1
|
Angueyra JM, Baudin J, Schwartz GW, Rieke F. Predicting and Manipulating Cone Responses to Naturalistic Inputs. J Neurosci 2022; 42:1254-1274. [PMID: 34949692 PMCID: PMC8883858 DOI: 10.1523/jneurosci.0793-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/06/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
Primates explore their visual environment by making frequent saccades, discrete and ballistic eye movements that direct the fovea to specific regions of interest. Saccades produce large and rapid changes in input. The magnitude of these changes and the limited signaling range of visual neurons mean that effective encoding requires rapid adaptation. Here, we explore how macaque cone photoreceptors maintain sensitivity under these conditions. Adaptation makes cone responses to naturalistic stimuli highly nonlinear and dependent on stimulus history. Such responses cannot be explained by linear or linear-nonlinear models but are well explained by a biophysical model of phototransduction based on well-established biochemical interactions. The resulting model can predict cone responses to a broad range of stimuli and enables the design of stimuli that elicit specific (e.g., linear) cone photocurrents. These advances will provide a foundation for investigating the contributions of cone phototransduction and post-transduction processing to visual function.SIGNIFICANCE STATEMENT We know a great deal about adaptational mechanisms that adjust sensitivity to slow changes in visual inputs such as the rising or setting sun. We know much less about the rapid adaptational mechanisms that are essential for maintaining sensitivity as gaze shifts around a single visual scene. We characterize how phototransduction in cone photoreceptors adapts to rapid changes in input similar to those encountered during natural vision. We incorporate these measurements into a quantitative model that can predict cone responses across a broad range of stimuli. This model not only shows how cone phototransduction aids the encoding of natural inputs but also provides a tool to identify the role of the cone responses in shaping those of downstream visual neurons.
Collapse
Affiliation(s)
- Juan M Angueyra
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Gregory W Schwartz
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60511
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
2
|
Borghuis BG, Ratliff CP, Smith RG. Impact of light-adaptive mechanisms on mammalian retinal visual encoding at high light levels. J Neurophysiol 2018; 119:1437-1449. [PMID: 29357459 PMCID: PMC5966735 DOI: 10.1152/jn.00682.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
A persistent change in illumination causes light-adaptive changes in retinal neurons. Light adaptation improves visual encoding by preventing saturation and by adjusting spatiotemporal integration to increase the signal-to-noise ratio (SNR) and utilize signaling bandwidth efficiently. In dim light, the visual input contains a greater relative amount of quantal noise, and vertebrate receptive fields are extended in space and time to increase SNR. Whereas in bright light, SNR of the visual input is high, the rate of synaptic vesicle release from the photoreceptors is low so that quantal noise in synaptic output may limit SNR postsynaptically. Whether and how reduced synaptic SNR impacts spatiotemporal integration in postsynaptic neurons remains unclear. To address this, we measured spatiotemporal integration in retinal horizontal cells and ganglion cells in the guinea pig retina across a broad illumination range, from low to high photopic levels. In both cell types, the extent of spatial and temporal integration changed according to an inverted U-shaped function consistent with adaptation to low SNR at both low and high light levels. We show how a simple mechanistic model with interacting, opponent filters can generate the observed changes in ganglion cell spatiotemporal receptive fields across light-adaptive states and postulate that retinal neurons postsynaptic to the cones in bright light adopt low-pass spatiotemporal response characteristics to improve visual encoding under conditions of low synaptic SNR.
Collapse
Affiliation(s)
- Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, Kentucky
| | - Charles P Ratliff
- Center for Systems Vision Science, Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Sarria I, Cao Y, Wang Y, Ingram NT, Orlandi C, Kamasawa N, Kolesnikov AV, Pahlberg J, Kefalov VJ, Sampath AP, Martemyanov KA. LRIT1 Modulates Adaptive Changes in Synaptic Communication of Cone Photoreceptors. Cell Rep 2018; 22:3562-3573. [PMID: 29590623 PMCID: PMC5902029 DOI: 10.1016/j.celrep.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/10/2018] [Accepted: 02/28/2018] [Indexed: 12/15/2022] Open
Abstract
Cone photoreceptors scale dynamically the sensitivity of responses to maintain responsiveness across wide range of changes in luminance. Synaptic changes contribute to this adaptation, but how this process is coordinated at the molecular level is poorly understood. Here, we report that a cell adhesion-like molecule, LRIT1, is enriched selectively at cone photoreceptor synapses where it engages in a trans-synaptic interaction with mGluR6, the principal receptor in postsynaptic ON-bipolar cells. The levels of LRIT1 are regulated by the neurotransmitter release apparatus that controls photoreceptor output. Knockout of LRIT1 in mice increases the sensitivity of cone synaptic signaling while impairing its ability to adapt to background light without overtly influencing the morphology or molecular composition of photoreceptor synapses. Accordingly, mice lacking LRIT1 show visual deficits under conditions requiring temporally challenging discrimination of visual signals in steady background light. These observations reveal molecular mechanisms involved in scaling synaptic communication in the retina.
