1
|
Eom S, Pyeon M, Moon M, Yun J, Yang J, Yun J, Yeom HD, Lee MH, Lee G, Lee JH. Molecular investigation of ergot alkaloid ergotamine's modulatory effects on glycine receptors expressed in Xenopus oocytes. Comput Struct Biotechnol J 2025; 27:1148-1157. [PMID: 40206345 PMCID: PMC11981762 DOI: 10.1016/j.csbj.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
The relationship between oxidative stress and glycine receptors is complex, involving multiple mechanisms through which reactive oxygen species can modify glycine receptor function. Understanding these interactions is essential for developing therapeutic strategies to mitigate the effects of oxidative stress on inhibitory neurotransmission in various neurological disorders. Inhibitory glycine receptors play a critical role in regulating the final grand postsynaptic potential by attenuating excitatory postsynaptic potentials through inhibitory postsynaptic potentials in postsynaptic neurons. This is particularly important in rapid signal transmission systems, where it determines whether the grand postsynaptic potential exceeds the activation threshold. Glycine receptors are known to be expressed not only in the spinal cord and brainstem but also in the hippocampus, as evidenced by studies conducted over the past decade. Interestingly, these regions share a common cellular architecture, predominantly composed of pyramidal neurons. In hippocampal pyramidal neurons, glycine receptors contribute to the regulation of synapse formation and plasticity, and they are crucial in motor neuron control within the pyramidal tract. However, there is limited research on glycine receptor antagonism, which is necessary to fully understand their biological functions in these regions. We conducted a comprehensive molecular-level analysis of the pharmacological properties of glycine receptors, examined their interaction mechanisms through electrophysiological studies, and identified binding sites using structural modeling and site-directed mutagenesis. Our findings suggest that ergotamine may serve as a promising antioxidant candidate to address issues associated with excessive or prolonged inhibitory postsynaptic potentials, offering a potential new therapeutic pathway.
Collapse
Affiliation(s)
- Sanung Eom
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, South Korea
| | - Minsu Pyeon
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, South Korea
| | - Myungmi Moon
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, South Korea
| | - Jeongyeon Yun
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, South Korea
| | - Jaehui Yang
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, South Korea
| | - Jihwon Yun
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, South Korea
| | | | - Mee-Hyun Lee
- Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, South Korea
| | - Gihyun Lee
- Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, South Korea
| | - Junho H. Lee
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
2
|
Lara CO, Burgos CF, Fariña-Oliva K, Marileo AM, Martín VPS, Flaig D, Soto-Ortega P, Contreras OV, Sazo A, Gaete-Riquelme K, Corradi J, Muñoz-Montesino C, Fuentealba J, Castro PA, Aguayo LG, Bouzat C, Moraga-Cid G, Yévenes GE. Allosteric modulation and direct activation of glycine receptors by a tricyclic sulfonamide. Sci Rep 2025; 15:5515. [PMID: 39953280 PMCID: PMC11828983 DOI: 10.1038/s41598-025-90209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Ionotropic glycine receptors (GlyRs) are chloride-permeable ligand-gated ion channels expressed in the nervous system. Alterations to glycinergic inhibition and the generation of dysfunctional GlyRs have been linked to chronic pain, a widely prevalent disease. Positive allosteric modulators (PAMs) targeting GlyRs exerted analgesic effects, motivating research on glycinergic PAMs as potential pain therapies. Rationally designed tricyclic sulfonamides are novel glycinergic PAMs with analgesic activity. However, detailed electrophysiological studies on these PAMs are still limited, and the GlyR binding site structural data has not been yet validated by mutational studies. Here, we combined electrophysiology and bioinformatics to systematically study the AM-1488 actions, a prototypical tricyclic sulfonamide, on recombinant GlyRs. We determined that AM-1488 is a potent, non-selective PAM of mammalian GlyR subtypes. In addition, the compound displayed agonistic activity, with partial preference for α1GlyRs. Single channel assays revealed that the compound increased the channel open probability without changing conductance. Mutational analyses on the tricyclic sulfonamide site confirm the molecular determinants contributing to functional activity. Our findings further define the mechanistic framework underlying the GlyR modulation by this PAM class, suggesting that further structure-driven exploration within the tricyclic sulfonamide site may originate novel glycinergic modulators for future development.
Collapse
Affiliation(s)
- César O Lara
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Carlos F Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Katherine Fariña-Oliva
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Ana M Marileo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Victoria P San Martín
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - David Flaig
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Paul Soto-Ortega
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Omayra V Contreras
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Krishna Gaete-Riquelme
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Jeremías Corradi
- Departament of Biology, Biochemistry and Pharmacy, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Carola Muñoz-Montesino
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Patricio A Castro
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Luis G Aguayo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Cecilia Bouzat
- Departament of Biology, Biochemistry and Pharmacy, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile.
| | - Gonzalo E Yévenes
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile.
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile.
| |
Collapse
|
3
|
Yan J, Chen L, Warshel A, Bai C. Exploring the Activation Process of the Glycine Receptor. J Am Chem Soc 2024; 146:26297-26312. [PMID: 39279763 DOI: 10.1021/jacs.4c08489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Glycine receptors (GlyR) conduct inhibitory glycinergic neurotransmission in the spinal cord and the brainstem. They play an important role in muscle tone, motor coordination, respiration, and pain perception. However, the mechanism underlying GlyR activation remains unclear. There are five potential glycine binding sites in α1 GlyR, and different binding patterns may cause distinct activation or desensitization behaviors. In this study, we investigated the coupling of protein conformational changes and glycine binding events to elucidate the influence of binding patterns on the activation and desensitization processes of α1 GlyRs. Subsequently, we explored the energetic distinctions between the apical and lateral pathways during α1 GlyR conduction to identify the pivotal factors in the ion conduction pathway preference. Moreover, we predicted the mutational effects of the key residues and verified our predictions using electrophysiological experiments. For the mutants that can be activated by glycine, the predictions of the mutational directions were all correct. The strength of the mutational effects was assessed using Pearson's correlation coefficient, yielding a value of -0.77 between the calculated highest energy barriers and experimental maximum current amplitudes. These findings contribute to our understanding of GlyR activation, identify the key residues of GlyRs, and provide guidance for mechanistic studies on other pLGICs.
Collapse
Affiliation(s)
- Junfang Yan
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
4
|
Schirmeyer J, Eick T, Schulz E, Hummert S, Sattler C, Schmauder R, Benndorf K. Subunit promotion energies for channel opening in heterotetrameric olfactory CNG channels. PLoS Comput Biol 2022; 18:e1010376. [PMID: 35998156 PMCID: PMC9512249 DOI: 10.1371/journal.pcbi.1010376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/26/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels of olfactory sensory neurons contain three types of homologue subunits, two CNGA2 subunits, one CNGA4 subunit and one CNGB1b subunit. Each subunit carries an intracellular cyclic nucleotide binding domain (CNBD) whose occupation by up to four cyclic nucleotides evokes channel activation. Thereby, the subunits interact in a cooperative fashion. Here we studied 16 concatamers with systematically disabled, but still functional, binding sites and quantified channel activation by systems of intimately coupled state models transferred to 4D hypercubes, thereby exploiting a weak voltage dependence of the channels. We provide the complete landscape of free energies for the complex activation process of heterotetrameric channels, including 32 binding steps, in both the closed and open channel, as well as 16 closed-open isomerizations. The binding steps are specific for the subunits and show pronounced positive cooperativity for the binding of the second and the third ligand. The energetics of the closed-open isomerizations were disassembled to elementary subunit promotion energies for channel opening, ΔΔGfpn, adding to the free energy of the closed-open isomerization of the empty channel, E0. The ΔΔGfpn values are specific for the four subunits and presumably invariant for the specific patterns of liganding. In conclusion, subunit cooperativity is confined to the CNBD whereas the subunit promotion energies for channel opening are independent. Olfactory sensory neurons (OSNs) in the nose transmit the information of odor molecules to electrical signals that are conducted to central parts of the brain. Olfactory cyclic nucleotide-gated (CNG) ion channels, located in the cell membrane of the OSNs, are relevant proteins in this process. These olfactory CNG channels are formed by three types of homologue subunits and each of these subunits contains a cyclic nucleotide binding domain (CNBD). A channel is activated by the binding of up to four cyclic nucleotides. The process of channel activation is only poorly understood. Herein we analyzed this activation process in great detail by concatenating these four subunits, disabling the CNBDs by mutations and performing extended computational fit analyses providing all 32 constants for the different binding steps at different degrees of liganding and, in addition, elementary subunit promotion energies for channel opening for all subunits. Our data suggest that subunit cooperativity is confined to the action of the CNBD.
