1
|
Paudel S, Yue M, Nalamalapu R, Saha MS. Deciphering the Calcium Code: A Review of Calcium Activity Analysis Methods Employed to Identify Meaningful Activity in Early Neural Development. Biomolecules 2024; 14:138. [PMID: 38275767 PMCID: PMC10813340 DOI: 10.3390/biom14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The intracellular and intercellular flux of calcium ions represents an ancient and universal mode of signaling that regulates an extensive array of cellular processes. Evidence for the central role of calcium signaling includes various techniques that allow the visualization of calcium activity in living cells. While extensively investigated in mature cells, calcium activity is equally important in developing cells, particularly the embryonic nervous system where it has been implicated in a wide variety array of determinative events. However, unlike in mature cells, where the calcium dynamics display regular, predictable patterns, calcium activity in developing systems is far more sporadic, irregular, and diverse. This renders the ability to assess calcium activity in a consistent manner extremely challenging, challenges reflected in the diversity of methods employed to analyze calcium activity in neural development. Here we review the wide array of calcium detection and analysis methods used across studies, limiting the extent to which they can be comparatively analyzed. The goal is to provide investigators not only with an overview of calcium activity analysis techniques currently available, but also to offer suggestions for future work and standardization to enable informative comparative evaluations of this fundamental and important process in neural development.
Collapse
Affiliation(s)
- Sudip Paudel
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Michelle Yue
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Rithvik Nalamalapu
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
2
|
Cellular identity and Ca 2+ signaling activity of the non-reproductive GnRH system in the Ciona intestinalis type A (Ciona robusta) larva. Sci Rep 2020; 10:18590. [PMID: 33122709 PMCID: PMC7596717 DOI: 10.1038/s41598-020-75344-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tunicate larvae have a non-reproductive gonadotropin-releasing hormone (GnRH) system with multiple ligands and receptor heterodimerization enabling complex regulation. In Ciona intestinalis type A larvae, one of the gnrh genes, gnrh2, is conspicuously expressed in the motor ganglion and nerve cord, which are homologous structures to the hindbrain and spinal cord, respectively, of vertebrates. The gnrh2 gene is also expressed in the proto-placodal sensory neurons, which are the proposed homologue of vertebrate olfactory neurons. Tunicate larvae occupy a non-reproductive dispersal stage, yet the role of their GnRH system remains elusive. In this study, we investigated neuronal types of gnrh2-expressing cells in Ciona larvae and visualized the activity of these cells by fluorescence imaging using a calcium sensor protein. Some cholinergic neurons and dopaminergic cells express gnrh2, suggesting that GnRH plays a role in controlling swimming behavior. However, none of the gnrh2-expressing cells overlap with glycinergic or GABAergic neurons. A role in motor control is also suggested by a relationship between the activity of gnrh2-expressing cells and tail movements. Interestingly, gnrh2-positive ependymal cells in the nerve cord, known as a kind of glia cells, actively produced Ca2+ transients, suggesting that active intercellular signaling occurs in the glia cells of the nerve cord.
Collapse
|
3
|
Calcium Activity Dynamics Correlate with Neuronal Phenotype at a Single Cell Level and in a Threshold-Dependent Manner. Int J Mol Sci 2019; 20:ijms20081880. [PMID: 30995769 PMCID: PMC6515432 DOI: 10.3390/ijms20081880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022] Open
Abstract
Calcium is a ubiquitous signaling molecule that plays a vital role in many physiological processes. Recent work has shown that calcium activity is especially critical in vertebrate neural development. Here, we investigated if calcium activity and neuronal phenotype are correlated only on a population level or on the level of single cells. Using Xenopus primary cell culture in which individual cells can be unambiguously identified and associated with a molecular phenotype, we correlated calcium activity with neuronal phenotype on the single-cell level. This analysis revealed that, at the neural plate stage, a high frequency of low-amplitude spiking activity correlates with an excitatory, glutamatergic phenotype, while high-amplitude spiking activity correlates with an inhibitory, GABAergic phenotype. Surprisingly, we also found that high-frequency, low-amplitude spiking activity correlates with neural progenitor cells and that differentiating cells exhibit higher spike amplitude. Additional methods of analysis suggested that differentiating marker tubb2b-expressing cells exhibit relatively persistent and predictable calcium activity compared to the irregular activity of neural progenitor cells. Our study highlights the value of using a range of thresholds for analyzing calcium activity data and underscores the importance of employing multiple methods to characterize the often irregular, complex patterns of calcium activity during early neural development.