Collapse
Affiliation(s)
- Ignacio Sarria
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Norianne T Ingram
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, FL 33458, USA
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Johan Pahlberg
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
4
|
Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling. Mol Vis 2015; 21:244-63. [PMID: 25866462 PMCID: PMC4392649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/05/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To experimentally identify and quantify factors responsible for the lower sensitivity of retinal cones compared to rods. METHODS Electrical responses of frog rods and fish (Carassius) cones to short flashes of light were recorded using the suction pipette technique. A fast solution changer was used to apply a solution that fixed intracellular Ca2+ concentration at the prestimulus level, thereby disabling Ca2+ feedback, to the outer segment (OS). The results were analyzed with a specially designed mathematical model of phototransduction. The model included all basic processes of activation and quenching of the phototransduction cascade but omitted unnecessary mechanistic details of each step. RESULTS Judging from the response versus intensity curves, Carassius cones were two to three orders of magnitude less sensitive than frog rods. There was a large scatter in sensitivity among individual cones, with red-sensitive cones being on average approximately two times less sensitive than green-sensitive ones. The scatter was mostly due to different signal amplification, since the kinetic parameters of the responses among cones were far less variable than sensitivity. We argue that the generally accepted definition of the biochemical amplification in phototransduction cannot be used for comparing amplification in rods and cones, since it depends on an irrelevant factor, that is, the cell's volume. We also show that the routinely used simplified parabolic curve fitting to an initial phase of the response leads to a few-fold underestimate of the amplification. We suggest a new definition of the amplification that only includes molecular parameters of the cascade activation, and show how it can be derived from experimental data. We found that the mathematical model with unrestrained parameters can yield an excellent fit to experimental responses. However, the fits with wildly different sets of parameters can be virtually indistinguishable, and therefore cannot provide meaningful data on underlying mechanisms. Based on results of Ca2+-clamp experiments, we developed an approach to strongly constrain the values of many key parameters that set the time course and sensitivity of the photoresponse (such as the dark turnover rate of cGMP, rates of turnoffs of the photoactivated visual pigment and phosphodiesterase, and kinetics of Ca2+ feedback). We show that applying these constraints to our mathematical model enables accurate determination of the biochemical amplification in phototransduction. It appeared that, contrary to many suggestions, maximum biochemical amplification derived for "best" Carassius cones was as high as in frog rods. On the other hand, all turnoff and recovery reactions in cones proceeded approximately 10 times faster than in rods. CONCLUSIONS The main cause of the differing sensitivity of rods and cones is cones' ability to terminate their photoresponse faster.
Collapse
|
5
|
Chen CK, Woodruff ML, Fain GL. Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation. ACTA ACUST UNITED AC 2015; 145:213-24. [PMID: 25667411 PMCID: PMC4338159 DOI: 10.1085/jgp.201411273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Light stimulates rhodopsin in a retinal rod to activate the G protein transducin, which binds to phosphodiesterase (PDE), relieving PDE inhibition and decreasing guanosine 3',5'-cyclic monophosphate (cGMP) concentration. The decrease in cGMP closes outer segment channels, producing the rod electrical response. Prolonged exposure to light decreases sensitivity and accelerates response kinetics in a process known as light adaptation, mediated at least in part by a decrease in outer segment Ca(2+). Recent evidence indicates that one of the mechanisms of adaptation in mammalian rods is down-regulation of PDE. To investigate the effect of light and a possible role of rhodopsin kinase (G protein-coupled receptor kinase 1 [GRK1]) and the GRK1-regulating protein recoverin on PDE modulation, we used transgenic mice with decreased expression of GTPase-accelerating proteins (GAPs) and, consequently, a less rapid decay of the light response. This slowed decay made the effects of genetic manipulation of GRK1 and recoverin easier to observe and interpret. We monitored the decay of the light response and of light-activated PDE by measuring the exponential response decay time (τREC) and the limiting time constant (τD), the latter of which directly reflects light-activated PDE decay under the conditions of our experiments. We found that, in GAP-underexpressing rods, steady background light decreased both τREC and τD, and the decrease in τD was nearly linear with the decrease in amplitude of the outer segment current. Background light had little effect on τREC or τD if the gene for recoverin was deleted. Moreover, in GAP-underexpressing rods, increased GRK1 expression or deletion of recoverin produced large and highly significant accelerations of τREC and τD. The simplest explanation of our results is that Ca(2+)-dependent regulation of GRK1 by recoverin modulates the decay of light-activated PDE, and that this modulation is responsible for acceleration of response decay and the increase in temporal resolution of rods in background light.
