1
|
Sharma H, Azouz R. Reliability and stability of tactile perception in the whisker somatosensory system. Front Neurosci 2024; 18:1344758. [PMID: 38872944 PMCID: PMC11169650 DOI: 10.3389/fnins.2024.1344758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Rodents rely on their whiskers as vital sensory tools for tactile perception, enabling them to distinguish textures and shapes. Ensuring the reliability and constancy of tactile perception under varying stimulus conditions remains a fascinating and fundamental inquiry. This study explores the impact of stimulus configurations, including whisker movement velocity and object spatial proximity, on texture discrimination and stability in rats. To address this issue, we employed three distinct approaches for our investigation. Stimulus configurations notably affected tactile inputs, altering whisker vibration's kinetic and kinematic aspects with consistent effects across various textures. Through a texture discrimination task, rats exhibited consistent discrimination performance irrespective of changes in stimulus configuration. However, alterations in stimulus configuration significantly affected the rats' ability to maintain stability in texture perception. Additionally, we investigated the influence of stimulus configurations on cortical neuronal responses by manipulating them experimentally. Notably, cortical neurons demonstrated substantial and intricate changes in firing rates without compromising the ability to discriminate between textures. Nevertheless, these changes resulted in a reduction in texture neuronal response stability. Stimulating multiple whiskers led to improved neuronal texture discrimination and maintained coding stability. These findings emphasize the importance of considering numerous factors and their interactions when studying the impact of stimulus configuration on neuronal responses and behavior.
Collapse
Affiliation(s)
| | - Rony Azouz
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
2
|
Haidarliu S, Nelinger G, Gantar L, Ahissar E, Saraf-Sinik I. Functional anatomy of mystacial active sensing in rats. Anat Rec (Hoboken) 2024; 307:442-456. [PMID: 37644754 DOI: 10.1002/ar.25305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Rats' whisking motion and objects' palpation produce tactile signals sensed by mechanoreceptors at the vibrissal follicles. Rats adjust their whisking patterns to target information type, flow, and resolution, adapting to their behavioral needs and the changing environment. This coordination requires control over the activity of the mystacial pad's intrinsic and extrinsic muscles. Studies have relied on muscle recording and stimulation techniques to describe the roles of individual muscles. However, these methods lack the resolution to isolate the mystacial pad's small and compactly arranged muscles. Thus, we propose functional anatomy as a complementary approach for studying the individual and coordinated effects of the mystacial pad muscles on vibrissae movements. Our functional analysis addresses the kinematic measurements of whisking motion patterns recorded in freely exploring rats. Combined with anatomical descriptions of muscles and fascia elements of the mystacial pad in situ, we found: (1) the contributions of individual mystacial pad muscles to the different whisking motion patterns; (2) active touch by microvibrissae, and its underlying mechanism; and (3) dynamic position changes of the vibrissae pivot point, as determined by the movements of the corium and subcapsular fibrous mat. Finally, we hypothesize that each of the rat mystacial pad muscles is specialized for a particular function in a way that matches the architecture of the fascial structures. Consistent with biotensegrity principles, the muscles and fascia form a network of structural support and continuous tension that determine the arrangement and motion of the embedded individual follicles.
Collapse
Affiliation(s)
- Sebastian Haidarliu
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Guy Nelinger
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Luka Gantar
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Ehud Ahissar
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Jankowski MM, Polterovich A, Kazakov A, Niediek J, Nelken I. An automated, low-latency environment for studying the neural basis of behavior in freely moving rats. BMC Biol 2023; 21:172. [PMID: 37568111 PMCID: PMC10416379 DOI: 10.1186/s12915-023-01660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/10/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Behavior consists of the interaction between an organism and its environment, and is controlled by the brain. Brain activity varies at sub-second time scales, but behavioral measures are usually coarse (often consisting of only binary trial outcomes). RESULTS To overcome this mismatch, we developed the Rat Interactive Foraging Facility (RIFF): a programmable interactive arena for freely moving rats with multiple feeding areas, multiple sound sources, high-resolution behavioral tracking, and simultaneous electrophysiological recordings. The paper provides detailed information about the construction of the RIFF and the software used to control it. To illustrate the flexibility of the RIFF, we describe two complex tasks implemented in the RIFF, a foraging task and a sound localization task. Rats quickly learned to obtain rewards in both tasks. Neurons in the auditory cortex as well as neurons in the auditory field in the posterior insula had sound-driven activity during behavior. Remarkably, neurons in both structures also showed sensitivity to non-auditory parameters such as location in the arena and head-to-body angle. CONCLUSIONS The RIFF provides insights into the cognitive capabilities and learning mechanisms of rats and opens the way to a better understanding of how brains control behavior. The ability to do so depends crucially on the combination of wireless electrophysiology and detailed behavioral documentation available in the RIFF.