Collapse
Affiliation(s)
- Jana Schirmeyer
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Eick
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Eckhard Schulz
- Schmalkalden University of Applied Sciences, Faculty of Electrical Engineering, Blechhammer, Schmalkalden, Germany
| | - Sabine Hummert
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Schmalkalden University of Applied Sciences, Faculty of Electrical Engineering, Blechhammer, Schmalkalden, Germany
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
5
|
Ivica J, Lape R, Sivilotti LG. Acidic pH reduces agonist efficacy and responses to synaptic-like glycine applications in zebrafish α1 and rat α1β recombinant glycine receptors. J Physiol 2022; 600:333-347. [PMID: 34802146 PMCID: PMC8836455 DOI: 10.1113/jp282171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/16/2021] [Indexed: 11/12/2022] Open
Abstract
Many pentameric ligand-gated ion channels are modulated by extracellular pH. Glycine receptors (GlyRs) share this property, but it is not well understood how they are affected by pH changes. Whole cell experiments on HEK293 cells expressing zebrafish homomeric α1 GlyR confirmed previous reports that acidic pH (6.4) reduces GlyR sensitivity to glycine, whereas alkaline pH (8.4) has small or negligible effects. In addition to that, at pH 6.4 we observed a reduction in the maximum responses to the partial agonists β-alanine and taurine relative to the full agonist glycine. In cell-attached single-channel recording, low pH reduced agonist efficacy, as the maximum open probability decreased from 0.97, 0.91 and 0.66 to 0.93, 0.57 and 0.34 for glycine, β-alanine and taurine, respectively, reflecting a threefold decrease in efficacy equilibrium constants for all three agonists. We also tested the effect of pH 6.4 in conditions that replicate those at the native synapse, recording outside-out currents elicited by fast application of millisecond pulses of agonists on α1 and α1β GlyR, at a range of intracellular chloride concentrations. Acidic pH reduced the area under the curve of the currents, by reducing peak amplitude, slowing activation and speeding deactivation. Our results show that acidification of the extracellular pH by one unit, as may occur in pathological conditions such as ischaemia, impairs GlyR gating and is likely to reduce the effectiveness of glycinergic synaptic inhibition. KEY POINTS: Extracellular pH in the central nervous system (CNS) is known to shift towards acidic values during pathophysiological conditions such as ischaemia and seizures. Acidic extracellular pH is known to affect GABAergic inhibitory synapses, but its effect on signals mediated by glycine receptors (GlyR) is not well characterised. Moderate acidic conditions (pH 6.4) reduce the maximum single channel open probability of recombinant homomeric GlyRs produced by the neurotransmitter glycine or other agonists, such as β-alanine and taurine. When glycine was applied with a piezoelectric stepper to outside out patches, to simulate its fast rise and short duration at the synapse, responses became shorter and smaller at pH 6.4. The effect was also observed with physiologically low intracellular chloride and in mammalian heteromeric GlyRs. This suggests that acidic pH is likely to reduce the strength of inhibitory signalling at glycinergic synapses.
Collapse
Affiliation(s)
- Josip Ivica
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Remigijus Lape
- Neurobiology Department, MRC Laboratory of Molecular Biology Cambridge Biomedical Campus Francis Crick Avenue, Cambridge, UK
| | - Lucia G Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
6
|
Thermodynamic profile of mutual subunit control in a heteromeric receptor. Proc Natl Acad Sci U S A 2021; 118:2100469118. [PMID: 34301910 PMCID: PMC8325370 DOI: 10.1073/pnas.2100469118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels of olfactory neurons are tetrameric membrane receptors that are composed of two A2 subunits, one A4 subunit, and one B1b subunit. Each subunit carries a cyclic nucleotide-binding domain in the carboxyl terminus, and the channels are activated by the binding of cyclic nucleotides. The mechanism of cooperative channel activation is still elusive. Using a complete set of engineered concatenated olfactory CNG channels, with all combinations of disabled binding sites and fit analyses with systems of allosteric models, the thermodynamics of microscopic cooperativity for ligand binding was subunit- and state-specifically quantified. We show, for the closed channel, that preoccupation of each of the single subunits increases the affinity of each other subunit with a Gibbs free energy (ΔΔG) of ∼-3.5 to ∼-5.5 kJ ⋅ mol-1, depending on the subunit type, with the only exception that a preoccupied opposite A2 subunit has no effect on the other A2 subunit. Preoccupation of two neighbor subunits of a given subunit causes the maximum affinity increase with ΔΔG of ∼-9.6 to ∼-9.9 kJ ⋅ mol-1 Surprisingly, triple preoccupation leads to fewer negative ΔΔG values for a given subunit as compared to double preoccupation. Channel opening increases the affinity of all subunits. The equilibrium constants of closed-open isomerizations systematically increase with progressive liganding. This work demonstrates, on the example of the heterotetrameric olfactory CNG channel, a strategy to derive detailed insights into the specific mutual control of the individual subunits in a multisubunit membrane receptor.
Collapse
|
7
|
Ivica J, Lape R, Jazbec V, Yu J, Zhu H, Gouaux E, Gold MG, Sivilotti LG. The intracellular domain of homomeric glycine receptors modulates agonist efficacy. J Biol Chem 2021; 296:100387. [PMID: 33617876 PMCID: PMC7995613 DOI: 10.1074/jbc.ra119.012358] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Indexed: 11/20/2022] Open
Abstract
Like other pentameric ligand-gated channels, glycine receptors (GlyRs) contain long intracellular domains (ICDs) between transmembrane helices 3 and 4. Structurally characterized GlyRs are generally engineered to have a very short ICD. We show here that for one such construct, zebrafish GlyREM, the agonists glycine, β-alanine, taurine, and GABA have high efficacy and produce maximum single-channel open probabilities greater than 0.9. In contrast, for full-length human α1 GlyR, taurine and GABA were clearly partial agonists, with maximum open probabilities of 0.46 and 0.09, respectively. We found that the elevated open probabilities in GlyREM are not due to the limited sequence differences between the human and zebrafish orthologs, but rather to replacement of the native ICD with a short tripeptide ICD. Consistent with this interpretation, shortening the ICD in the human GlyR increased the maximum open probability produced by taurine and GABA to 0.90 and 0.70, respectively, but further engineering it to resemble GlyREM (by introducing the zebrafish transmembrane helix 4 and C terminus) had no effect. Furthermore, reinstating the native ICD to GlyREM converted taurine and GABA to partial agonists, with maximum open probabilities of 0.66 and 0.40, respectively. Structural comparison of transmembrane helices 3 and 4 in short- and long-ICD GlyR subunits revealed that ICD shortening does not distort the orientation of these helices within each subunit. This suggests that the effects of shortening the ICD stem from removing a modulatory effect of the native ICD on GlyR gating, revealing a new role for the ICD in pentameric ligand-gated channels.
Collapse
Key Words
- 5-ht3, 5-hydroxytryptamine type 3
- dmem, dulbecco’s modified eagle’s medium
- ecd, extracellular domain
- glyr, glycine receptor
- icd, intracellular domain
- popen, open probability
- pdb, protein data bank
- plgic, pentameric ligand-gated ion channels
- tm, transmembrane
- zf, zebrafish
Collapse
Affiliation(s)
- Josip Ivica
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jie Yu
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Hongtao Zhu
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Eric Gouaux
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Lucia G Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
8
|
Tian Y, Chen S, Shan Q. Charged residues at the pore extracellular half of the glycine receptor facilitate channel gating: a potential role played by electrostatic repulsion. J Physiol 2020; 598:4643-4661. [PMID: 32844405 DOI: 10.1113/jp279288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS The Arg271Gln mutation of the glycine receptor (GlyR) causes hereditary hyperekplexia. This mutation dramatically compromises GlyR function; however, the underlying mechanism is not yet known. This study, by employing function and computation methods, proposes that charged residues (including the Arg residue) at the pore extracellular half from each of the five subunits of the homomeric α1 GlyR, create an electrostatic repulsive potential to widen the pore, thereby facilitating channel opening. This mechanism explains how the Arg271Gln mutation, in which the positively charged Arg residue is substituted by the neutral Gln residue, compromises GlyR function. This study furthers our understanding of the biophysical mechanism underlying the Arg271Gln mutation compromising GlyR function. ABSTRACT The R271(19')Q mutation in the α1 subunit of the glycine receptor (GlyR) chloride channel causes hereditary hyperekplexia. This mutation dramatically compromises channel function; however, the underlying mechanism is not yet known. The R271 residue is located at the extracellular half of the channel pore. In this study, an Arg-scanning mutagenesis was performed at the pore extracellular half from the 262(10') to the 272(20') position on the background of the α1 GlyR carrying the hyperekplexia-causing mutation R271(19')Q. It was found that the placement of the Arg residue rescued channel function to an extent inversely correlated with the distance between the residue and the pore central axis (perpendicular to the plane of the lipid bilayer). Accordingly, it was hypothesized that the placed Arg residues from each of the five subunits of the homomeric α1 GlyR create an electrostatic repulsive potential to widen the pore, thereby facilitating channel opening. This hypothesis was quantitatively verified by theoretical computation via exploiting basic laws of electrostatics and thermodynamics, and further supported by more experimental findings that the placement of another positively charged Lys residue or even a negatively charged Asp residue also rescued channel function in the same manner. This study provides a novel mechanism via which charged residues in the pore region facilitate channel gating, not only for the disease-causing 19'R residue in the GlyR, but also potentially for charged residues in the same region of other ion channels.