Collapse
Affiliation(s)
- Ching-Kang Chen
- Department of Ophthalmology and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 Department of Ophthalmology and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Michael L Woodruff
- Department of Integrative Biology and Physiology, Department of Ophthalmology, and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, Department of Ophthalmology, and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095 Department of Integrative Biology and Physiology, Department of Ophthalmology, and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095 Department of Integrative Biology and Physiology, Department of Ophthalmology, and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
6
|
Vroman R, Klaassen LJ, Howlett MH, Cenedese V, Klooster J, Sjoerdsma T, Kamermans M. Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft. PLoS Biol 2014; 12:e1001864. [PMID: 24844296 PMCID: PMC4028192 DOI: 10.1371/journal.pbio.1001864] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
A slow mechanism of retinal synaptic inhibition involves hydrolysis of ATP released from pannexin 1 channels (from the tips of horizontal cell dendrites); the resulting protons and phosphates acidify the synaptic cleft, which inhibits neurotransmitter release. Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca2+ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic modulation may be a widespread phenomenon. At the first retinal synapse, specific cells—horizontal cells (HCs)—inhibit photoreceptors and help to organize the receptive fields of another retinal cell type, bipolar cells. This synaptic interaction is crucial for visual contrast enhancement. Here we show that horizontal cells feed back to photoreceptors via a very fast ephaptic mechanism and a relatively slow mechanism. The slow mechanism requires ATP release via Pannexin 1 (Panx1) channels that are located on HC dendrites near the site where photoreceptors release the neurotransmitter glutamate to HCs and bipolar cells. The released ATP is hydrolyzed to produce AMP, phosphate groups, and protons; these phosphates and protons form a pH buffer, which acidifies the synaptic cleft. This slow acidification inhibits presynaptic calcium channels and consequently reduces the neurotransmitter release of photoreceptors. This demonstrates a new way in which ATP release can be involved in synaptic modulation. Surprisingly, the action of ATP is not purinergic but is mediated via changes in the pH buffer capacity in the synaptic cleft. Given the broad expression of Panx1 channels in the nervous system and the suggestion that Panx1 function underlies stabilization of synaptic plasticity and is needed for learning, we anticipate that this mechanism will be more widespread than just occurring at the first retinal synapse.
Collapse
Affiliation(s)
- Rozan Vroman
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Lauw J. Klaassen
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | | | | | - Jan Klooster
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | | | - Maarten Kamermans
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
7
|
EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors. J Neurosci 2013; 33:17763-76. [PMID: 24198367 DOI: 10.1523/jneurosci.2659-13.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ligand sensitivity of cGMP-gated (CNG) ion channels in cone photoreceptors is modulated by CNG-modulin, a Ca(2+)-binding protein. We investigated the functional role of CNG-modulin in phototransduction in vivo in morpholino-mediated gene knockdown zebrafish. Through comparative genomic analysis, we identified the orthologue gene of CNG-modulin in zebrafish, eml1, an ancient gene present in the genome of all vertebrates sequenced to date. We compare the photoresponses of wild-type cones with those of cones that do not express the EML1 protein. In the absence of EML1, dark-adapted cones are ∼5.3-fold more light sensitive than wild-type cones. Previous qualitative studies in several nonmammalian species have shown that immediately after the onset of continuous illumination, cones are less light sensitive than in darkness, but sensitivity then recovers over the following 15-20 s. We characterize light sensitivity recovery in continuously illuminated wild-type zebrafish cones and demonstrate that sensitivity recovery does not occur in the absence of EML1.