Collapse
Affiliation(s)
- Maciej M Jankowski
- The Edmond and Lily Safra Center for Brain Sciences and the Department of Neurobiology, Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | - Ana Polterovich
- The Edmond and Lily Safra Center for Brain Sciences and the Department of Neurobiology, Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alex Kazakov
- The Edmond and Lily Safra Center for Brain Sciences and the Department of Neurobiology, Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Johannes Niediek
- The Edmond and Lily Safra Center for Brain Sciences and the Department of Neurobiology, Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Israel Nelken
- The Edmond and Lily Safra Center for Brain Sciences and the Department of Neurobiology, Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Mugnaini M, Mehrotra D, Davoine F, Sharma V, Mendes AR, Gerhardt B, Concha-Miranda M, Brecht M, Clemens AM. Supra-orbital whiskers act as wind-sensing antennae in rats. PLoS Biol 2023; 21:e3002168. [PMID: 37410722 DOI: 10.1371/journal.pbio.3002168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
We know little about mammalian anemotaxis or wind sensing. Recently, however, Hartmann and colleagues showed whisker-based anemotaxis in rats. To investigate how whiskers sense airflow, we first tracked whisker tips in anesthetized rats under low (0.5 m/s) and high (1.5 m/s) airflow. Whisker tips showed increasing movement from low to high airflow conditions, with all whisker tips moving during high airflow. Low airflow conditions-most similar to naturally occurring wind stimuli-engaged whisker tips differentially. Most whiskers moved little, but the long supra-orbital (lSO) whisker showed maximal displacement, followed by the α, β, and A1 whiskers. The lSO whisker differs from other whiskers in its exposed dorsal position, upward bending, length and thin diameter. Ex vivo extracted lSO whiskers also showed exceptional airflow displacement, suggesting whisker-intrinsic biomechanics mediate the unique airflow-sensitivity. Micro computed tomography (micro-CT) revealed that the ring-wulst-the follicle structure receiving the most sensitive afferents-was more complete/closed in the lSO, and other wind-sensitive whiskers, than in non-wind-sensitive whiskers, suggesting specialization of the supra-orbital for omni-directional sensing. We localized and targeted the cortical supra-orbital whisker representation in simultaneous Neuropixels recordings with D/E-row whisker barrels. Responses to wind-stimuli were stronger in the supra-orbital whisker representation than in D/E-row barrel cortex. We assessed the behavioral significance of whiskers in an airflow-sensing paradigm. We observed that rats spontaneously turn towards airflow stimuli in complete darkness. Selective trimming of wind-responsive whiskers diminished airflow turning responses more than trimming of non-wind-responsive whiskers. Lidocaine injections targeted to supra-orbital whisker follicles also diminished airflow turning responses compared to control injections. We conclude that supra-orbital whiskers act as wind antennae.
Collapse
Affiliation(s)
- Matias Mugnaini
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Laboratory of Physiology and Algorithms of the Brain, Leloir Institute (IIBBA-CONICET), Buenos Aires, Argentina
| | - Dhruv Mehrotra
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute and Hospital, Montréal, Québec, Canada
| | - Federico Davoine
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Varun Sharma
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- School of Biological Sciences & Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ana Rita Mendes
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Champalimaud Neuroscience Programme; Champalimaud Foundation, Doca de Pedrouços, Lisbon, Portugal
| | - Ben Gerhardt
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Michael Brecht
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Ann M Clemens
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- University of Edinburgh, Simons Initiative for the Developing Brain, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
5
|
Ahissar E, Nelinger G, Assa E, Karp O, Saraf-Sinik I. Thalamocortical loops as temporal demodulators across senses. Commun Biol 2023; 6:562. [PMID: 37237075 DOI: 10.1038/s42003-023-04881-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Sensory information is coded in space and in time. The organization of neuronal activity in space maintains straightforward relationships with the spatial organization of the perceived environment. In contrast, the temporal organization of neuronal activity is not trivially related to external features due to sensor motion. Still, the temporal organization shares similar principles across sensory modalities. Likewise, thalamocortical circuits exhibit common features across senses. Focusing on touch, vision, and audition, we review their shared coding principles and suggest that thalamocortical systems include circuits that allow analogous recoding mechanisms in all three senses. These thalamocortical circuits constitute oscillations-based phase-locked loops, that translate temporally-coded sensory information to rate-coded cortical signals, signals that can integrate information across sensory and motor modalities. The loop also allows predictive locking to the onset of future modulations of the sensory signal. The paper thus suggests a theoretical framework in which a common thalamocortical mechanism implements temporal demodulation across senses.
Collapse
Affiliation(s)
- Ehud Ahissar
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel.
| | - Guy Nelinger
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Eldad Assa
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Ofer Karp
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| |
Collapse
|
6
|
Efficient training approaches for optimizing behavioral performance and reducing head fixation time. PLoS One 2022; 17:e0276531. [DOI: 10.1371/journal.pone.0276531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
The use of head fixation has become routine in systems neuroscience. However, whether the behavior changes with head fixation, whether animals can learn aspects of a task while freely moving and transfer this knowledge to the head fixed condition, has not been examined in much detail. Here, we used a novel floating platform, the “Air-Track”, which simulates free movement in a real-world environment to address the effect of head fixation and developed methods to accelerate training of behavioral tasks for head fixed mice. We trained mice in a Y maze two choice discrimination task. One group was trained while head fixed and compared to a separate group that was pre-trained while freely moving and then trained on the same task while head fixed. Pre-training significantly reduced the time needed to relearn the discrimination task while head fixed. Freely moving and head fixed mice displayed similar behavioral patterns, however, head fixation significantly slowed movement speed. The speed of movement in the head fixed mice depended on the weight of the platform. We conclude that home-cage pre-training improves learning performance of head fixed mice and that while head fixation obviously limits some aspects of movement, the patterns of behavior observed in head fixed and freely moving mice are similar.