Collapse
Affiliation(s)
- Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin, 300071, China
| | - Shijie Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
9
|
Wu Z, Lape R, Jopp-Saile L, O'Callaghan BJ, Greiner T, Sivilotti LG. The startle disease mutation α1S270T predicts shortening of glycinergic synaptic currents. J Physiol 2020; 598:3417-3438. [PMID: 32445491 PMCID: PMC7649747 DOI: 10.1113/jp279803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/19/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Loss-of-function mutations in proteins found at glycinergic synapses, most commonly in the α1 subunit of the glycine receptor (GlyR), cause the startle disease/hyperekplexia channelopathy in man. It was recently proposed that the receptors responsible are presynaptic homomeric GlyRs, rather than postsynaptic heteromeric GlyRs (which mediate glycinergic synaptic transmission), because heteromeric GlyRs are less affected by many startle mutations than homomers. We examined the α1 startle mutation S270T, at the extracellular end of the M2 transmembrane helix. Recombinant heteromeric GlyRs were less impaired than homomers by this mutation when we measured their response to equilibrium applications of glycine. However, currents elicited by synaptic-like millisecond applications of glycine to outside-out patches were much shorter (7- to 10-fold) in all mutant receptors, both homomeric and heteromeric. Thus, the synaptic function of heteromeric receptors is likely to be impaired by the mutation. ABSTRACT Human startle disease is caused by mutations in glycine receptor (GlyR) subunits or in other proteins associated with glycinergic synapses. Many startle mutations are known, but it is hard to correlate the degree of impairment at molecular level with the severity of symptoms in patients. It was recently proposed that the disease is caused by disruption in the function of presynaptic homomeric GlyRs (rather than postsynaptic heteromeric GlyRs), because homomeric GlyRs are more sensitive to loss-of-function mutations than heteromers. Our patch-clamp recordings from heterologously expressed GlyRs characterised in detail the functional consequences of the α1S270T startle mutation, which is located at the extracellular end of the pore lining M2 transmembrane segment (18'). This mutation profoundly decreased the maximum single-channel open probability of homomeric GlyRs (to 0.16; cf. 0.99 for wild type) but reduced only marginally that of heteromeric GlyRs (0.96; cf. 0.99 for wild type). However, both heteromeric and homomeric mutant GlyRs became less sensitive to the neurotransmitter glycine. Responses evoked by brief, quasi-synaptic pulses of glycine onto outside-out patches were impaired in mutant receptors, as deactivation was approximately 10- and 7-fold faster for homomeric and heteromeric GlyRs, respectively. Our data suggest that the α1S270T mutation is likely to affect the opening step in GlyR activation. The faster decay of synaptic currents mediated by mutant heteromeric GlyRs is expected to reduce charge transfer at the synapse, despite the high equilibrium open probability of these mutant channels.
Collapse
Affiliation(s)
- Zhiyi Wu
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lea Jopp-Saile
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Benjamin J O'Callaghan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Timo Greiner
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lucia G Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
10
|
McLaughlin C, Clements J, Oprişoreanu AM, Sylantyev S. The role of tonic glycinergic conductance in cerebellar granule cell signalling and the effect of gain-of-function mutation. J Physiol 2019; 597:2457-2481. [PMID: 30875431 DOI: 10.1113/jp277626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/14/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS A T258F mutation of the glycine receptor increases the receptor affinity to endogenous agonists, modifies single-channel conductance and shapes response decay kinetics. Glycine receptors of cerebellar granule cells play their functional role not continuously, but when the granule cell layer starts receiving a high amount of excitatory inputs. Despite their relative scarcity, tonically active glycine receptors of cerebellar granule cells make a significant impact on action potential generation and inter-neuronal crosstalk, and modulate synaptic plasticity in neural networks; extracellular glycine increases probability of postsynaptic response occurrence acting at NMDA receptors and decreases this probability acting at glycine receptors. Tonic conductance through glycine receptors of cerebellar granule cells is a yet undiscovered element of the biphasic mechanism that regulates processing of sensory inputs in the cerebellum. A T258F point mutation disrupts this biphasic mechanism, thus illustrating the possible role of the gain-of-function mutations of the glycine receptor in development of neural pathologies. ABSTRACT Functional glycine receptors (GlyRs) have been repeatedly detected in cerebellar granule cells (CGCs), where they deliver exclusively tonic inhibitory signals. The functional role of this signalling, however, remains unclear. Apart from that, there is accumulating evidence of the important role of GlyRs in cerebellar structures in development of neural pathologies such as hyperekplexia, which can be triggered by GlyR gain-of-function mutations. In this research we initially tested functional properties of GlyRs, carrying the yet understudied T258F gain-of-function mutation, and found that this mutation makes significant modifications in GlyR response to endogenous agonists. Next, we clarified the role of tonic GlyR conductance in neuronal signalling generated by single CGCs and by neural networks in cell cultures and in living cerebellar tissue of C57Bl-6J mice. We found that GlyRs of CGCs deliver a significant amount of tonic inhibition not continuously, but when the cerebellar granule layer starts receiving substantial excitatory input. Under these conditions tonically active GlyRs become a part of neural signalling machinery allowing generation of action potential (AP) bursts of limited length in response to sensory-evoked signals. GlyRs of CGCs support a biphasic modulatory mechanism which enhances AP firing when excitatory input intensity is low, but suppresses it when excitatory input rises to a certain critical level. This enables one of the key functions of the CGC layer: formation of sensory representations and their translation into motor output. Finally, we have demonstrated that the T258F mutation in CGC GlyRs modifies single-cell and neural network signalling, and breaks a biphasic modulation of the AP-generating machinery.
Collapse
Affiliation(s)
- Catherine McLaughlin
- Gene Therapy Group, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - John Clements
- The John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| | - Ana-Maria Oprişoreanu
- Center for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Sergiy Sylantyev
- Center for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
11
|
Steinbach JH, Akk G. Applying the Monod-Wyman-Changeux Allosteric Activation Model to Pseudo-Steady-State Responses from GABA A Receptors. Mol Pharmacol 2019; 95:106-119. [PMID: 30333132 PMCID: PMC6277929 DOI: 10.1124/mol.118.113787] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
The Monod-Wyman-Changeux (MWC) cyclic model was described as a kinetic scheme to explain enzyme function and modulation more than 50 years ago and was proposed as a model for understanding the activation of transmitter-gated channels soon afterward. More recently, the MWC model has been used to describe the activation of the GABAA receptor by the transmitter, GABA, and drugs that bind to separate sites on the receptor. It is most interesting that the MWC formalism can also describe the interactions among drugs that activate the receptor. In this review, we describe properties of the MWC model that have been explored experimentally using the GABAA receptor, summarize analytical expressions for activation and interaction for drugs, and briefly review experimental results.
Collapse
Affiliation(s)
- Joe Henry Steinbach
- Department of Anesthesiology, and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology, and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Oakes V, Domene C. Capturing the Molecular Mechanism of Anesthetic Action by Simulation Methods. Chem Rev 2018; 119:5998-6014. [DOI: 10.1021/acs.chemrev.8b00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Victoria Oakes
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
13
|
Abstract
The precise mechanism by which propofol enhances GABAergic transmission remains unclear, but much progress has been made regarding the underlying structural and dynamic mechanisms. Furthermore, it is now clear that propofol has additional molecular targets, many of which are functionally influenced at concentrations achieved clinically. Focusing primarily on molecular targets, this brief review attempts to summarize some of this recent progress while pointing out knowledge gaps and controversies. It is not intended to be comprehensive but rather to stimulate further thought, discussion, and study on the mechanisms by which propofol produces its pleiotropic effects.
Collapse
Affiliation(s)
- Pei Tang
- Department of Anesthesiology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Roderic Eckenhoff
- Department of Anesthesiology & Critical Care, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
14
|
Kisiel M, Jatczak M, Brodzki M, Mozrzymas JW. Spontaneous activity, singly bound states and the impact of alpha 1Phe64 mutation on GABA AR gating in the novel kinetic model based on the single-channel recordings. Neuropharmacology 2017; 131:453-474. [PMID: 29162430 DOI: 10.1016/j.neuropharm.2017.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/25/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022]
Abstract
GABAA receptor is the primary mediator of inhibition in the adult mammalian brain. Our recent studies revealed that a classic gating scheme for GABAAR needed to be updated with an intermediate step (flipping) and that the α1Phe64 mutation at the GABA binding site affects this transition. However, description of flipping at the single-channel level remains incomplete. In particular, its role in singly-bound and spontaneous activity remains unknown. We have performed thus single-channel recordings over wide range of agonist concentration for wild-type α1β2γ2L receptors and α1Phe64 mutants. For WT receptors we observed relatively frequent brief spontaneous openings which were also present at low [GABA]. However, closed times distributions for spontaneous activity and at low [GABA] were clearly different indicating that a proportion of short-lived openings were due to liganded, most likely singly bound receptors. Increasing [GABA] resulted in prolongation of bursts and increased occurrence of bursts with long openings and short closures. Mutations of α1Phe64 residue dramatically affected the open and closed time distributions at high and saturating [GABA], especially in the case of cysteine mutants. However, this mutation weakly affected spontaneous or singly bound activity. Model fitting of our single-channel data led us to propose a novel and, to our knowledge, most complete GABAAR kinetic model in which flipping occurs in singly and doubly bound states. However, spontaneous activity did not reveal involvement of flipping. Moreover, we report that α1Phe64 mutation affects not only the flipping but also the opening/closing transitions indicating its generalized impact on the receptor gating.