Collapse
|
8
|
Clark DA, Benichou R, Meister M, Azeredo da Silveira R. Dynamical adaptation in photoreceptors. PLoS Comput Biol 2013; 9:e1003289. [PMID: 24244119 PMCID: PMC3828139 DOI: 10.1371/journal.pcbi.1003289] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/03/2013] [Indexed: 11/18/2022] Open
Abstract
Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300[Formula: see text] ms-i. e., over the time scale of the response itself-and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant.
Collapse
Affiliation(s)
- Damon A. Clark
- Department of Physics, Ecole Normale Supérieure, Paris, France
| | | | - Markus Meister
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Rava Azeredo da Silveira
- Department of Physics, Ecole Normale Supérieure, Paris, France
- Laboratoire de Physique Statistique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Denis Diderot, Paris, France
| |
Collapse
|
9
|
Chang L, He S. Light adaptation increases response latency of alpha ganglion cells via a threshold-like nonlinearity. Neuroscience 2013; 256:101-16. [PMID: 24144626 DOI: 10.1016/j.neuroscience.2013.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/18/2013] [Accepted: 10/04/2013] [Indexed: 01/26/2023]
Abstract
Adaptation is an important process of sensory systems to adjust sensitivity to ensure the appropriate information encoding. Sensitivity and kinetics of retinal ganglion cell (RGC) responses have been studied extensively using a brief flash superimposed on different but steady backgrounds. However, it is still unclear if light adaptation exerts any effect on more complex response properties, such as response nonlinearity. In this study, we found that the latency of spike responses to a repeated flashing spot stimulation increased by 30 ms in the mouse ON α RGCs (An ON-type RGC is excited when a spot is turned on in the center of its receptive field). A single dimming event preceding the test flash on a steady adapting background could also produce similar effect in increasing latency of light responses. A simple computational model with a linear transformation of the light stimulus and a threshold-like nonlinearity could account for the experimental data. Moreover, the strength of the measured nonlinearity and the response latency were affected by the duration of light adaptation. The possible biological processes underlying this nonlinearity were explored. Voltage clamp recording revealed the presence of the increase in latency and threshold-like nonlinearity in the excitatory input of RGCs. However, no comparable nonlinearity was observed in the light responses of the ON cone bipolar cells. We further excluded GABAergic and glycinergic inhibition, N-methyl-D-aspartate receptor rectification and voltage-gated Na(+) channels as potential sources of this nonlinearity by pharmacological experiments. Our results indicate the bipolar cell terminals as the potential site of nonlinearity. Computational modeling constrained by experimental data supports that conclusion and suggests the voltage-sensitive Ca(++) channels and Ca(++)-dependent vesicle release in the bipolar cell terminals as mechanistic basis.
Collapse
Affiliation(s)
- L Chang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - S He
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; School of Biomedical Engineering, Bio-X Research Center and Institute of Natural Sciences, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| |
Collapse
|
10
|
Liu C, Sherpa T, Varnum MD. Disease-associated mutations in CNGB3 promote cytotoxicity in photoreceptor-derived cells. Mol Vis 2013; 19:1268-81. [PMID: 23805033 PMCID: PMC3692405 DOI: 10.1167/13.9.1268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/07/2013] [Indexed: 01/10/2023] Open
Abstract
Purpose To determine if achromatopsia associated F525N and T383fsX mutations in the CNGB3 subunit of cone photoreceptor cyclic nucleotide-gated (CNG) channels increases susceptibility to cell death in photoreceptor-derived cells. Methods Photoreceptor-derived 661W cells were transfected with cDNA encoding wild-type (WT) CNGA3 subunits plus WT or mutant CNGB3 subunits, and incubated with the membrane-permeable CNG channel activators 8-(4-chlorophenylthio) guanosine 3′,5′-cyclic monophosphate (CPT-cGMP) or CPT-adenosine 3′,5′-cyclic monophosphate (CPT-cAMP). Cell viability under these conditions was determined by measuring lactate dehydrogenase release. Channel ligand sensitivity was calibrated by patch-clamp recording after expression of WT or mutant channels in Xenopus oocytes. Results Coexpression of CNGA3 with CNGB3 subunits containing F525N or T383fsX mutations produced channels exhibiting increased apparent affinity for CPT-cGMP compared to WT channels. Consistent with these effects, cytotoxicity in the presence of 0.1 μM CPT-cGMP was enhanced relative to WT channels, and the increase in cell death was more pronounced for the mutation with the largest gain-of-function effect on channel gating, F525N. Increased susceptibility to cell death was prevented by application of the CNG channel blocker L-cis-diltiazem. Increased cytotoxicity was also found to be dependent on the presence of extracellular calcium. Conclusions These results indicate a connection between disease-associated mutations in cone CNG channel subunits, altered CNG channel-activation properties, and photoreceptor cytotoxicity. The rescue of cell viability via CNG channel block or removal of extracellular calcium suggests that cytotoxicity in this model depends on calcium entry through hyperactive CNG channels.