Collapse
|
7
|
Demonstration of three-dimensional contact point determination and contour reconstruction during active whisking behavior of an awake rat. PLoS Comput Biol 2022; 18:e1007763. [PMID: 36108064 PMCID: PMC9477318 DOI: 10.1371/journal.pcbi.1007763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
The rodent vibrissal (whisker) system has been studied for decades as a model of active touch sensing. There are no sensors along the length of a whisker; all sensing occurs at the whisker base. Therefore, a large open question in many neuroscience studies is how an animal could estimate the three-dimensional (3D) location at which a whisker makes contact with an object. In the present work we simulated the shape of a real rat whisker to demonstrate the existence of several unique mappings from triplets of mechanical signals at the whisker base to the three-dimensional whisker-object contact point. We then used high speed video to record whisker deflections as an awake rat whisked against a peg, and used the mechanics resulting from those deflections to extract the contact points along the peg surface. These results demonstrate that measurement of specific mechanical triplets at the base of a biological whisker can enable 3D contact point determination during natural whisking behavior. The approach is viable even though the biological whisker has non-ideal, non-planar curvature, and even given the rat’s real-world choices of whisking parameters. Visual intuition for the quality of the approach is provided in a video that shows the contour of the peg gradually emerging during active whisking behavior.
Collapse
|
8
|
Idiosyncratic selection of active touch for shape perception. Sci Rep 2022; 12:2922. [PMID: 35190603 PMCID: PMC8861104 DOI: 10.1038/s41598-022-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Hand movements are essential for tactile perception of objects. However, the specific functions served by active touch strategies, and their dependence on physiological parameters, are unclear and understudied. Focusing on planar shape perception, we tracked at high resolution the hands of 11 participants during shape recognition task. Two dominant hand movement strategies were identified: contour following and scanning. Contour following movements were either tangential to the contour or oscillating perpendicular to it. Scanning movements crossed between distant parts of the shapes’ contour. Both strategies exhibited non-uniform coverage of the shapes’ contours. Idiosyncratic movement patterns were specific to the sensed object. In a second experiment, we have measured the participants’ spatial and temporal tactile thresholds. Significant portions of the variations in hand speed and in oscillation patterns could be explained by the idiosyncratic thresholds. Using data-driven simulations, we show how specific strategy choices may affect receptors activation. These results suggest that motion strategies of active touch adapt to both the sensed object and to the perceiver’s physiological parameters.
Collapse
|
9
|
Mannella F, Maggiore F, Baltieri M, Pezzulo G. Active inference through whiskers. Neural Netw 2021; 144:428-437. [PMID: 34563752 DOI: 10.1016/j.neunet.2021.08.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Rodents use whisking to probe actively their environment and to locate objects in space, hence providing a paradigmatic biological example of active sensing. Numerous studies show that the control of whisking has anticipatory aspects. For example, rodents target their whisker protraction to the distance at which they expect objects, rather than just reacting fast to contacts with unexpected objects. Here we characterize the anticipatory control of whisking in rodents as an active inference process. In this perspective, the rodent is endowed with a prior belief that it will touch something at the end of the whisker protraction, and it continuously modulates its whisking amplitude to minimize (proprioceptive and somatosensory) prediction errors arising from an unexpected whisker-object contact, or from a lack of an expected contact. We will use the model to qualitatively reproduce key empirical findings about the ways rodents modulate their whisker amplitude during exploration and the scanning of (expected or unexpected) objects. Furthermore, we will discuss how the components of active inference model can in principle map to the neurobiological circuits of rodent whisking.
Collapse
Affiliation(s)
- Francesco Mannella
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| | - Federico Maggiore
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| | - Manuel Baltieri
- Laboratory for Neural Computation and Adaptation, RIKEN Centre for Brain Science, Wako-shi, Japan.
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| |
Collapse
|
10
|
Ebert C, Bagdasarian K, Haidarliu S, Ahissar E, Wallach A. Interactions of Whisking and Touch Signals in the Rat Brainstem. J Neurosci 2021; 41:4826-4839. [PMID: 33893218 PMCID: PMC8260172 DOI: 10.1523/jneurosci.1410-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Perception is an active process, requiring the integration of both proprioceptive and exteroceptive information. In the rat's vibrissal system, a classical model for active sensing, the relative contribution of the two information streams was previously studied at the peripheral, thalamic, and cortical levels. Contributions of brainstem neurons were only indirectly inferred for some trigeminal nuclei according to their thalamic projections. The current work addressed this knowledge gap by performing the first comparative study of the encoding of proprioceptive whisking and exteroceptive touch signals in the oralis (SpVo), interpolaris (SpVi), and paratrigeminal (Pa5) brainstem nuclei. We used artificial whisking in anesthetized male rats, which allows a systematic analysis of the relative contribution of the proprioceptive and exteroceptive information streams along the ascending pathways in the absence of motor or cognitive top-down modulations. We found that (1) neurons in the rostral and caudal parts of the SpVi convey whisking and touch information, respectively, as predicted by their thalamic projections; (2) neurons in the SpVo encode both whisking and (primarily) touch information; and (3) neurons of the Pa5 encode a complex combination of whisking and touch information. In particular, the Pa5 contains a relatively large fraction of neurons that are inhibited by active touch, a response observed so far only in the thalamus. Overall, our systematic characterization of afferent responses to active touch in the trigeminal brainstem approves the hypothesized functions of SpVi neurons and presents evidence that SpVo and Pa5 neurons are involved in the processing of active vibrissal touch.SIGNIFICANCE STATEMENT The present work constitutes the first comparative study of the encoding of proprioceptive (whisking) and exteroceptive (touch) information in the rat's brainstem trigeminal nuclei, the first stage of vibrissal processing in the CNS. It shows that (1) as expected, the rostral and caudal interpolaris neurons convey primarily whisking and touch information, respectively; (2) the oralis nucleus, whose function was previously unknown, encodes both whisking and (primarily) touch touch information; (3) a subtractive computation, reported at the thalamic level, already occurs at the brainstem level; and (4) a novel afferent pathway probably ascends via the paratrigeminal nucleus, encoding both proprioceptive and exteroceptive information.