Collapse
|
4
|
Fontana JM, Khodus GR, Unnersjö-Jess D, Blom H, Aperia A, Brismar H. Spontaneous calcium activity in metanephric mesenchymal cells regulates branching morphogenesis in the embryonic kidney. FASEB J 2018; 33:4089-4096. [PMID: 30496703 PMCID: PMC6404591 DOI: 10.1096/fj.201802054r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The central role of calcium signaling during development of early vertebrates is well documented, but little is known about its role in mammalian embryogenesis. We have used immunofluorescence and time-lapse calcium imaging of cultured explanted embryonic rat kidneys to study the role of calcium signaling for branching morphogenesis. In mesenchymal cells, we recorded spontaneous calcium activity that was characterized by irregular calcium transients. The calcium signals were dependent on release of calcium from intracellular stores in the endoplasmic reticulum. Down-regulation of the calcium activity, both by blocking the sarco-endoplasmic reticulum Ca2+-ATPase and by chelating cytosolic calcium, resulted in retardation of branching morphogenesis and a reduced formation of primitive nephrons but had no effect on cell proliferation. We propose that spontaneous calcium activity contributes with a stochastic factor to the self-organizing process that controls branching morphogenesis, a major determinant of the ultimate number of nephrons in the kidney.-Fontana, J. M., Khodus, G. R., Unnersjö-Jess, D., Blom, H., Aperia, A., Brismar, H. Spontaneous calcium activity in metanephric mesenchymal cells regulates branching morphogenesis in the embryonic kidney.
Collapse
Affiliation(s)
- Jacopo M Fontana
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, Solna, Sweden
| | - Georgiy R Khodus
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, Solna, Sweden
| | - David Unnersjö-Jess
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, Solna, Sweden
| | - Hans Blom
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, Solna, Sweden
| | - Anita Aperia
- Department of Women's and Children's Health, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Hjalmar Brismar
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, Solna, Sweden.,Department of Women's and Children's Health, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
5
|
Lindsly C, Gonzalez-Islas C, Wenner P. Elevated intracellular Na + concentrations in developing spinal neurons. J Neurochem 2017; 140:755-765. [PMID: 28027400 DOI: 10.1111/jnc.13936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/09/2016] [Accepted: 12/05/2016] [Indexed: 11/30/2022]
Abstract
Over 25 years ago it was first reported that intracellular chloride levels (Cl-in ) were higher in developing neurons than in maturity. This finding has had significant implications for understanding the excitability of developing networks and recognizing the underlying causes of hyperexcitability associated with disease and neural injury. While there is some evidence that intracellular sodium levels (Na+in ) change during the development of non-neural cells, it has largely been assumed that Na+in is the same in developing and mature neurons. Here, using the sodium indicator SBFI, we test this idea and find that Na+in is significantly higher in embryonic spinal motoneurons and interneurons than in maturity. We find that Na+in reaches ~ 60 mM in mid-embryonic development and is then reduced to ~ 30 mM in late embryonic development. By retrogradely labeling motoneurons with SBFI we can reliably follow Na+in levels in vitro for hours. Bursts of spiking activity, and blocking voltage-gated sodium channels did not influence observed motoneuron sodium levels. On the other hand, Na+in was reduced by blocking the Na+ -K+ -2Cl- cotransporter NKCC1, and was highly sensitive to changes in external Na+ and a blocker of the Na+ /K+ ATPase. Our findings suggest that the Na+ gradient is weaker in embryonic neuronal development and strengthens in maturity in a manner similar to that of Cl- .