Collapse
Affiliation(s)
- Chunming Liu
- College of Optometry, Western University of Health Sciences, Pomona, CA, USA
| | | | | |
Collapse
|
11
|
Abstract
Calcium mediates various neuronal functions. The complexity of neuronal Ca²⁺ signaling is well exemplified by retinal cone photoreceptors, which, with their distinct compartmentalization, offer unique possibilities for studying the diversity of Ca²⁺ functions in a single cell. Measuring subcellular Ca²⁺ signals in cones under physiological conditions is not only fundamental for understanding cone function, it also bears important insights into pathophysiological processes governing retinal neurodegeneration. However, due to the proximity of light-sensitive outer segments to other cellular compartments, optical measurements of light-evoked Ca²⁺ responses in cones are challenging. We addressed this problem by generating a transgenic mouse (HR2.1:TN-XL) in which both short- and middle-wavelength-sensitive cones selectively express the genetically encoded ratiometric Ca²⁺ biosensor TN-XL. We show that HR2.1:TN-XL allows recording of light-evoked Ca²⁺ responses using two-photon imaging in individual cone photoreceptor terminals and to probe phototransduction and its diverse regulatory mechanisms with pharmacology at subcellular resolution. To further test this system, we asked whether the classical, nitric oxide (NO)-soluble guanylyl-cyclase (sGC)-cGMP pathway could modulate Ca²⁺ in cone terminals. Surprisingly, NO reduced Ca²⁺ resting levels in mouse cones, without evidence for direct sGC involvement. In conclusion, HR2.1:TN-XL mice offer unprecedented opportunities to elucidate light-driven Ca²⁺ dynamics and their (dys)regulation in cone photoreceptors.
Collapse
|
12
|
Korenbrot JI. Speed, adaptation, and stability of the response to light in cone photoreceptors: the functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels. ACTA ACUST UNITED AC 2012; 139:31-56. [PMID: 22200947 PMCID: PMC3250101 DOI: 10.1085/jgp.201110654] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The response of cone photoreceptors to light is stable and reproducible because of the exceptional regulation of the cascade of enzymatic reactions that link visual pigment (VP) excitation to the gating of cyclic GMP (cGMP)-gated ion channels (cyclic nucleotide–gated [CNG]) in the outer segment plasma membrane. Regulation is achieved in part through negative feedback control of some of these reactions by cytoplasmic free Ca2+. As part of the control process, Ca2+ regulates the phosphorylation of excited VP, the activity of guanylate cyclase, and the ligand sensitivity of the CNG ion channels. We measured photocurrents elicited by stimuli in the form of flashes, steps, and flashes superimposed on steps in voltage-clamped single bass cones isolated from striped bass retina. We also developed a computational model that comprises all the known molecular events of cone phototransduction, including all Ca-dependent controls. Constrained by available experimental data in bass cones and cone transduction biochemistry, we achieved an excellent match between experimental photocurrents and those simulated by the model. We used the model to explore the physiological role of CNG ion channel modulation. Control of CNG channel activity by both cGMP and Ca2+ causes the time course of the light-dependent currents to be faster than if only cGMP controlled their activity. Channel modulation also plays a critical role in the regulation of the light sensitivity and light adaptation of the cone photoresponse. In the absence of ion channel modulation, cone photocurrents would be unstable, oscillating during and at the offset of light stimuli.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Korenbrot JI. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 2012; 31:442-66. [PMID: 22658984 DOI: 10.1016/j.preteyeres.2012.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 01/06/2023]
Abstract
The light responses of rod and cone photoreceptors in the vertebrate retina are quantitatively different, yet extremely stable and reproducible because of the extraordinary regulation of the cascade of enzymatic reactions that link photon absorption and visual pigment excitation to the gating of cGMP-gated ion channels in the outer segment plasma membrane. While the molecular scheme of the phototransduction pathway is essentially the same in rods and cones, the enzymes and protein regulators that constitute the pathway are distinct. These enzymes and regulators can differ in the quantitative features of their functions or in concentration if their functions are similar or both can be true. The molecular identity and distinct function of the molecules of the transduction cascade in rods and cones are summarized. The functional significance of these molecular differences is examined with a mathematical model of the signal-transducing enzymatic cascade. Constrained by available electrophysiological, biochemical and biophysical data, the model simulates photocurrents that match well the electrical photoresponses measured in both rods and cones. Using simulation computed with the mathematical model, the time course of light-dependent changes in enzymatic activities and second messenger concentrations in non-mammalian rods and cones are compared side by side.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA 94920, USA.
