 DOI: 10.1515/revneuro.2008.19.4-5.213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Guidance molecules are not inherently attractive or repulsive, but rather, are interpreted as such based on the context in which they are encountered. Thus, accurate wiring of the central nervous system is inextricably tied to the internal state of neurons and their local environment. To protect functional integrity, these carefully formed circuits are stabilized via a combination of neuronal and environmental changes during maturation and following injury. While necessary, such modifications create obstacles for reconstruction of damaged circuits. Here, we consider the effects of maturation and injury induced changes on the interpretation of guidance cues by regenerating neurons and the problems they pose for faithful reconstruction of functional circuits.
Collapse
Affiliation(s)
- Gabrielle Curinga
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
35
|
Houchin-Ray T, Huang A, West ER, Zelivyanskaya M, Shea LD. Spatially patterned gene expression for guided neurite extension. J Neurosci Res 2009; 87:844-56. [PMID: 18951499 DOI: 10.1002/jnr.21908] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Axon pathfinding by localized expression of guidance molecules is critical for the proper development of the nervous system. In this report, we present a well-defined spatially patterned gene expression system to investigate neurite guidance in vitro. Nonviral gene delivery was patterned by combining substrate-mediated gene delivery with soft lithography techniques, and the amount of protein produced at the region of localized expression was varied by altering the vector concentration and the width of the pattern, highlighting the flexibility of the system. A neuronal coculture model was used to investigate responses to spatial patterns of nerve growth factor (NGF) expression. The soluble NGF gradient elicited a guidance cue, and the degree of guidance was governed by the distance a neuron was cultured from the pattern and the time between accessory cell and neuron seedings. A portion of the diffusible NGF bound to the culture surface in the extracellular space, and the surface-associated NGF supported neuron survival and neurite outgrowth. However, the surface-bound NGF gradient alone did not elicit a guidance signal, and in fact masked the guidance cue by soluble NGF gradients. Mathematical modeling of NGF diffusion was used to predict the concentration gradients, and both the absolute and fractional gradients capable of guiding neurites produced by patterned gene expression differed substantially from the values obtained with existing engineered protein gradients. Spatially patterned gene expression provides a versatile tool to investigate the factors that may promote neurite guidance.
Collapse
Affiliation(s)
- Tiffany Houchin-Ray
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, USA
| | | | | | | | | |
Collapse
|
36
|
Prasad AA, Pasterkamp RJ. Axon guidance in the dopamine system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:91-100. [PMID: 19731554 DOI: 10.1007/978-1-4419-0322-8_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Meso-diencephalic dopamine neurons (mdDA) neurons are located in the retrorubral field (RRF), substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) and give rise to prominent ascending axon projections. These so-called mesotelencephalic projections are organized into three main pathways: the mesostriatal, mesocortical and mesolimbic pathways. Mesotelencephalic pathways in the adult nervous system have been studied in much detail as a result of their important physiological functions and their implication in psychiatric, neurological and neurodegenerative disease. In comparison, relatively little is known about the formation of these projection systems during embryonic and postnatal development. However, understanding the formation of mdDA neurons and their projections is essential for the design of effective therapies for mdDA neuron-associated neurological and neurodegenerative disorders. Here we summarize our current knowledge of the ontogeny of mdDA axon projections in subsystems of the developing rodent central nervous system (CNS) and discuss the cellular and molecular mechanisms that mediate mdDA axon guidance in these CNS regions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
37
|
Magavi SS, Lois C. Transplanted neurons form both normal and ectopic projections in the adult brain. Dev Neurobiol 2008; 68:1527-37. [DOI: 10.1002/dneu.20677] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
In Brief. Nat Rev Neurosci 2008. [DOI: 10.1038/nrn2326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Jin Y, Ziemba KS, Smith GM. Axon growth across a lesion site along a preformed guidance pathway in the brain. Exp Neurol 2007; 210:521-30. [PMID: 18261727 DOI: 10.1016/j.expneurol.2007.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/30/2007] [Accepted: 11/30/2007] [Indexed: 11/16/2022]
Abstract
Our previous studies showed that axonal outgrowth from dorsal root ganglia (DRG) transplants in the adult rat brain could be directed toward a specific target location using a preformed growth-supportive pathway. This pathway induced axon growth within the corpus callosum across the midline to the opposite hemisphere. In this study, we examined whether such pathways would also support axon growth either through or around a lesion of the corpus callosum. Pathways expressing GFP, NGF, or FGF2/NGF were set up by multiple injections of adenovirus along the corpus callosum. Each pathway included the transplantation site in the left corpus callosum, 2.8 mm away from the midline, and a target site in the right corpus callosum, 2.5 mm from the midline. At the same time, a 1 mm lesion was made through the corpus callosum at the midline in an anteroposterior direction. A group of control animals received lesions and Ad-NGF injections only at the transplant and target sites, without a bridging pathway. DRG cell suspensions from postnatal day 1 or 2 rats were injected at the transplantation site three to four days later. Two weeks after transplantation, brain sections were stained using an anti-CGRP antibody. The CGRP+ axons were counted at 0.5 mm and 1.5 mm from the lesion site in both hemispheres. Few axons grew past the lesion in animals with control pathways, but there was robust axon growth across the lesion site in the FGF2/NGF and NGF-expressing pathways. This study indicated that preformed NGF and combination guidance pathways support more axon growth past a lesion in the adult mammalian brain.
Collapse
Affiliation(s)
- Ying Jin
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA.
| | | | | |
Collapse
|