Collapse
Affiliation(s)
- Casie Lindsly
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Carlos Gonzalez-Islas
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, USA.,Doctorado en Ciencias Biológicas Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Peter Wenner
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Yuryev M, Pellegrino C, Jokinen V, Andriichuk L, Khirug S, Khiroug L, Rivera C. In vivo Calcium Imaging of Evoked Calcium Waves in the Embryonic Cortex. Front Cell Neurosci 2016; 9:500. [PMID: 26778965 PMCID: PMC4701926 DOI: 10.3389/fncel.2015.00500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
The dynamics of intracellular calcium fluxes are instrumental in the proliferation, differentiation, and migration of neuronal cells. Knowledge thus far of the relationship between these calcium changes and physiological processes in the developing brain has derived principally from ex vivo and in vitro experiments. Here, we present a new method to image intracellular calcium flux in the cerebral cortex of live rodent embryos, whilst attached to the dam through the umbilical cord. Using this approach we demonstrate induction of calcium waves by laser stimulation. These waves are sensitive to ATP-receptor blockade and are significantly increased by pharmacological facilitation of intracellular-calcium release. This approach is the closest to physiological conditions yet achieved for imaging of calcium in the embryonic brain and as such opens new avenues for the study of prenatal brain development. Furthermore, the developed method could open the possibilities of preclinical translational studies in embryos particularly important for developmentally related diseases such as schizophrenia and autism.
Collapse
Affiliation(s)
- Mikhail Yuryev
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Christophe Pellegrino
- INSERM U901, Institut de Neurobiologie de la Méditerranée (INMED), Parc Scientifique de LuminyMarseille, France; Aix-Marseille Université (AMU), UMR S901, Parc Scientifique de LuminyMarseille, France
| | - Ville Jokinen
- School of Chemical Technology, Aalto University Espoo, Finland
| | | | | | - Leonard Khiroug
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, University of HelsinkiHelsinki, Finland; INSERM U901, Institut de Neurobiologie de la Méditerranée (INMED), Parc Scientifique de LuminyMarseille, France; Aix-Marseille Université (AMU), UMR S901, Parc Scientifique de LuminyMarseille, France
| |
Collapse
|
7
|
Regulation of cough by neuronal Na(+)-K(+) ATPases. Curr Opin Pharmacol 2015; 22:140-5. [PMID: 26048736 DOI: 10.1016/j.coph.2015.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 01/10/2023]
Abstract
The Na(+)-K(+) ATPases play an essential role in establishing the sodium gradients in excitable cells. Multiple isoforms of the sodium pumps have been identified, with tissue and cell specific expression patterns. Because the vagal afferent nerves regulating cough must be activated at sustained high frequencies of action potential patterning to achieve cough initiation thresholds, it is a certainty that sodium pump function is essential to maintaining cough reflex sensitivities in health and in disease. The mechanisms by which Na(+)-K(+) ATPases regulate bronchopulmonary vagal afferent nerve excitability are reviewed as are potential therapeutic strategies targeting the sodium pumps in cough.
Collapse
|
8
|
Non-cell-autonomous mechanism of activity-dependent neurotransmitter switching. Neuron 2014; 82:1004-16. [PMID: 24908484 DOI: 10.1016/j.neuron.2014.04.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 11/21/2022]
Abstract
Activity-dependent neurotransmitter switching engages genetic programs regulating transmitter synthesis, but the mechanism by which activity is transduced is unknown. We suppressed activity in single neurons in the embryonic spinal cord to determine whether glutamate-gamma-aminobutyric acid (GABA) switching is cell autonomous. Transmitter respecification did not occur, suggesting that it is homeostatically regulated by the level of activity in surrounding neurons. Graded increase in the number of silenced neurons in cultures led to graded decrease in the number of neurons expressing GABA, supporting non-cell-autonomous transmitter switching. We found that brain-derived neurotrophic factor (BDNF) is expressed in the spinal cord during the period of transmitter respecification and that spike activity causes release of BDNF. Activation of TrkB receptors triggers a signaling cascade involving JNK-mediated activation of cJun that regulates tlx3, a glutamate/GABA selector gene, accounting for calcium-spike BDNF-dependent transmitter switching. Our findings identify a molecular mechanism for activity-dependent respecification of neurotransmitter phenotype in developing spinal neurons.