| |
Collapse
|
14
|
Fain GL. Adaptation of mammalian photoreceptors to background light: putative role for direct modulation of phosphodiesterase. Mol Neurobiol 2011; 44:374-82. [PMID: 21922272 DOI: 10.1007/s12035-011-8205-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/04/2011] [Indexed: 11/26/2022]
Abstract
All sensory receptors adapt. As the mean level of light or sound or odor is altered, the sensitivity of the receptor is adjusted to permit the cell to function over as wide a range of ambient stimulation as possible. In a rod photoreceptor, adaptation to maintained background light produces a decrease (or "sag") in the response to the prolonged illumination, as well as an acceleration in response decay time and a Weber-Fechner-like decrease in sensitivity. Earlier work on salamander indicated that adaptation is controlled by the intracellular concentration of Ca(2+). Three Ca(2+)-dependent mechanisms were subsequently identified, namely, regulation of guanylyl cyclase, modulation of activated rhodopsin lifetime, and alteration of channel opening probability, with the contribution of the cyclase thought to be the most important. Later experiments on mouse that exploit the powerful techniques of molecular genetics have shown that cyclase does indeed play a significant role in mammalian rods, but that much of adaptation remains even when regulation of cyclase and both of the other proposed pathways have been genetically deleted. The identity of the missing mechanism or mechanisms is unclear, but recent speculation has focused on direct modulation of spontaneous and light-activated phosphodiesterase.
Collapse
Affiliation(s)
- Gordon L Fain
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA.
| |
Collapse
|
15
|
Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nat Neurosci 2011; 14:208-16. [PMID: 21217763 PMCID: PMC3030680 DOI: 10.1038/nn.2725] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/25/2010] [Indexed: 12/11/2022]
Abstract
Odor responses of olfactory receptor neurons (ORNs) exhibit complex dynamics. Using genetics and pharmacology, we show that these dynamics in Drosophila ORNs can be separated into sequential steps, corresponding to transduction and spike generation. Each of these steps contributes distinct dynamics. Transduction dynamics can be largely explained by a simple kinetic model of ligand-receptor interactions, together with an adaptive feedback mechanism that slows transduction onset. Spiking dynamics are well-described by a differentiating linear filter that is stereotyped across odors and cells. Genetic knock-down of sodium channels reshapes this filter, implying that it arises from the regulated balance of intrinsic conductances in ORNs. Complex responses can be understood as a consequence of how the stereotyped spike filter interacts with odor- and receptor-specific transduction dynamics. However, in the presence of rapidly fluctuating natural stimuli, spiking simply increases the speed and sensitivity of encoding.
Collapse
|
16
|
Abstract
Vertebrate photoreceptors are thought to adapt to light by a change in Ca(2+), which is postulated to mediate modulation of (1) excited rhodopsin (Rh*) by Ca(2+)-dependent binding of recoverin, (2) guanylyl cyclase activity via Ca(2+)-dependent GCAP proteins, and (3) cyclic nucleotide-gated channels by binding of Ca(2+)-calmodulin. Previous experiments genetically deleted recoverin and the GCAPs and showed that significant regulation of sensitivity survives removal of (1) and (2). We genetically deleted the channel Ca(2+)-calmodulin binding site in the mouse Mus musculus and found that removal of (3) alters response waveform, but removal of (3) or of (2) and (3) together still leaves much of adaptation intact. These experiments demonstrate that an important additional mechanism is required, which other experiments indicate may be regulation of phosphodiesterase 6 (PDE6). We therefore constructed a kinetic model in which light produces a Ca(2+)-mediated decrease in PDE6 decay rate, with the novel feature that both spontaneously activated and light-activated PDE6 are modulated. This model, together with Ca(2+)-dependent acceleration of guanylyl cyclase, can successfully account for changes in sensitivity and response waveform in background light.