Collapse
Affiliation(s)
- Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| | - Magdalena Jatczak
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland; Department of Physiology and Molecular Neurobiology, Wrocław University, Wrocław 50-335, Poland
| | - Marek Brodzki
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland; Department of Physiology and Molecular Neurobiology, Wrocław University, Wrocław 50-335, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| |
Collapse
|
15
|
Gonzalez-Gutierrez G, Wang Y, Cymes GD, Tajkhorshid E, Grosman C. Chasing the open-state structure of pentameric ligand-gated ion channels. J Gen Physiol 2017; 149:1119-1138. [PMID: 29089419 PMCID: PMC5715906 DOI: 10.1085/jgp.201711803] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/14/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Members of the pentameric ligand-gated ion channel family have been crystallized in different conformations, including one in which the transmembrane pore is surprisingly wide. Gonzalez-Gutierrez et al. show that the open-channel conformation of animal members is more similar to the models with narrow pores. Remarkable advances have been made toward the structural characterization of ion channels in the last two decades. However, the unambiguous assignment of well-defined functional states to the obtained structural models has proved challenging. In the case of the superfamily of nicotinic-receptor channels (also referred to as pentameric ligand-gated ion channels [pLGICs]), for example, two different types of model of the open-channel conformation have been proposed on the basis of structures solved to resolutions better than 4.0 Å. At the level of the transmembrane pore, the open-state models of the proton-gated pLGIC from Gloeobacter violaceus (GLIC) and the invertebrate glutamate-gated Cl– channel (GluCl) are very similar to each other, but that of the glycine receptor (GlyR) is considerably wider. Indeed, the mean distances between the axis of ion permeation and the Cα atoms at the narrowest constriction of the pore (position −2′) differ by ∼2 Å in these two classes of model, a large difference when it comes to understanding the physicochemical bases of ion conduction and charge selectivity. Here, we take advantage of the extreme open-channel stabilizing effect of mutations at pore-facing position 9′. We find that the I9′A mutation slows down entry into desensitization of GLIC to the extent that macroscopic currents decay only slightly by the end of pH 4.5 solution applications to the extracellular side for several minutes. We crystallize (at pH 4.5) two variants of GLIC carrying this mutation and solve their structures to resolutions of 3.12 Å and 3.36 Å. Furthermore, we perform all-atom molecular dynamics simulations of ion permeation and picrotoxinin block, using the different open-channel structural models. On the basis of these results, we favor the notion that the open-channel structure of pLGICs from animals is much closer to that of the narrow models (of GLIC and GluCl) than it is to that of the GlyR.
Collapse
Affiliation(s)
| | - Yuhang Wang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Gisela D Cymes
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Claudio Grosman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL .,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
16
|
Ion BF, Wells MM, Chen Q, Xu Y, Tang P. Ketamine Inhibition of the Pentameric Ligand-Gated Ion Channel GLIC. Biophys J 2017; 113:605-612. [PMID: 28793215 DOI: 10.1016/j.bpj.2017.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022] Open
Abstract
Ketamine inhibits pentameric ligand-gated ion channels (pLGICs), including the bacterial pLGIC from Gloeobacter violaceus (GLIC). The crystal structure of GLIC shows R-ketamine bound to an extracellular intersubunit cavity. Here, we performed molecular dynamics simulations of GLIC in the absence and presence of R- or S-ketamine. No stable binding of S-ketamine in the original cavity was observed in the simulations, largely due to its unfavorable access to residue D154, which provides important electrostatic interactions to stabilize R-ketamine binding. Contrary to the symmetric binding shown in the crystal structure, R-ketamine moved away from some of the binding sites and was bound to GLIC asymmetrically at the end of simulations. The asymmetric binding is consistent with the experimentally measured negative cooperativity of ketamine binding to GLIC. In the presence of R-ketamine, all subunits showed changes in structure and dynamics, irrespective of binding stability; the extracellular intersubunit cavity expanded and intersubunit electrostatic interactions involved in channel activation were altered. R-ketamine binding promoted a conformational shift toward closed GLIC. Conformational changes near the ketamine-binding site were propagated to the interface between the extracellular and transmembrane domains, and further to the pore-lining TM2 through two pathways: pre-TM1 and the β1-β2 loop. Both signaling pathways have been predicted previously using the perturbation-based Markovian transmission model. The study provides a structural and dynamics basis for the inhibitory modulation of ketamine on pLGICs.
Collapse
Affiliation(s)
- Bogdan F Ion
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marta M Wells
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qiang Chen
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yan Xu
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pei Tang
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
17
|
Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Nat Struct Mol Biol 2017; 23:494-502. [PMID: 27273633 DOI: 10.1038/nsmb.3214] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
Abstract
Ion channels gated by neurotransmitters are present across metazoans, in which they are essential for brain function, sensation and locomotion; closely related homologs are also found in bacteria. Structures of eukaryotic pentameric cysteine-loop (Cys-loop) receptors and tetrameric ionotropic glutamate receptors in multiple functional states have recently become available. Here, I describe how these studies relate to established ideas regarding receptor activation and how they have enabled decades' worth of functional work to be pieced together, thus allowing previously puzzling aspects of receptor activity to be understood.
Collapse
|
18
|
Arcario MJ, Mayne CG, Tajkhorshid E. A membrane-embedded pathway delivers general anesthetics to two interacting binding sites in the Gloeobacter violaceus ion channel. J Biol Chem 2017; 292:9480-9492. [PMID: 28420728 PMCID: PMC5465477 DOI: 10.1074/jbc.m117.780197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Indexed: 12/30/2022] Open
Abstract
General anesthetics exert their effects on the central nervous system by acting on ion channels, most notably pentameric ligand-gated ion channels. Although numerous studies have focused on pentameric ligand-gated ion channels, the details of anesthetic binding and channel modulation are still debated. A better understanding of the anesthetic mechanism of action is necessary for the development of safer and more efficacious drugs. Herein, we present a computational study identifying two anesthetic binding sites in the transmembrane domain of the Gloeobacter violaceus ligand-gated ion channel (GLIC) channel, characterize the putative binding pathway, and observe structural changes associated with channel function. Molecular simulations of desflurane reveal a binding pathway to GLIC via a membrane-embedded tunnel using an intrasubunit protein lumen as the conduit, an observation that explains the Meyer-Overton hypothesis, or why the lipophilicity of an anesthetic and its potency are generally proportional. Moreover, employing high concentrations of ligand led to the identification of a second transmembrane site (TM2) that inhibits dissociation of anesthetic from the TM1 site and is consistent with the high concentrations of anesthetics required to achieve clinical effects. Finally, asymmetric binding patterns of anesthetic to the channel were found to promote an iris-like conformational change that constricts and dehydrates the ion pore, creating a 13.5 kcal/mol barrier to ion translocation. Together with previous studies, the simulations presented herein demonstrate a novel anesthetic binding site in GLIC that is accessed through a membrane-embedded tunnel and interacts with a previously known site, resulting in conformational changes that produce a non-conductive state of the channel.
Collapse
Affiliation(s)
- Mark J Arcario
- From the Center for Biophysics and Quantitative Biology.,Department of Biochemistry, College of Medicine, and.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Christopher G Mayne
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Emad Tajkhorshid
- From the Center for Biophysics and Quantitative Biology, .,Department of Biochemistry, College of Medicine, and.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
19
|
Safar F, Hurdiss E, Erotocritou M, Greiner T, Lape R, Irvine MW, Fang G, Jane D, Yu R, Dämgen MA, Biggin PC, Sivilotti LG. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site. J Biol Chem 2017; 292:5031-5042. [PMID: 28174298 PMCID: PMC5377815 DOI: 10.1074/jbc.m116.767616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules.
Collapse
Affiliation(s)
- Fatemah Safar
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Elliot Hurdiss
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Marios Erotocritou
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Timo Greiner
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Remigijus Lape
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Mark W Irvine
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - Guangyu Fang
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - David Jane
- the School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom, and
| | - Rilei Yu
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.,the Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Marc A Dämgen
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Philip C Biggin
- the Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Lucia G Sivilotti
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
20
|
Pandhare A, Pappu AS, Wilms H, Blanton MP, Jansen M. The antidepressant bupropion is a negative allosteric modulator of serotonin type 3A receptors. Neuropharmacology 2016; 113:89-99. [PMID: 27671323 DOI: 10.1016/j.neuropharm.2016.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 11/27/2022]
Abstract
The FDA-approved antidepressant and smoking cessation drug bupropion is known to inhibit dopamine and norepinephrine reuptake transporters, as well as nicotinic acetylcholine receptors (nAChRs) which are cation-conducting members of the Cys-loop superfamily of ion channels, and more broadly pentameric ligand-gated ion channels (pLGICs). In the present study, we examined the ability of bupropion and its primary metabolite hydroxybupropion to block the function of cation-selective serotonin type 3A receptors (5-HT3ARs), and further characterized bupropion's pharmacological effects at these receptors. Mouse 5-HT3ARs were heterologously expressed in HEK-293 cells or Xenopus laevis oocytes for equilibrium binding studies. In addition, the latter expression system was utilized for functional studies by employing two-electrode voltage-clamp recordings. Both bupropion and hydroxybupropion inhibited serotonin-gated currents from 5-HT3ARs reversibly and dose-dependently with inhibitory potencies of 87 μM and 112 μM, respectively. Notably, the measured IC50 value for hydroxybupropion is within its therapeutically-relevant concentrations. The blockade by bupropion was largely non-competitive and non-use-dependent. Unlike its modulation at cation-selective pLGICs, bupropion displayed no significant inhibition of the function of anion-selective pLGICs. In summary, our results demonstrate allosteric blockade by bupropion of the 5-HT3AR. Importantly, given the possibility that bupropion's major active metabolite may achieve clinically relevant concentrations in the brain, our novel findings delineate a not yet identified pharmacological principle underlying its antidepressant effect.