Collapse
|
9
|
Lewis BB, Miller LE, Herbst WA, Saha MS. The role of voltage-gated calcium channels in neurotransmitter phenotype specification: Coexpression and functional analysis in Xenopus laevis. J Comp Neurol 2014; 522:2518-31. [PMID: 24477801 PMCID: PMC4043876 DOI: 10.1002/cne.23547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 12/20/2022]
Abstract
Calcium activity has been implicated in many neurodevelopmental events, including the specification of neurotransmitter phenotypes. Higher levels of calcium activity lead to an increased number of inhibitory neural phenotypes, whereas lower levels of calcium activity lead to excitatory neural phenotypes. Voltage-gated calcium channels (VGCCs) allow for rapid calcium entry and are expressed during early neural stages, making them likely regulators of activity-dependent neurotransmitter phenotype specification. To test this hypothesis, multiplex fluorescent in situ hybridization was used to characterize the coexpression of eight VGCC α1 subunits with the excitatory and inhibitory neural markers xVGlut1 and xVIAAT in Xenopus laevis embryos. VGCC coexpression was higher with xVGlut1 than xVIAAT, especially in the hindbrain, spinal cord, and cranial nerves. Calcium activity was also analyzed on a single-cell level, and spike frequency was correlated with the expression of VGCC α1 subunits in cell culture. Cells expressing Cav2.1 and Cav2.2 displayed increased calcium spiking compared with cells not expressing this marker. The VGCC antagonist diltiazem and agonist (−)BayK 8644 were used to manipulate calcium activity. Diltiazem exposure increased the number of glutamatergic cells and decreased the number of γ-aminobutyric acid (GABA)ergic cells, whereas (−)BayK 8644 exposure decreased the number of glutamatergic cells without having an effect on the number of GABAergic cells. Given that the expression and functional manipulation of VGCCs are correlated with neurotransmitter phenotype in some, but not all, experiments, VGCCs likely act in combination with a variety of other signaling factors to determine neuronal phenotype specification. J. Comp. Neurol. 522:2518–2531, 2014.
Collapse
Affiliation(s)
- Brittany B Lewis
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23185
| | | | | | | |
Collapse
|
10
|
McDonough MJ, Allen CE, Ng-Sui-Hing NKLA, Rabe BA, Lewis BB, Saha MS. Dissection, culture, and analysis of Xenopus laevis embryonic retinal tissue. J Vis Exp 2012:4377. [PMID: 23287809 DOI: 10.3791/4377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The process by which the anterior region of the neural plate gives rise to the vertebrate retina continues to be a major focus of both clinical and basic research. In addition to the obvious medical relevance for understanding and treating retinal disease, the development of the vertebrate retina continues to serve as an important and elegant model system for understanding neuronal cell type determination and differentiation(1-16). The neural retina consists of six discrete cell types (ganglion, amacrine, horizontal, photoreceptors, bipolar cells, and Müller glial cells) arranged in stereotypical layers, a pattern that is largely conserved among all vertebrates (12,14-18). While studying the retina in the intact developing embryo is clearly required for understanding how this complex organ develops from a protrusion of the forebrain into a layered structure, there are many questions that benefit from employing approaches using primary cell culture of presumptive retinal cells (7,19-23). For example, analyzing cells from tissues removed and dissociated at different stages allows one to discern the state of specification of individual cells at different developmental stages, that is, the fate of the cells in the absence of interactions with neighboring tissues (8,19-22,24-33). Primary cell culture also allows the investigator to treat the culture with specific reagents and analyze the results on a single cell level (5,8,21,24,27-30,33-39). Xenopus laevis, a classic model system for the study of early neural development (19,27,29,31-32,40-42), serves as a particularly suitable system for retinal primary cell culture (10,38,43-45). Presumptive retinal tissue is accessible from the earliest stages of development, immediately following neural induction (25,38,43). In addition, given that each cell in the embryo contains a supply of yolk, retinal cells can be cultured in a very simple defined media consisting of a buffered salt solution, thus removing the confounding effects of incubation or other sera-based products (10,24,44-45). However, the isolation of the retinal tissue from surrounding tissues and the subsequent processing is challenging. Here, we present a method for the dissection and dissociation of retinal cells in Xenopus laevis that will be used to prepare primary cell cultures that will, in turn, be analyzed for calcium activity and gene expression at the resolution of single cells. While the topic presented in this paper is the analysis of spontaneous calcium transients, the technique is broadly applicable to a wide array of research questions and approaches (Figure 1).