Collapse
Affiliation(s)
- Coralie Ebert
- Weizmann Institute of Science, Rehovot, Israel 7610001
| | | | | | - Ehud Ahissar
- Weizmann Institute of Science, Rehovot, Israel 7610001
| | | |
Collapse
|
11
|
Gruber LZ, Ahissar E. Closed loop motor-sensory dynamics in human vision. PLoS One 2020; 15:e0240660. [PMID: 33057398 PMCID: PMC7561174 DOI: 10.1371/journal.pone.0240660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/30/2020] [Indexed: 12/02/2022] Open
Abstract
Vision is obtained with a continuous motion of the eyes. The kinematic analysis of eye motion, during any visual or ocular task, typically reveals two (kinematic) components: saccades, which quickly replace the visual content in the retinal fovea, and drifts, which slowly scan the image after each saccade. While the saccadic exchange of regions of interest (ROIs) is commonly considered to be included in motor-sensory closed-loops, it is commonly assumed that drifts function in an open-loop manner, that is, independent of the concurrent visual input. Accordingly, visual perception is assumed to be based on a sequence of open-loop processes, each initiated by a saccade-triggered retinal snapshot. Here we directly challenged this assumption by testing the dependency of drift kinematics on concurrent visual inputs using real-time gaze-contingent-display. Our results demonstrate a dependency of the trajectory on the concurrent visual input, convergence of speed to condition-specific values and maintenance of selected drift-related motor-sensory controlled variables, all strongly indicative of drifts being included in a closed-loop brain-world process, and thus suggesting that vision is inherently a closed-loop process.
Collapse
Affiliation(s)
| | - Ehud Ahissar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Predictive whisker kinematics reveal context-dependent sensorimotor strategies. PLoS Biol 2020; 18:e3000571. [PMID: 32453721 PMCID: PMC7274460 DOI: 10.1371/journal.pbio.3000571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 06/05/2020] [Accepted: 05/11/2020] [Indexed: 01/27/2023] Open
Abstract
Animals actively move their sensory organs in order to acquire sensory information. Some rodents, such as mice and rats, employ cyclic scanning motions of their facial whiskers to explore their proximal surrounding, a behavior known as whisking. Here, we investigated the contingency of whisking kinematics on the animal's behavioral context that arises from both internal processes (attention and expectations) and external constraints (available sensory and motor degrees of freedom). We recorded rat whisking at high temporal resolution in 2 experimental contexts-freely moving or head-fixed-and 2 spatial sensory configurations-a single row or 3 caudal whiskers on each side of the snout. We found that rapid sensorimotor twitches, called pumps, occurring during free-air whisking carry information about the rat's upcoming exploratory direction, as demonstrated by the ability of these pumps to predict consequent head and body locomotion. Specifically, pump behavior during both voluntary motionlessness and imposed head fixation exposed a backward redistribution of sensorimotor exploratory resources. Further, head-fixed rats employed a wide range of whisking profiles to compensate for the loss of head- and body-motor degrees of freedom. Finally, changing the number of intact vibrissae available to a rat resulted in an alteration of whisking strategy consistent with the rat actively reallocating its remaining resources. In sum, this work shows that rats adapt their active exploratory behavior in a homeostatic attempt to preserve sensorimotor coverage under changing environmental conditions and changing sensory capacities, including those imposed by various laboratory conditions.
Collapse
|
13
|
Vecchia D, Beltramo R, Vallone F, Chéreau R, Forli A, Molano-Mazón M, Bawa T, Binini N, Moretti C, Holtmaat A, Panzeri S, Fellin T. Temporal Sharpening of Sensory Responses by Layer V in the Mouse Primary Somatosensory Cortex. Curr Biol 2020; 30:1589-1599.e10. [PMID: 32169206 PMCID: PMC7198976 DOI: 10.1016/j.cub.2020.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 01/14/2023]
Abstract
The timing of stimulus-evoked spikes encodes information about sensory stimuli. Here we studied the neural circuits controlling this process in the mouse primary somatosensory cortex. We found that brief optogenetic activation of layer V pyramidal cells just after whisker deflection modulated the membrane potential of neurons and interrupted their long-latency whisker responses, increasing their accuracy in encoding whisker deflection time. In contrast, optogenetic inhibition of layer V during either passive whisker deflection or active whisking decreased accuracy in encoding stimulus or touch time, respectively. Suppression of layer V pyramidal cells increased reaction times in a texture discrimination task. Moreover, two-color optogenetic experiments revealed that cortical inhibition was efficiently recruited by layer V stimulation and that it mainly involved activation of parvalbumin-positive rather than somatostatin-positive interneurons. Layer V thus performs behaviorally relevant temporal sharpening of sensory responses through circuit-specific recruitment of cortical inhibition.