Collapse
Affiliation(s)
- Akash Pandhare
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Aneesh Satya Pappu
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; The Clark Scholar Program, Texas Tech University, Lubbock, TX 79409, USA.
| | - Henrik Wilms
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Michael Paul Blanton
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
21
|
Labonne JDJ, Graves TD, Shen Y, Jones JR, Kong IK, Layman LC, Kim HG. A microdeletion at Xq22.2 implicates a glycine receptor GLRA4 involved in intellectual disability, behavioral problems and craniofacial anomalies. BMC Neurol 2016; 16:132. [PMID: 27506666 PMCID: PMC4979147 DOI: 10.1186/s12883-016-0642-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 12/03/2022] Open
Abstract
Background Among the 21 annotated genes at Xq22.2, PLP1 is the only known gene involved in Xq22.2 microdeletion and microduplication syndromes with intellectual disability. Using an atypical microdeletion, which does not encompass PLP1, we implicate a novel gene GLRA4 involved in intellectual disability, behavioral problems and craniofacial anomalies. Case presentation We report a female patient (DGDP084) with a de novo Xq22.2 microdeletion of at least 110 kb presenting with intellectual disability, motor delay, behavioral problems and craniofacial anomalies. While her phenotypic features such as cognitive impairment and motor delay show overlap with Pelizaeus-Merzbacher disease (PMD) caused by PLP1 mutations at Xq22.2, this gene is not included in our patient’s microdeletion and is not dysregulated by a position effect. Because the microdeletion encompasses only three genes, GLRA4, MORF4L2 and TCEAL1, we investigated their expression levels in various tissues by RT-qPCR and found that all three genes were highly expressed in whole human brain, fetal brain, cerebellum and hippocampus. When we examined the transcript levels of GLRA4, MORF4L2 as well as TCEAL1 in DGDP084′s family, however, only GLRA4 transcripts were reduced in the female patient compared to her healthy mother. This suggests that GLRA4 is the plausible candidate gene for cognitive impairment, behavioral problems and craniofacial anomalies observed in DGDP084. Importantly, glycine receptors mediate inhibitory synaptic transmission in the brain stem as well as the spinal cord, and are known to be involved in syndromic intellectual disability. Conclusion We hypothesize that GLRA4 is involved in intellectual disability, behavioral problems and craniofacial anomalies as the second gene identified for X-linked syndromic intellectual disability at Xq22.2. Additional point mutations or intragenic deletions of GLRA4 as well as functional studies are needed to further validate our hypothesis. Electronic supplementary material The online version of this article (doi:10.1186/s12883-016-0642-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan D J Labonne
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Tyler D Graves
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yiping Shen
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do, South Korea
| | - Lawrence C Layman
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.,Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Hyung-Goo Kim
- Department of Obstetrics & Gynecology, Section of Reproductive Endocrinology, Infertility & Genetics, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
22
|
Plested AJR, Baranovic J. Single-Channel Recording of Glycine Receptors in Human Embryonic Kidney (HEK) Cells. Cold Spring Harb Protoc 2016; 2016:2016/8/pdb.prot091652. [PMID: 27480721 DOI: 10.1101/pdb.prot091652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This protocol describes how to record the single-channel activity of recombinant homomeric glycine receptors expressed in human embryonic kidney (HEK) cells. Cell-attached recordings readily reveal the large conductance (90 pS) and distinctive clusters of activations at high glycine concentration. This method for obtaining equilibrium recordings can be adapted to any ion channel receptor. The necessary extensions to outside-out patch for nonequilibrium recordings are also described, as are basic analyses of channel properties and activity.
Collapse
Affiliation(s)
- Andrew J R Plested
- Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jelena Baranovic
- Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
23
|
Computer Simulator of Glycine Receptor Activity: A New Window into a Virtual World. Bull Math Biol 2016; 78:1380-93. [PMID: 27412156 DOI: 10.1007/s11538-016-0183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
Our study reports computer software that simulates the work of a single glycine receptor (GlyR). GlyRs have been found in various types of tissues, but their most important role seems to be in neurons, where they hyperpolarise membranes by opening chloride transmembrane channels. The software is based on a combination of two blocks. One block describes the Brownian dynamics of charged particle motion in a dielectric medium, and the other block determines the probability and timing of receptor activation. Using this software, the voltage-current dependencies and time curves of the transmembrane current were obtained. The mean value of the simulated anion current (4.5 ± 0.3 pA) is in good agreement with measured values under identical conditions ([Formula: see text] pA). It was shown that there is a condition under which the GlyR anion channel remains active despite a negligible chloride gradient. Virtual experiments allow evaluation of the value of half maximal effective concentration (EC[Formula: see text]) of the GlyR ([Formula: see text] [Formula: see text]M) and confirm that this receptor activates according to a mechanism involving three ligand binding sites. The advantage of the model is the ability to adjust parameters to the precise demands of experimental researchers. Moreover, the introduced algorithm has low computational power demands; therefore, it can be used as a research tool for assistance with structural experiments and applied aspects of neurophysiology.
Collapse
|
24
|
Marabelli A, Lape R, Sivilotti L. Mechanism of activation of the prokaryotic channel ELIC by propylamine: a single-channel study. ACTA ACUST UNITED AC 2015; 145:23-45. [PMID: 25548135 PMCID: PMC4278187 DOI: 10.1085/jgp.201411234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist propylamine (0.5-50 mM) in outside-out patches at -60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic propylamine-activated currents elicited by fast theta-tube applications (50-600 ms, 1-50 mM, -100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the "Flip" model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The "Primed" model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was ∼ 102 (∼ 20 for α1β glycine channels). The microscopic affinity for the agonist increased as the channel activated, from 7 mM for the resting state to 0.15 mM for the partially activated intermediate state.
Collapse
Affiliation(s)
- Alessandro Marabelli
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| | - Lucia Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
25
|
Zhang Y, Dixon CL, Keramidas A, Lynch JW. Functional reconstitution of glycinergic synapses incorporating defined glycine receptor subunit combinations. Neuropharmacology 2015; 89:391-7. [DOI: 10.1016/j.neuropharm.2014.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/16/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
26
|
Muller E, Bakkar W, Martina M, Sokolovski A, Wong A, Legendre P, Bergeron R. Vesicular storage of glycine in glutamatergic terminals in mouse hippocampus. Neuroscience 2013; 242:110-27. [DOI: 10.1016/j.neuroscience.2013.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/06/2013] [Accepted: 03/10/2013] [Indexed: 11/15/2022]
|
27
|
Abstract
In a multimeric receptor protein, the binding of a ligand can modulate the binding of a succeeding ligand. This phenomenon, called cooperativity, is caused by the interaction of the receptor subunits. By using a complex Markovian model and a set of parameters determined previously, we analyzed how the successive binding of four ligands leads to a complex cooperative interaction of the subunits in homotetrameric HCN2 pacemaker channels. The individual steps in the model were characterized by Gibbs free energies for the equilibria and activation energies, specifying the affinity of the binding sites and the transition rates, respectively. Moreover, cooperative free energies were calculated for each binding step in both the closed and the open channel. We show that the cooperativity sequence positive-negative-positive determined for the binding affinity is generated by the combined effect of very different cooperativity sequences determined for the binding and unbinding rates, which are negative-negative-positive and no-negative-no, respectively. It is concluded that in the ligand-induced activation of HCN2 channels, the sequence of cooperativity based on the binding affinity is caused by two even qualitatively different sequences of cooperativity that are based on the rates of ligand binding and unbinding.
Collapse
Affiliation(s)
- Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany.
| | | | | |
Collapse
|
28
|
Marabelli A, Moroni M, Lape R, Sivilotti LG. The kinetic properties of the α3 rat glycine receptor make it suitable for mediating fast synaptic inhibition. J Physiol 2013; 591:3289-308. [PMID: 23613537 DOI: 10.1113/jphysiol.2013.252189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glycine receptors mediate fast synaptic inhibition in spinal cord and brainstem. Two α subunits are present in adult neurones, α1, which forms most of the synaptic glycine receptors, and α3. The physiological role of α3 is not known, despite the fact that α3 expression is concentrated in areas involved in nociceptive processing, such as the superficial dorsal horn. In the present study, we characterized the kinetic properties of rat homomeric α3 glycine receptors heterologously expressed in HEK293 cells. We analysed steady state single channel activity at a range of different glycine concentrations by fitting kinetic schemes and found that α3 channels resemble α1 receptors in their high maximum open probability (99.1% cf. 98% for α1), but differ in that maximum open probability is reached when all five binding sites are occupied by glycine (cf. three out of five sites for α1). α3 activation was best described by kinetic schemes that allow the channel to open also when partially liganded and that contain more than the minimum number of shut states, either as desensitized distal states (Jones and Westbrook scheme) or as pre-open gating intermediates (flip scheme). We recorded also synaptic-like α3 currents elicited by the rapid application of 1 ms pulses of high concentration glycine to outside-out patches. These currents had fast deactivation, with a time constant of decay of 9 ms. Thus, if native synaptic currents can be mediated by α3 glycine receptors, they are likely to be very close in their kinetics to α1-mediated synaptic events.