Collapse
|
17
|
Matthews HR, Sampath AP. Photopigment quenching is Ca2+ dependent and controls response duration in salamander L-cone photoreceptors. ACTA ACUST UNITED AC 2010; 135:355-66. [PMID: 20231373 PMCID: PMC2847922 DOI: 10.1085/jgp.200910394] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The time scale of the photoresponse in photoreceptor cells is set by the slowest of the steps that quench the light-induced activity of the phototransduction cascade. In vertebrate photoreceptor cells, this rate-limiting reaction is thought to be either shutoff of catalytic activity in the photopigment or shutoff of the pigment's effector, the transducin-GTP–phosphodiesterase complex. In suction pipette recordings from isolated salamander L-cones, we found that preventing changes in internal [Ca2+] delayed the recovery of the light response and prolonged the dominant time constant for recovery. Evidence that the Ca2+-sensitive step involved the pigment itself was provided by the observation that removal of Cl− from the pigment's anion-binding site accelerated the dominant time constant for response recovery. Collectively, these observations indicate that in L-cones, unlike amphibian rods where the dominant time constant is insensitive to [Ca2+], pigment quenching rate limits recovery and provides an additional mechanism for modulating the cone response during light adaptation.
Collapse
Affiliation(s)
- Hugh R Matthews
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, England, UK.
| | | |
Collapse
|
18
|
Abstract
Visual information in natural scenes is distributed over a broad range of intensities and contrasts. This distribution has to be compressed in the retina to match the dynamic range of retinal neurons. In this study we examined how cones perform this compression and investigated which physiological processes contribute to this operation. M- and L-cones of the goldfish were stimulated with a natural time series of intensities (NTSI) and their responses were recorded. The NTSI displays an intensity distribution which is skewed towards the lower intensities and has a long tail into the high intensity region. Cones transform this skewed distribution into a more symmetrical one. The voltage responses of the goldfish cones were compared to those of a linear filter and a non-linear biophysical model of the photoreceptor. The results show that the linear filter under-represents contrasts at low intensities compared to the actual cone whereas the non-linear biophysical model performs well over the whole intensity range used. Quantitative analysis of the two approaches indicates that the non-linear biophysical model can capture 91 +/- 5% of the coherence rate (a biased measure of information rate) of the actual cone, where the linear filter only reaches 48 +/- 8%. These results demonstrate that cone photoreceptors transform an NTSI in a non-linear fashion. The comparison between current clamp and voltage clamp recordings and analysis of the behaviour of the biophysical model indicates that both the calcium feedback loop in the outer segment and the hydrolysis of cGMP are the major components that introduce the specific non-linear response properties found in the goldfish cones.
Collapse
Affiliation(s)
- D Endeman
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Rod phototransduction determines the trade-off of temporal integration and speed of vision in dark-adapted toads. J Neurosci 2009; 29:5716-25. [PMID: 19420240 DOI: 10.1523/jneurosci.3888-08.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human vision is approximately 10 times less sensitive than toad vision on a cool night. Here, we investigate (1) how far differences in the capacity for temporal integration underlie such differences in sensitivity and (2) whether the response kinetics of the rod photoreceptors can explain temporal integration at the behavioral level. The toad was studied as a model that allows experimentation at different body temperatures. Sensitivity, integration time, and temporal accuracy of vision were measured psychophysically by recording snapping at worm dummies moving at different velocities. Rod photoresponses were studied by ERG recording across the isolated retina. In both types of experiments, the general timescale of vision was varied by using two temperatures, 15 and 25 degrees C. Behavioral integration times were 4.3 s at 15 degrees C and 0.9 s at 25 degrees C, and rod integration times were 4.2-4.3 s at 15 degrees C and 1.0-1.3 s at 25 degrees C. Maximal behavioral sensitivity was fivefold lower at 25 degrees C than at 15 degrees C, which can be accounted for by inability of the "warm" toads to integrate light over longer times than the rods. However, the long integration time at 15 degrees C, allowing high sensitivity, degraded the accuracy of snapping toward quickly moving worms. We conclude that temporal integration explains a considerable part of all variation in absolute visual sensitivity. The strong correlation between rods and behavior suggests that the integration time of dark-adapted vision is set by rod phototransduction at the input to the visual system. This implies that there is an inexorable trade-off between temporal integration and resolution.
Collapse
|