Collapse
Affiliation(s)
- Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Riccardo Beltramo
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Fabio Vallone
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Ronan Chéreau
- Department of Basic Neurosciences, Geneva University Neurocenter, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Manuel Molano-Mazón
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Tanika Bawa
- Department of Basic Neurosciences, Geneva University Neurocenter, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Noemi Binini
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Geneva University Neurocenter, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy.
| |
Collapse
|
14
|
Abstract
Neuroscience needs behavior. However, it is daunting to render the behavior of organisms intelligible without suppressing most, if not all, references to life. When animals are treated as passive stimulus-response, disembodied and identical machines, the life of behavior perishes. Here, we distill three biological principles (materiality, agency, and historicity), spell out their consequences for the study of animal behavior, and illustrate them with various examples from the literature. We propose to put behavior back into context, with the brain in a species-typical body and with the animal's body situated in the world; stamp Newtonian time with nested ontogenetic and phylogenetic processes that give rise to individuals with their own histories; and supplement linear cause-and-effect chains and information processing with circular loops of purpose and meaning. We believe that conceiving behavior in these ways is imperative for neuroscience.
Collapse
|
15
|
Deutsch D, Schneidman E, Ahissar E. Generalization of Object Localization From Whiskers to Other Body Parts in Freely Moving Rats. Front Integr Neurosci 2019; 13:64. [PMID: 31736724 PMCID: PMC6839537 DOI: 10.3389/fnint.2019.00064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
Rats can be trained to associate relative spatial locations of objects with the spatial location of rewards. Here we ask whether rats can localize static silent objects with other body parts in the dark, and if so with what resolution. We addressed these questions in trained rats, whose interactions with the objects were tracked at high-resolution before and after whisker trimming. We found that rats can use other body parts, such as trunk and ears, to localize objects. Localization resolution with non-whisking body parts (henceforth, ‘body’) was poorer than that obtained with whiskers, even when left with a single whisker at each side. Part of the superiority of whiskers was obtained via the use of multiple contacts. Transfer from whisker to body localization occurred within one session, provided that body contacts with the objects occurred before whisker trimming, or in the next session otherwise. This transfer occurred whether temporal cues were used for discrimination or when discrimination was based on spatial cues alone. Rats’ decision in each trial was based on the sensory cues acquired in that trial and on decisions and reward locations in previous trials. When sensory cues were acquired by body contacts, rat decisions relied more on the reward location in previous trials. Overall, the results suggest that rats can generalize the idea of relative object location across different body parts, while preferring to rely on whiskers-based localization, which occurs earlier and conveys higher resolution.
Collapse
Affiliation(s)
- David Deutsch
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Elad Schneidman
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Ahissar
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Baudot P. Elements of qualitative cognition: An information topology perspective. Phys Life Rev 2019; 31:263-275. [PMID: 31679788 DOI: 10.1016/j.plrev.2019.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
Abstract
Elementary quantitative and qualitative aspects of consciousness are investigated conjointly from the biology, neuroscience, physic and mathematic point of view, by the mean of a theory written with Bennequin that derives and extends information theory within algebraic topology. Information structures, that accounts for statistical dependencies within n-body interacting systems are interpreted a la Leibniz as a monadic-panpsychic framework where consciousness is information and physical, and arise from collective interactions. The electrodynamic intrinsic nature of consciousness, sustained by an analogical code, is illustrated by standard neuroscience and psychophysic results. It accounts for the diversity of the learning mechanisms, including adaptive and homeostatic processes on multiple scales, and details their expression within information theory. The axiomatization and logic of cognition are rooted in measure theory expressed within a topos intrinsic probabilistic constructive logic. Information topology provides a synthesis of the main models of consciousness (Neural Assemblies, Integrated Information, Global Neuronal Workspace, Free Energy Principle) within a formal Gestalt theory, an expression of information structures and patterns in correspondence with Galois cohomology and discrete symmetries. The methods provide new formalization of deep neural network with homologicaly imposed architecture applied to challenges in AI-machine learning.
Collapse
Affiliation(s)
- Pierre Baudot
- Median Technologies, Valbonne, France; Inserm UNIS UMR1072, Université Aix-Marseille AMU, Marseille, France.
| |
Collapse
|
17
|
Whisking Asymmetry Signals Motor Preparation and the Behavioral State of Mice. J Neurosci 2019; 39:9818-9830. [PMID: 31666357 DOI: 10.1523/jneurosci.1809-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
A central function of the brain is to plan, predict, and imagine the effect of movement in a dynamically changing environment. Here we show that in mice head-fixed in a plus-maze, floating on air, and trained to pick lanes based on visual stimuli, the asymmetric movement, and position of whiskers on the two sides of the face signals whether the animal is moving, turning, expecting reward, or licking. We show that (1) whisking asymmetry is coordinated with behavioral state, and that behavioral state can be decoded and predicted based on asymmetry, (2) even in the absence of tactile input, whisker positioning and asymmetry nevertheless relate to behavioral state, and (3) movement of the nose correlates with asymmetry, indicating that facial expression of the mouse is itself correlated with behavioral state. These results indicate that the movement of whiskers, a behavior that is not instructed or necessary in the task, can inform an observer about what a mouse is doing in the maze. Thus, the position of these mobile tactile sensors reflects a behavioral and movement-preparation state of the mouse.SIGNIFICANCE STATEMENT Behavior is a sequence of movements, where each movement can be related to or can trigger a set of other actions. Here we show that, in mice, the movement of whiskers (tactile sensors used to extract information about texture and location of objects) is coordinated with and predicts the behavioral state of mice: that is, what mice are doing, where they are in space, and where they are in the sequence of behaviors.