Collapse
Affiliation(s)
- Alessandro Marabelli
- Department of Neuroscience, Physiology and Pharmacology, Medical Sciences Building, University College London, Gower St, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
29
|
Keramidas A, Lynch JW. An outline of desensitization in pentameric ligand-gated ion channel receptors. Cell Mol Life Sci 2013; 70:1241-53. [PMID: 22936353 PMCID: PMC11113241 DOI: 10.1007/s00018-012-1133-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/28/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
Abstract
Pentameric ligand-gated ion channel (pLGIC) receptors exhibit desensitization, the progressive reduction in ionic flux in the prolonged presence of agonist. Despite its pathophysiological importance and the fact that it was first described over half a century ago, surprisingly little is known about the structural basis of desensitization in this receptor family. Here, we explain how desensitization is defined using functional criteria. We then review recent progress into reconciling the structural and functional basis of this phenomenon. The extracellular-transmembrane domain interface is a key locus. Activation is well known to involve conformational changes at this interface, and several lines of evidence suggest that desensitization involves a distinct conformational change here that is incompatible with activation. However, major questions remain unresolved, including the structural basis of the desensitization-induced agonist affinity increase and the mechanism of pore closure during desensitization.
Collapse
Affiliation(s)
- Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Joseph W. Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
30
|
Mowrey D, Cheng MH, Liu LT, Willenbring D, Lu X, Wymore T, Xu Y, Tang P. Asymmetric ligand binding facilitates conformational transitions in pentameric ligand-gated ion channels. J Am Chem Soc 2013; 135:2172-80. [PMID: 23339564 DOI: 10.1021/ja307275v] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anesthetic propofol inhibits the currents of the homopentameric ligand-gated ion channel GLIC, yet the crystal structure of GLIC with five propofol molecules bound symmetrically shows an open-channel conformation. To address this dilemma and determine if the symmetry of propofol binding sites affects the channel conformational transition, we performed a total of 1.5 μs of molecular dynamics simulations for different GLIC systems with propofol occupancies of 0, 1, 2, 3, and 5. GLIC without propofol binding or with five propofol molecules bound symmetrically, showed similar channel conformation and hydration status over multiple replicates of 100-ns simulations. In contrast, asymmetric binding to one, two or three equivalent sites in different subunits accelerated the channel dehydration, increased the conformational heterogeneity of the pore-lining TM2 helices, and shifted the lateral and radial tilting angles of TM2 toward a closed-channel conformation. The results differentiate two groups of systems based on the propofol binding symmetry. The difference between symmetric and asymmetric groups is correlated with the variance in the propofol-binding cavity adjacent to the hydrophobic gate and the force imposed by the bound propofol. Asymmetrically bound propofol produced greater variance in the cavity size that could further elevate the conformation heterogeneity. The force trajectory generated by propofol in each subunit over the course of a simulation exhibits an ellipsoidal shape, which has the larger component tangential to the pore. Asymmetric propofol binding creates an unbalanced force that expedites the channel conformation transitions. The findings from this study not only suggest that asymmetric binding underlies the propofol functional inhibition of GLIC, but also advocate for the role of symmetry breaking in facilitating channel conformational transitions.
Collapse
Affiliation(s)
- David Mowrey
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bhatt JM, Prakash A, Suryavanshi PS, Dravid SM. Effect of ifenprodil on GluN1/GluN2B N-methyl-D-aspartate receptor gating. Mol Pharmacol 2013; 83:9-21. [PMID: 23007555 DOI: 10.1124/mol.112.080952] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ifenprodil is an allosteric inhibitor of GluN1/GluN2B N-methyl-D-aspartate receptors. Despite its widespread use as a prototype for drug development and a subtype-selective tool for physiologic experiments, its precise effect on GluN1/GluN2B gating is yet to be fully understood. Interestingly, recent crystallographic evidence identified that ifenprodil, unlike zinc, binds at the interface of the GluN1/GluN2B amino terminal domain dimer by an induced-fit mechanism. To delineate the effect of this unique binding on GluN1/GluN2B receptor gating, we recorded steady-state currents from cell-attached and outside-out patches. At pH 7.9 in cell-attached patches, ifenprodil increased the occupancy of the long-lived shut conformations, thereby reducing the open probability of the receptor with no change in the mean open time. In addition, ifenprodil selectively affected the area of shut time constants, but not the time constants themselves. Kinetic analyses suggested that ifenprodil prevents the transition of the receptor to an open state and increases its dwell time in an intrinsically occurring closed conformation or desensitized state. We found distinct differences in the action of ifenprodil at GluN1/GluN2B in comparison with previous studies on the effect of zinc on GluN1/GluN2A gating, which may arise due to their unique binding sites. Our data also uncover the potential pH-dependent action of ifenprodil on gating. At a low pH (pH 7.4), but not pH 7.9, ifenprodil reduces the mean open time of GluN1/GluN2B receptors, which may be responsible for its usefulness as a context-dependent inhibitor in conditions like ischemia and stroke, when the pH of the extracellular milieu becomes acidic.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Pharmacology, Creighton University, School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
32
|
Zimmermann I, Marabelli A, Bertozzi C, Sivilotti LG, Dutzler R. Inhibition of the prokaryotic pentameric ligand-gated ion channel ELIC by divalent cations. PLoS Biol 2012. [PMID: 23185134 PMCID: PMC3502511 DOI: 10.1371/journal.pbio.1001429] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The modulation of pentameric ligand-gated ion channels (pLGICs) by divalent cations is believed to play an important role in their regulation in a physiological context. Ions such as calcium or zinc influence the activity of pLGIC neurotransmitter receptors by binding to their extracellular domain and either potentiate or inhibit channel activation. Here we have investigated by electrophysiology and X-ray crystallography the effect of divalent ions on ELIC, a close prokaryotic pLGIC homologue of known structure. We found that divalent cations inhibit the activation of ELIC by the agonist cysteamine, reducing both its potency and, at higher concentrations, its maximum response. Crystal structures of the channel in complex with barium reveal the presence of several distinct binding sites. By mutagenesis we confirmed that the site responsible for divalent inhibition is located at the outer rim of the extracellular domain, at the interface between adjacent subunits but at some distance from the agonist binding region. Here, divalent cations interact with the protein via carboxylate side-chains, and the site is similar in structure to calcium binding sites described in other proteins. There is evidence that other pLGICs may be regulated by divalent ions binding to a similar region, even though the interacting residues are not conserved within the family. Our study provides structural and functional insight into the allosteric regulation of ELIC and is of potential relevance for the entire family.
Collapse
Affiliation(s)
- Iwan Zimmermann
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Alessandro Marabelli
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Carlo Bertozzi
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Lucia G. Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Raimund Dutzler
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
33
|
Benndorf K, Kusch J, Schulz E. Probability fluxes and transition paths in a Markovian model describing complex subunit cooperativity in HCN2 channels. PLoS Comput Biol 2012; 8:e1002721. [PMID: 23093920 PMCID: PMC3475657 DOI: 10.1371/journal.pcbi.1002721] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/16/2012] [Indexed: 01/15/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are voltage-gated tetrameric cation channels that generate electrical rhythmicity in neurons and cardiomyocytes. Activation can be enhanced by the binding of adenosine-3',5'-cyclic monophosphate (cAMP) to an intracellular cyclic nucleotide binding domain. Based on previously determined rate constants for a complex Markovian model describing the gating of homotetrameric HCN2 channels, we analyzed probability fluxes within this model, including unidirectional probability fluxes and the probability flux along transition paths. The time-dependent probability fluxes quantify the contributions of all 13 transitions of the model to channel activation. The binding of the first, third and fourth ligand evoked robust channel opening whereas the binding of the second ligand obstructed channel opening similar to the empty channel. Analysis of the net probability fluxes in terms of the transition path theory revealed pronounced hysteresis for channel activation and deactivation. These results provide quantitative insight into the complex interaction of the four structurally equal subunits, leading to non-equality in their function.
Collapse
Affiliation(s)
- Klaus Benndorf
- Friedrich-Schiller-Universität Jena, Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany.
| | | | | |
Collapse
|
34
|
Kirson D, Todorovic J, Mihic SJ. Positive allosteric modulators differentially affect full versus partial agonist activation of the glycine receptor. J Pharmacol Exp Ther 2012; 342:61-70. [PMID: 22473615 PMCID: PMC3383033 DOI: 10.1124/jpet.112.191486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/02/2012] [Indexed: 11/22/2022] Open
Abstract
Taurine acts as a partial agonist at the glycine receptor (GlyR) in some brain regions such as the hippocampus, striatum, and nucleus accumbens. Ethanol, volatile anesthetics, and inhaled drugs of abuse are all known positive allosteric modulators of GlyRs, but their effects on taurine-activated GlyRs remain poorly understood, especially their effects on the high concentrations of taurine likely to be found after synaptic release. Two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes was used to compare the enhancing effects of ethanol, anesthetics, and inhalants on human homomeric α1-GlyR activated by saturating concentrations of glycine versus taurine. Allosteric modulators had negligible effects on glycine-activated GlyR while potentiating taurine-activated currents. In addition, inhaled anesthetics markedly enhanced desensitization rates of taurine- but not glycine-activated receptors. Our findings suggest that ethanol, volatile anesthetics, and inhalants differentially affect the time courses of synaptic events at GlyR, depending on whether the receptor is activated by a full or partial agonist.