Collapse
|
11
|
Mitchell CB, Gasperini RJ, Small DH, Foa L. STIM1 is necessary for store-operated calcium entry in turning growth cones. J Neurochem 2012; 122:1155-66. [DOI: 10.1111/j.1471-4159.2012.07840.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Abstract
For many years it has been assumed that the identity of the transmitters expressed by neurons is stable and unchanging. Recent work, however, shows that electrical activity can respecify neurotransmitter expression during development and in the mature nervous system, and an understanding is emerging of the molecular mechanisms underlying activity-dependent transmitter respecification. Changes in postsynaptic neurotransmitter receptor expression accompany and match changes in transmitter specification, thus enabling synaptic transmission. The functional roles of neurotransmitter respecification are beginning to be understood and appear to involve homeostatic synaptic regulation, which in turn influences behaviour. Activation of this novel form of plasticity by sensorimotor stimuli may provide clinical benefits.
Collapse
|
13
|
Tonelli FMP, Santos AK, Gomes DA, da Silva SL, Gomes KN, Ladeira LO, Resende RR. Stem cells and calcium signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:891-916. [PMID: 22453975 DOI: 10.1007/978-94-007-2888-2_40] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca(2+) concentration [Ca(2+)](i). Acting as an intracellular messenger, Ca(2+) has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca(2+)-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential.
Collapse
Affiliation(s)
- Fernanda M P Tonelli
- Nanomaterials Laboratory, Department of Physics, Insitute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The development of the nervous system involves the generation of a stunningly diverse array of neuronal subtypes that enable complex information processing and behavioral outputs. Deciphering how the nervous system acquires and interprets information and orchestrates behaviors will be greatly enhanced by the identification of distinct neuronal circuits and by an understanding of how these circuits are formed, changed, and/or maintained over time. Addressing these challenging questions depends in part on the ability to accurately identify and characterize the unique neuronal subtypes that comprise individual circuits. Distinguishing characteristics of neuronal subgroups include but are not limited to neurotransmitter phenotype, dendritic morphology, the identity of synaptic partners, and the expression of constellations of subgroup-specific proteins, including ion channel subtypes.
Collapse
|
15
|
Abstract
Gonadotrophin-releasing hormone (GnRH)-secreting neurones are the final output of the central nervous system driving fertility in all mammals. Although it has been known for decades that the efficiency of communication between the hypothalamus and the pituitary depends on the pulsatile profile of GnRH secretion, how GnRH neuronal activity is patterned to generate pulses at the median eminence is unknown. To date, the scattered distribution of the GnRH cell bodies remains the main limitation to assessing the cellular events that could lead to pulsatile GnRH secretion. Taking advantage of the unique developmental feature of GnRH neurones, the nasal explant model allows primary GnRH neurones to be maintained within a micro-network where pulsatile secretion is preserved and where individual cellular activity can be monitored simultaneously across the cell population. This review summarises the data obtained from work using this in vitro model, and brings some insights into GnRH cellular physiology.
Collapse
Affiliation(s)
- S Constantin
- Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
16
|
How are ion pumps and agrin signaling integrated? Trends Biochem Sci 2010; 35:653-9. [DOI: 10.1016/j.tibs.2010.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/29/2010] [Accepted: 05/04/2010] [Indexed: 11/23/2022]
|
17
|
Ozkucur N, Epperlein HH, Funk RHW. Ion imaging during axolotl tail regeneration in vivo. Dev Dyn 2010; 239:2048-57. [PMID: 20549718 DOI: 10.1002/dvdy.22323] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Several studies have reported that endogenous ion currents are involved in a wide range of biological processes from single cell and tissue behavior to regeneration. Various methods are used to assess intracellular and local ion dynamics in biological systems, e.g., patch clamping and vibrating probes. Here, we introduce an approach to detect ion kinetics in vivo using a noninvasive method that can electrophysiologically characterize an entire experimental tissue region or organism. Ion-specific vital dyes have been successfully used for live imaging of intracellular ion dynamics in vitro. Here, we demonstrate that cellular pH, cell membrane potential, calcium, sodium and potassium can be monitored in vivo during tail regeneration in the axolotl (Ambystoma mexicanum) using ion-specific vital dyes. Thus, we suggest that ion-specific vital dyes can be a powerful tool to obtain electrophysiological data during crucial biological events in vivo.