Collapse
|
18
|
Fotowat H, Lee C, Jun JJ, Maler L. Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation. eLife 2019; 8:44119. [PMID: 30942169 PMCID: PMC6469930 DOI: 10.7554/elife.44119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/13/2023] Open
Abstract
Most vertebrates use active sensing strategies for perception, cognition and control of motor activity. These strategies include directed body/sensor movements or increases in discrete sensory sampling events. The weakly electric fish, Gymnotus sp., uses its active electric sense during navigation in the dark. Electric organ discharge rate undergoes transient increases during navigation to increase electrosensory sampling. Gymnotus also use stereotyped backward swimming as an important form of active sensing that brings objects toward the electroreceptor dense fovea-like head region. We wirelessly recorded neural activity from the pallium of freely swimming Gymnotus. Spiking activity was sparse and occurred only during swimming. Notably, most units tended to fire during backward swims and their activity was on average coupled to increases in sensory sampling. Our results provide the first characterization of neural activity in a hippocampal (CA3)-like region of a teleost fish brain and connects it to active sensing of spatial environmental features.
Collapse
Affiliation(s)
- Haleh Fotowat
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Candice Lee
- Department of Cellular and Molecular Medicine, Brain and Mind Institute and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| | - James Jaeyoon Jun
- Center for Computational Biology, Flatiron Institute, New York, United States
| | - Len Maler
- Department of Cellular and Molecular Medicine, Brain and Mind Institute and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
19
|
Harrison LA, Kats A, Williams ME, Aziz-Zadeh L. The Importance of Sensory Processing in Mental Health: A Proposed Addition to the Research Domain Criteria (RDoC) and Suggestions for RDoC 2.0. Front Psychol 2019; 10:103. [PMID: 30804830 PMCID: PMC6370662 DOI: 10.3389/fpsyg.2019.00103] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
The time is ripe to integrate burgeoning evidence of the important role of sensory and motor functioning in mental health within the National Institute of Mental Health's [NIMH] Research Domain Criteria [RDoC] framework (National Institute of Mental Health, n.d.a), a multi-dimensional method of characterizing mental functioning in health and disease across all neurobiological levels of analysis ranging from genetic to behavioral. As the importance of motor processing in psychopathology has been recognized (Bernard and Mittal, 2015; Garvey and Cuthbert, 2017; National Institute of Mental Health, 2019), here we focus on sensory processing. First, we review the current design of the RDoC matrix, noting sensory features missing despite their prevalence in multiple mental illnesses. We identify two missing classes of sensory symptoms that we widely define as (1) sensory processing, including sensory sensitivity and active sensing, and (2) domains of perceptual signaling, including interoception and proprioception, which are currently absent or underdeveloped in the perception construct of the cognitive systems domain. Then, we describe the neurobiological basis of these psychological constructs and examine why these sensory features are important for understanding psychopathology. Where appropriate, we examine links between sensory processing and the domains currently included in the RDoC matrix. Throughout, we emphasize how the addition of these sensory features to the RDoC matrix is important for understanding a range of mental health disorders. We conclude with the suggestion that a separate sensation and perception domain can enhance the current RDoC framework, while discussing what we see as important principles and promising directions for the future development and use of the RDoC.
Collapse
Affiliation(s)
- Laura A. Harrison
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Anastasiya Kats
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Marian E. Williams
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Lisa Aziz-Zadeh
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
20
|
Bilateral Tactile Input Patterns Decoded at Comparable Levels But Different Time Scales in Neocortical Neurons. J Neurosci 2018. [PMID: 29540549 DOI: 10.1523/jneurosci.2891-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence of contralateral tactile input can profoundly affect ipsilateral tactile perception, and unilateral stroke in somatosensory areas can result in bilateral tactile deficits, suggesting that bilateral tactile integration is an important part of brain function. Although previous studies have shown that bilateral tactile inputs exist and that there are neural interactions between inputs from the two sides, no previous study explored to what extent the local neuronal circuitry processing contains detailed information about the nature of the tactile input from the two sides. To address this question, we used a recently introduced approach to deliver a set of electrical, reproducible, tactile afferent, spatiotemporal activation patterns, which permits a high-resolution analysis of the neuronal decoding capacity, to the skin of the second forepaw digits of the anesthetized male rat. Surprisingly, we found that individual neurons of the primary somatosensory can decode contralateral and ipsilateral input patterns to comparable extents. Although the contralateral input was stronger and more rapidly decoded, given sufficient poststimulus processing time, ipsilateral decoding levels essentially caught up to contralateral levels. Moreover, there was a weak but significant correlation for neurons with high decoding performance for contralateral tactile input to also perform well on decoding ipsilateral input. Our findings shed new light on the brain mechanisms underlying bimanual haptic integration.SIGNIFICANCE STATEMENT Here we demonstrate that the spiking activity of single neocortical neurons in the somatosensory cortex of the rat can be used to decode patterned tactile stimuli delivered to the distal ventral skin of the second forepaw digits on both sides of the body. Even though comparable levels of decoding of the tactile input were achieved faster for contralateral input, given sufficient integration time each neuron was found to decode ipsilateral input with a comparable level of accuracy. Given that the neocortical neurons could decode ipsilateral inputs with such small differences between the patterns suggests that S1 cortex has access to very precise information about ipsilateral events. The findings shed new light on possible network mechanisms underlying bimanual haptic processing.