Collapse
Affiliation(s)
- Dean Kirson
- Waggoner Center for Alcohol and Addiction Research, and Institute for Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | | | | |
Collapse
|
35
|
The α1K276E startle disease mutation reveals multiple intermediate states in the gating of glycine receptors. J Neurosci 2012; 32:1336-52. [PMID: 22279218 DOI: 10.1523/jneurosci.4346-11.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss-of-function mutations in human glycine receptors cause hyperekplexia, a rare inherited disease associated with an exaggerated startle response. We have studied a human disease mutation in the M2-M3 loop of the glycine receptor α1 subunit (K276E) using direct fitting of mechanisms to single-channel recordings with the program HJCFIT. Whole-cell recordings from HEK293 cells showed the mutation reduced the receptor glycine sensitivity. In single-channel recordings, rat homomeric α1 K276E receptors were barely active, even at 200 mM glycine. Coexpression of the β subunit partially rescued channel function. Heteromeric mutant channels opened in brief bursts at 300 μM glycine (a concentration that is near-maximal for wild type) and reached a maximum one-channel open probability of about 45% at 100 mm glycine (compared to 96% for wild type). Distributions of apparent open times contained more than one component in high glycine and, therefore, could not be described by mechanisms with only one fully liganded open state. Fits to the data were much better with mechanisms in which opening can also occur from more than one fully liganded intermediate (e.g., "primed" models). Brief pulses of glycine (∼3 ms, 30 mM) applied to mutant channels in outside-out patches activated currents with a slower rise time (1.5 ms) than those of wild-type channels (0.2 ms) and a much faster decay. These features were predicted reasonably well by the mechanisms obtained from fitting single-channel data. Our results show that, by slowing and impairing channel gating, the K276E mutation facilitates the detection of closed reaction intermediates in the activation pathway of glycine channels.
Collapse
|
36
|
Abstract
Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families.
Collapse
Affiliation(s)
- Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom.
| | | |
Collapse
|
37
|
Shan Q, Han L, Lynch JW. β Subunit M2-M3 loop conformational changes are uncoupled from α1 β glycine receptor channel gating: implications for human hereditary hyperekplexia. PLoS One 2011; 6:e28105. [PMID: 22132222 PMCID: PMC3222680 DOI: 10.1371/journal.pone.0028105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/01/2011] [Indexed: 01/30/2023] Open
Abstract
Hereditary hyperekplexia, or startle disease, is a neuromotor disorder caused mainly by mutations that either prevent the surface expression of, or modify the function of, the human heteromeric α1 β glycine receptor (GlyR) chloride channel. There is as yet no explanation as to why hyperekplexia mutations that modify channel function are almost exclusively located in the α1 to the exclusion of β subunit. The majority of these mutations are identified in the M2–M3 loop of the α1 subunit. Here we demonstrate that α1 β GlyR channel function is less sensitive to hyperekplexia-mimicking mutations introduced into the M2–M3 loop of the β than into the α1 subunit. This suggests that the M2–M3 loop of the α subunit dominates the β subunit in gating the α1 β GlyR channel. A further attempt to determine the possible mechanism underlying this phenomenon by using the voltage-clamp fluorometry technique revealed that agonist-induced conformational changes in the β subunit M2–M3 loop were uncoupled from α1 β GlyR channel gating. This is in contrast to the α subunit, where the M2–M3 loop conformational changes were shown to be directly coupled to α1 β GlyR channel gating. Finally, based on analysis of α1 β chimeric receptors, we demonstrate that the structural components responsible for this are distributed throughout the β subunit, implying that the β subunit has evolved without the functional constraint of a normal gating pathway within it. Our study provides a possible explanation of why hereditary hyperekplexia-causing mutations that modify α1 β GlyR channel function are almost exclusively located in the α1 to the exclusion of the β subunit.
Collapse
Affiliation(s)
- Qiang Shan
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
38
|
A Single phenylalanine residue in the main intracellular loop of α1 γ-aminobutyric acid type A and glycine receptors influences their sensitivity to propofol. Anesthesiology 2011; 115:464-73. [PMID: 21673564 DOI: 10.1097/aln.0b013e31822550f7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The intravenous anesthetic propofol acts as a positive allosteric modulator of glycine (GlyRs) and γ-aminobutyric acid type A (GABAARs) receptors. Although the role of transmembrane residues is recognized, little is known about the involvement of other regions in the modulatory effects of propofol. Therefore, the influence of the large intracellular loop in propofol sensitivity of both receptors was explored. METHODS The large intracellular loop of α1 GlyRs and α1β2 GABAARs was screened using alanine replacement. Sensitivity to propofol was studied using patch-clamp recording in HEK293 cells transiently transfected with wild type or mutant receptors. RESULTS Alanine mutation of a conserved phenylalanine residue within the α1 large intracellular loop significantly reduced propofol enhancement in both GlyRs (360 ± 30 vs. 75 ± 10%, mean ± SEM) and GABAARs (361 ± 49% vs. 80 ± 23%). Remarkably, propofol-hyposensitive mutant receptors retained their sensitivity to other allosteric modulators such as alcohols, etomidate, trichloroethanol, and isoflurane. At the single-channel level, the ability of propofol to increase open probability was significantly reduced in both α1 GlyR (189 ± 36 vs. 22 ± 13%) and α1β2 GABAAR (279 ± 29 vs. 29 ± 11%) mutant receptors. CONCLUSION In this study, it is demonstrated that the large intracellular loop of both GlyR and GABAAR has a conserved single phenylalanine residue (F380 and F385, respectively) that influences its sensitivity to propofol. Results suggest a new role of the large intracellular loop in the allosteric modulation of two members of the Cys-loop superfamily. Thus, these data provide new insights into the molecular framework behind the modulation of inhibitory ion channels by propofol.
Collapse
|
39
|
Bouzat C. New insights into the structural bases of activation of Cys-loop receptors. ACTA ACUST UNITED AC 2011; 106:23-33. [PMID: 21995938 DOI: 10.1016/j.jphysparis.2011.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/07/2011] [Accepted: 09/26/2011] [Indexed: 11/27/2022]
Abstract
Neurotransmitter receptors of the Cys-loop superfamily mediate rapid synaptic transmission throughout the nervous system, and include receptors activated by ACh, GABA, glycine and serotonin. They are involved in physiological processes, including learning and memory, and in neurological disorders, and they are targets for clinically relevant drugs. Cys-loop receptors assemble either from five copies of one type of subunit, giving rise to homomeric receptors, or from several types of subunits, giving rise to heteromeric receptors. Homomeric receptors are invaluable models for probing fundamental relationships between structure and function. Receptors contain a large extracellular domain that carries the binding sites and a transmembrane region that forms the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50Å to the ion channel gate is central to understanding receptor function. Depending on the receptor subtype, occupancy of either two, as in the prototype muscle nicotinic receptor, or three binding sites, as in homomeric receptors, is required for full activation. The conformational changes initiated at the binding sites are propagated to the gate through the interface between the extracellular and transmembrane domains. This region forms a network that relays structural changes from the binding site towards the pore, and also contributes to open channel lifetime and rate of desensitization. Thus, this coupling region controls the beginning and duration of a synaptic response. Here we review recent advances in the molecular mechanism by which Cys-loop receptors are activated with particular emphasis on homomeric receptors.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur and CONICET, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
40
|
Lozovaya N, Mukhtarov M, Tsintsadze T, Ledent C, Burnashev N, Bregestovski P. Frequency-Dependent Cannabinoid Receptor-Independent Modulation of Glycine Receptors by Endocannabinoid 2-AG. Front Mol Neurosci 2011; 4:13. [PMID: 21847369 PMCID: PMC3147161 DOI: 10.3389/fnmol.2011.00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/13/2011] [Indexed: 02/02/2023] Open
Abstract
Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB) receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG), on the functional properties of glycine receptor channels (GlyRs) and ionic currents in glycinergic synapses. At physiologically relevant concentrations (0.1–1 μM), 2-AG directly affected the functions of recombinant homomeric α1H GlyR: it inhibited peak amplitude and dramatically enhanced desensitization. The action of 2-AG on GlyR-mediated currents developed rapidly, within ∼300 ms. Addition of 1 μM 2-AG strongly facilitated the depression of glycine-induced currents during repetitive (4–10 Hz) application of short (2 ms duration) pulses of glycine to outside-out patches. In brainstem slices from CB1 receptor knockout mice, 2-AG significantly decreased the extent of facilitation of synaptic currents in hypoglossal motoneurons during repetitive (10–20 Hz) stimulation. These observations suggest that endocannabinoids can modulate postsynaptic metaplasticity of glycinergic synaptic currents in a CB1 receptor-independent manner.
Collapse
Affiliation(s)
- Natalia Lozovaya
- INSERM U901, Institut de Neurobiologie de la Méditerranée Marseille, France
| | | | | | | | | | | |
Collapse
|
41
|
Velázquez-Flores MÁ, Salceda R. Glycine receptor internalization by protein kinases activation. Synapse 2011; 65:1231-8. [PMID: 21656573 DOI: 10.1002/syn.20963] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 11/06/2022]
Abstract
Although glycine-induced currents in the central nervous system have been proven to be modulated by protein kinases A (PKA) and C (PKC), the mechanism is not well understood. In order to better comprehend the mechanism involved in this phenomenon, we tested the PKA and PKC activation effect on the specific [(3) H]glycine and [(3) H]strychnine binding to postsynaptic glycine receptor (GlyR) in intact rat retina. The specific binding constituted about 20% of the total radioligand binding. Kinetic analysis of the specific binding exhibited a sigmoidal behavior with three glycine and two strychnine binding sites and affinities of 212 nM for [(3) H]glycine and 50 nM for [(3) H]strychnine. Specific radioligand binding was decreased (60-85%) by PKA and PKC activation, an effect that was blocked by specific kinases inhibitors, as well as by cytochalasin D. GlyR expressed in the plasma membrane decreased about 50% in response to kinases activation, which was consistent with an increase of the receptor in the microsomal fraction when PKA was activated. Moreover, immunoprecipitation studies indicated that these kinases lead to a time-dependent receptor phosphorylation. Our results suggest that in retina, GlyR is cross-regulated by G protein-coupled receptors, activating PKA and PKC.