Collapse
Affiliation(s)
- Nurdan Ozkucur
- Department of Anatomy, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden, Germany.
| | | | | |
Collapse
|
18
|
Marek KW, Kurtz LM, Spitzer NC. cJun integrates calcium activity and tlx3 expression to regulate neurotransmitter specification. Nat Neurosci 2010; 13:944-50. [PMID: 20581840 PMCID: PMC2910808 DOI: 10.1038/nn.2582] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/19/2010] [Indexed: 12/02/2022]
Abstract
Neuronal differentiation is accomplished through cascades of intrinsic genetic factors initiated in neuronal progenitors by external gradients of morphogens. Activity was thought to be important only late in development, but recent evidence indicates that activity also regulates early neuronal differentiation. Activity in post-mitotic neurons prior to synapse formation can regulate phenotypic specification, including neurotransmitter choice, but the mechanisms are not clear. Here we identify a mechanism that links endogenous calcium spike activity with an intrinsic genetic pathway to specify neurotransmitter choice in neurons in the dorsal embryonic spinal cord of Xenopus tropicalis. Early activity modulates transcription of the GABAergic/glutamatergic selection gene tlx3 and requires a variant cAMP response element (CRE) in its promoter. The cJun transcription factor binds to this CRE site, modulates transcription, and regulates neurotransmitter phenotype through its transactivation domain. Calcium signals through cJun N-terminal phosphorylation, thus integrating activity-dependent and intrinsic neurotransmitter specification. This mechanism provides a basis for early activity to regulate genetic pathways at critical decision points, switching the phenotype of developing neurons.
Collapse
Affiliation(s)
- Kurt W Marek
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California, USA.
| | | | | |
Collapse
|
19
|
Gasperini R, Choi-Lundberg D, Thompson MJW, Mitchell CB, Foa L. Homer regulates calcium signalling in growth cone turning. Neural Dev 2009; 4:29. [PMID: 19650914 PMCID: PMC2734570 DOI: 10.1186/1749-8104-4-29] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 08/03/2009] [Indexed: 07/26/2023] Open
Abstract
Background Homer proteins are post-synaptic density proteins with known functions in receptor trafficking and calcium homeostasis. While they are key mediators of synaptic plasticity, they are also known to function in axon guidance, albeit by mechanisms that are yet to be elucidated. Homer proteins couple extracellular receptors – such as metabotropic glutamate receptors and the transient receptor potential canonical family of cation channels – to intracellular receptors such as inositol triphosphate and ryanodine receptors on intracellular calcium stores and, therefore, are well placed to regulate calcium dynamics within the neural growth cone. Here we used growth cones from dorsal root ganglia, a well established model in the field of axon guidance, and a growth cone turning assay to examine Homer1 function in axon guidance. Results Homer1 knockdown reversed growth cone turning from attraction to repulsion in response to the calcium-dependent guidance cues brain derived neurotrophic factor and netrin-1. Conversely, Homer1 knockdown had no effect on repulsion to the calcium-independent guidance cue Semaphorin-3A. This reversal of attractive turning suggested a requirement for Homer1 in a molecular switch. Pharmacological experiments confirmed that the operational state of a calcium-calmodulin dependent protein kinase II/calcineurin phosphatase molecular switch was dependent on Homer1 expression. Calcium imaging of motile growth cones revealed that Homer1 is required for guidance-cue-induced rise of cytosolic calcium and the attenuation of spontaneous cytosolic calcium transients. Homer1 knockdown-induced calcium transients and turning were inhibited by antagonists of store-operated channels. In addition, immunocytochemistry revealed the close association of Homer1 with the store-operated proteins TRPC1 and STIM1 within dorsal root ganglia growth cones. Conclusion These experiments provide evidence that Homer1 is an essential component of the calcium signalling repertoire within motile growth cones, regulating guidance-cue-induced calcium release and maintaining basal cytosolic calcium.
Collapse
Affiliation(s)
- Robert Gasperini
- School of Medicine, University of Tasmania, Hobart, 7001, Tasmania, Australia.
| | | | | | | | | |
Collapse
|