Collapse
|
21
|
Bilateral Discrimination of Tactile Patterns without Whisking in Freely Running Rats. J Neurosci 2017; 37:7567-7579. [PMID: 28663200 DOI: 10.1523/jneurosci.0528-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/22/2017] [Accepted: 06/17/2017] [Indexed: 11/21/2022] Open
Abstract
A majority of whisker discrimination tasks in rodents are performed on head-fixed animals to facilitate tracking or control of the sensory inputs. However, head fixation critically restrains the behavior and thus the incoming stimuli compared with those occurring in natural conditions. In this study, we investigated whether freely behaving rats can discriminate fine tactile patterns while running, in particular when stimuli are presented simultaneously on both sides of the snout. We developed a two-alternative forced-choice task in an automated modified T-maze. Stimuli were either a surface with no bars (smooth) or with vertical bars spaced irregularly or regularly. While running at full speed, rats encountered simultaneously the two discriminanda placed on the two sides of the central aisle. Rats learned to recognize regular bars versus a smooth surface in 8 weeks. They solved the task while running at an average speed of 1 m/s, so that the contact with the stimulus lasted <1 typical whisking cycle, precluding the use of active whisking. Whisker-tracking analysis revealed an asymmetry in the position of the whiskers: they oriented toward the rewarded stimulus during successful trials as early as 60 ms after the first possible contact. We showed that the whiskers and activity in the primary somatosensory cortex are involved during the discrimination process. Finally, we identified irregular patterns of bars that the rats can discriminate from the regular one. This novel task shows that freely moving rodents can make simultaneous bilateral tactile discrimination without whisking.SIGNIFICANCE STATEMENT The whisker system of rodents is a widely used model to study tactile processing. Rats show remarkable abilities in discriminating surfaces by actively moving their whiskers (whisking) against stimuli, typically sampling them several times. This motor strategy affects considerably the way that tactile information is acquired and thus the way that neuronal networks process the information. However, when rats run at high speed, they protract their whiskers in front of the snout without large movements. Here, we investigated whether rats are able to discriminate regular and irregular patterns of vertical bars while running without whisking. We found that the animals can perform a bilateral simultaneous discrimination without whisking and that this involves both whiskers and barrel cortex activity.
Collapse
|
22
|
|
23
|
Attention Robustly Gates a Closed-Loop Touch Reflex. Curr Biol 2017; 27:1836-1843.e7. [DOI: 10.1016/j.cub.2017.05.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/24/2017] [Accepted: 05/17/2017] [Indexed: 11/15/2022]
|
24
|
Whisking mechanics and active sensing. Curr Opin Neurobiol 2016; 40:178-188. [PMID: 27632212 DOI: 10.1016/j.conb.2016.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/20/2022]
Abstract
We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp.
Collapse
|
25
|
Bush NE, Schroeder CL, Hobbs JA, Yang AE, Huet LA, Solla SA, Hartmann MJ. Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system. eLife 2016; 5. [PMID: 27348221 PMCID: PMC4999311 DOI: 10.7554/elife.13969] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/26/2016] [Indexed: 11/13/2022] Open
Abstract
Tactile information available to the rat vibrissal system begins as external forces that cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal ganglion (Vg) have often been described as encoding the kinematics (geometry) of object contact. Here we aimed to determine the extent to which Vg neurons encode the kinematics vs. mechanics of contact. We used models of whisker bending to quantify mechanical signals (forces and moments) at the whisker base while simultaneously monitoring whisker kinematics and recording single Vg units in both anesthetized rats and awake, body restrained rats. We employed a novel manual stimulation technique to deflect whiskers in a way that decouples kinematics from mechanics, and used Generalized Linear Models (GLMs) to show that Vg neurons more directly encode mechanical signals when the whisker is deflected in this decoupled stimulus space. DOI:http://dx.doi.org/10.7554/eLife.13969.001 Animals must gather sensory information from the world around them and act on that information. Specialized sensory cells convert physical information from the environment into electrical signals that the brain can interpret. In the case of hearing, this physical information consists of changes in air pressure, and for vision, it is patterns of light bouncing off of objects. Rodents rely heavily on touch information from their whiskers to explore their world. When a whisker touches an object, it deforms and bends. The first neurons to respond to whisker touch – so called primary sensory neurons – represent contact between the whisker and the object in the form of electrical signals, but exactly how they do this is unclear. One possibility is that primary sensory neurons encode the movement of the whisker itself. Whenever a whisker touches an object, the whisker is deflected in a particular direction by a particular amount and at a particular speed. These movement-related features are referred to as the “kinematic” properties of whisker-object contact. Alternatively, these whisker sensory neurons might be more concerned with the forces at the base of the whisker caused by object contact. These forces are the “mechanical” properties of whisker-object contact. Bush, Schroeder et al. set out to determine whether the electrical response of these whisker sensory neurons mainly encode kinematic or mechanical information. However, these two types of information are often closely related to each other: put simply, small whisker movements tend to accompany small forces and vice versa. Bush, Schroeder et al. therefore devised a method to deliver touch stimuli to the whiskers in a way that separates kinematic from mechanical information. Mathematical models were then developed to compare how well the neurons represent each type of information. The models showed that whisker sensory neurons generally encode mechanical signals more directly than kinematic ones. This information adds to our understanding of how animals learn about the world through their senses. However, the analysis of Bush, Schroeder et al. relies on the long-standing simplification that whisker motion is two-dimensional, whereas in reality whiskers move in three dimensions. Therefore, a future challenge is to examine how sensory neurons represent information about touch, such as the location or shape of an object, during three-dimensional whisker-object contact. DOI:http://dx.doi.org/10.7554/eLife.13969.002
Collapse
Affiliation(s)
- Nicholas E Bush
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
| | | | - Jennifer A Hobbs
- Department of Physics and Astronomy, Northwestern University, Evanston, United States
| | - Anne Et Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, United States
| | - Lucie A Huet
- Department of Mechanical Engineering, Northwestern University, Evanston, United States
| | - Sara A Solla
- Department of Physics and Astronomy, Northwestern University, Evanston, United States.,Department of Physiology, Northwestern University, Chicago, United States
| | - Mitra Jz Hartmann
- Department of Biomedical Engineering, Northwestern University, Evanston, United States.,Department of Mechanical Engineering, Northwestern University, Evanston, United States
| |
Collapse
|
26
|
Significance of sniffing pattern during the acquisition of an olfactory discrimination task. Behav Brain Res 2016; 312:341-54. [PMID: 27343936 DOI: 10.1016/j.bbr.2016.06.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022]
Abstract
Active sampling of olfactory environment consists of sniffing in rodents. The importance of sniffing dynamics is well established at the neuronal and behavioral levels. Patterns of sniffing have been shown to be modulated by the physicochemical properties of odorants, particularly concentration and sorption. Sniffing is also heavily impacted by higher processing related to the behavioral context, emotion and attentional demand. However, how the pattern of sniffing evolves over the course of learning of an experimental olfactory conditioning is still poorly understood. We tested this question by monitoring sniffing activity, using a whole-body plethysmograph, on rats performing a two-alternative choice odor discrimination task. We followed sniff variations at different learning stages (naïve, well-trained, expert). We found that during the acquisition of an odor discrimination task, rats acquired a global sniffing pattern, independent of the odor pair used. This pattern consists of a longer sampling duration, a higher sniffing frequency, and a larger amplitude. In parallel, subtle differences of sniffing between the two odors of a pair were also observed. This sniffing behavior was not only associated with a better and faster acquisition of the discrimination task but was also transferred to other odor sets and refined after a long-term pause so as to reduce the sampling duration and maintain a specific sniffing frequency. Our results provide additional arguments that sniffing is a complex sensorimotor act that is strongly affected by olfactory learning.
Collapse
|
27
|
Abstract
Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception.
Collapse
Affiliation(s)
- Ehud Ahissar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Assa
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Schroeder JB, Ritt JT. Selection of head and whisker coordination strategies during goal-oriented active touch. J Neurophysiol 2016; 115:1797-809. [PMID: 26792880 DOI: 10.1152/jn.00465.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022] Open
Abstract
In the rodent whisker system, a key model for neural processing and behavioral choices during active sensing, whisker motion is increasingly recognized as only part of a broader motor repertoire employed by rodents during active touch. In particular, recent studies suggest whisker and head motions are tightly coordinated. However, conditions governing the selection and temporal organization of such coordinated sensing strategies remain poorly understood. We videographically reconstructed head and whisker motions of freely moving mice searching for a randomly located rewarded aperture, focusing on trials in which animals appeared to rapidly "correct" their trajectory under tactile guidance. Mice orienting after unilateral contact repositioned their whiskers similarly to previously reported head-turning asymmetry. However, whisker repositioning preceded head turn onsets and was not bilaterally symmetric. Moreover, mice selectively employed a strategy we term contact maintenance, with whisking modulated to counteract head motion and facilitate repeated contacts on subsequent whisks. Significantly, contact maintenance was not observed following initial contact with an aperture boundary, when the mouse needed to make a large corrective head motion to the front of the aperture, but only following contact by the same whisker field with the opposite aperture boundary, when the mouse needed to precisely align its head with the reward spout. Together these results suggest that mice can select from a diverse range of sensing strategies incorporating both knowledge of the task and whisk-by-whisk sensory information and, moreover, suggest the existence of high level control (not solely reflexive) of sensing motions coordinated between multiple body parts.
Collapse
Affiliation(s)
- Joseph B Schroeder
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jason T Ritt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
29
|
On-going computation of whisking phase by mechanoreceptors. Nat Neurosci 2016; 19:487-93. [PMID: 26780508 DOI: 10.1038/nn.4221] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022]
Abstract
To attribute spatial meaning to sensory information, the state of the sensory organ must be represented in the nervous system. In the rodent's vibrissal system, the whisking-cycle phase has been identified as a key coordinate, and phase-based representation of touch has been reported in the somatosensory cortex. Where and how phase is extracted in the ascending afferent pathways remains unknown. Using a closed-loop interface in anesthetized rats, we found that whisking phase is already encoded in a frequency- and amplitude-invariant manner by primary vibrissal afferents. We found that, for naturally constrained whisking dynamics, such invariant phase coding could be obtained by tuning each receptor to a restricted kinematic subspace. Invariant phase coding was preserved in the brainstem, where paralemniscal neurons filtered out the slowly evolving offset, whereas lemniscal neurons preserved it. These results demonstrate accurate, perceptually relevant, mechanically based processing at the sensor level.
Collapse
|