Collapse
Affiliation(s)
- Miguel Ángel Velázquez-Flores
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, D.F., México.
| | | |
Collapse
|
42
|
Krashia P, Lape R, Lodesani F, Colquhoun D, Sivilotti LG. The long activations of α2 glycine channels can be described by a mechanism with reaction intermediates ("flip"). ACTA ACUST UNITED AC 2011; 137:197-216. [PMID: 21282399 PMCID: PMC3032374 DOI: 10.1085/jgp.201010521] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The α2 glycine receptor (GlyR) subunit, abundant in embryonic neurons, is replaced by α1 in the adult nervous system. The single-channel activity of homomeric α2 channels differs from that of α1-containing GlyRs, as even at the lowest glycine concentration (20 µM), openings occurred in long (>300-ms) groups with high open probability (Popen; 0.96; cell-attached recordings, HEK-expressed channels). Shut-time intervals within groups of openings were dominated by short shuttings of 5–10 µs. The lack of concentration dependence in the groups of openings suggests that they represent single activations, separated by very long shut times at low concentrations. Several putative mechanisms were fitted by maximizing the likelihood of the entire sequence of open and shut times, with exact missed-events allowance (program hjcfit). Records obtained at several glycine concentrations were fitted simultaneously. The adequacy of the different schemes was judged by the accuracy with which they predicted not only single-channel data but also the time course and concentration dependence of macroscopic responses elicited by rapid glycine applications to outside-out patches. The data were adequately described only with schemes incorporating a reaction intermediate in the activation, and the best was a flip mechanism with two binding sites and one open state. Fits with this mechanism showed that for α2 channels, the opening rate constant is very fast, ∼130,000 s−1, much as for α1β GlyRs (the receptor in mature synapses), but the estimated true mean open time is 20 times longer (around 3 ms). The efficacy for the flipping step and the binding affinity were lower for α2 than for α1β channels, but the overall efficacies were similar. As we previously showed for α1 homomeric receptors, in α2 glycine channels, maximum Popen is achieved when fewer than all five of the putative binding sites in the pentamer are occupied by glycine.
Collapse
Affiliation(s)
- Paraskevi Krashia
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| | | | | | | | | |
Collapse
|
43
|
Williams DK, Stokes C, Horenstein NA, Papke RL. The effective opening of nicotinic acetylcholine receptors with single agonist binding sites. J Gen Physiol 2011; 137:369-84. [PMID: 21444659 PMCID: PMC3068282 DOI: 10.1085/jgp.201010587] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/17/2011] [Indexed: 11/20/2022] Open
Abstract
We have identified a means by which agonist-evoked responses of nicotinic receptors can be conditionally eliminated. Modification of α7L119C mutants by the sulfhydryl reagent 2-aminoethyl methanethiosulfonate (MTSEA) reduces responses to acetylcholine (ACh) by more than 97%, whereas corresponding mutations in muscle-type receptors produce effects that depend on the specific subunits mutated and ACh concentration. We coexpressed α7L119C subunits with pseudo wild-type α7C116S subunits, as well as ACh-insensitive α7Y188F subunits with wild-type α7 subunits in Xenopus laevis oocytes using varying ratios of cRNA. When mutant α7 cRNA was coinjected at a 5:1 ratio with wild-type cRNA, net charge responses to 300 µM ACh were retained by α7L119C-containing mutants after MTSEA modification and by the ACh-insensitive Y188F-containing mutants, even though the expected number of ACh-sensitive wild-type binding sites would on average be fewer than two per receptor. Responses of muscle-type receptors with one MTSEA-sensitive subunit were reduced at low ACh concentrations, but much less of an effect was observed when ACh concentrations were high (1 mM), indicating that saturation of a single binding site with agonist can evoke strong activation of nicotinic ACh receptors. Single-channel patch clamp analysis revealed that the burst durations of fetal wild-type and α1β1γδL121C receptors were equivalent until the α1β1γδL121C mutants were exposed to MTSEA, after which the majority (81%) of bursts were brief (≤2 ms). The longest duration events of the receptors modified at only one binding site were similar to the long bursts of native receptors traditionally associated with the activation of receptors with two sites containing bound agonists.
Collapse
Affiliation(s)
- Dustin K. Williams
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Nicole A. Horenstein
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Roger L. Papke
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| |
Collapse
|
44
|
Abstract
Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABAA and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABAA and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors could therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience.In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poorly understood. We also describe some of the current methods that are beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.
Collapse
|
45
|
Synaptotoxicity of Alzheimer beta amyloid can be explained by its membrane perforating property. PLoS One 2010; 5:e11820. [PMID: 20676404 PMCID: PMC2910737 DOI: 10.1371/journal.pone.0011820] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/24/2010] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that induce Alzheimer's disease (AD) are largely unknown thereby deterring the development of disease-modifying therapies. One working hypothesis of AD is that Aβ excess disrupts membranes causing pore formation leading to alterations in ionic homeostasis. However, it is largely unknown if this also occurs in native brain neuronal membranes. Here we show that similar to other pore forming toxins, Aβ induces perforation of neuronal membranes causing an increase in membrane conductance, intracellular calcium and ethidium bromide influx. These data reveal that the target of Aβ is not another membrane protein, but that Aβ itself is the cellular target thereby explaining the failure of current therapies to interfere with the course of AD. We propose that this novel effect of Aβ could be useful for the discovery of anti AD drugs capable of blocking these “Aβ perforates”. In addition, we demonstrate that peptides that block Aβ neurotoxicity also slow or prevent the membrane-perforating action of Aβ.
Collapse
|
46
|
Miller PS, Smart TG. Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol Sci 2010; 31:161-74. [PMID: 20096941 DOI: 10.1016/j.tips.2009.12.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022]
Abstract
It is over forty years since the major neurotransmitters and their protein receptors were identified, and over twenty years since determination of the first amino-acid sequences of the Cys-loop receptors that recognize acetylcholine, serotonin, GABA and glycine. The last decade has seen the first structures of these proteins (and related bacterial and molluscan homologues) determined to atomic resolution. Hopefully over the next decade, more detailed molecular structures of entire Cys-loop receptors in drug-bound and drug-free conformations will become available. These, together with functional studies, will provide a clear picture of how these receptors participate in neurotransmission and how structural variations between receptor subtypes impart their unique characteristics. This insight should facilitate the design of novel and improved therapeutics to treat neurological disorders. This review considers our current understanding about the processes of agonist binding, receptor activation and channel opening, as well as allosteric modulation of the Cys-loop receptor family.
Collapse
Affiliation(s)
- Paul S Miller
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
47
|
Corradi J, Gumilar F, Bouzat C. Single-channel kinetic analysis for activation and desensitization of homomeric 5-HT(3)A receptors. Biophys J 2009; 97:1335-45. [PMID: 19720021 DOI: 10.1016/j.bpj.2009.06.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 10/25/2022] Open
Abstract
The 5-HT(3)A receptor is a member of the Cys-loop family of ligand-gated ion channels. To perform kinetic analysis, we mutated the 5-HT3A subunit to obtain a high-conductance form so that single-channel currents can be detected. At all 5-HT concentrations (> 0.1 microM), channel activity appears as openings in quick succession that form bursts, which coalesce into clusters. By combining single-channel and macroscopic data, we generated a kinetic model that perfectly describes activation, deactivation, and desensitization. The model shows that full activation arises from receptors with three molecules of agonist bound. It reveals an earlier conformational change of the fully liganded receptor that occurs while the channel is still closed. From this pre-open closed state, the receptor enters into an open-closed cycle involving three open states, which form the cluster whose duration parallels the time constant of desensitization. A similar model lacking the pre-open closed state can describe the data only if the opening rates are fixed to account for the slow activation rate. The application of the model to M4 mutant receptors shows that position 10' contributes to channel opening and closing rates. Thus, our kinetic model provides a foundation for understanding structural bases of activation and drug action.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur/Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | | |
Collapse
|
48
|
Lape R, Krashia P, Colquhoun D, Sivilotti LG. Agonist and blocking actions of choline and tetramethylammonium on human muscle acetylcholine receptors. J Physiol 2009; 587:5045-72. [PMID: 19752108 PMCID: PMC2790248 DOI: 10.1113/jphysiol.2009.176305] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 09/08/2009] [Indexed: 11/08/2022] Open
Abstract
Choline has been used widely as an agonist for the investigation of gain-of-function mutants of the nicotinic acetylcholine receptor. It is useful because it behaves like a partial agonist. The efficacy of choline is difficult to measure because choline blocks the channel at concentrations about four times lower than those that activate it. We have fitted activation mechanisms to single-channel activity elicited from HEK-expressed human recombinant muscle nicotinic receptors by choline and by tetramethylammonium (TMA). Channel block by the agonist was incorporated into the mechanisms that were fitted, and block was found not to be selective for the open state. The results also suggest that channel block is very fast and that the channel can shut almost as fast as normal when the blocker was bound. Single-channel data are compatible with a mechanism in which choline is actually a full agonist, its maximum response being limited only by channel block. However, they are also compatible with a mechanism incorporating a pre-opening conformation change ('flip') in which choline is a genuine partial agonist. The latter explanation is favoured by concentration jump experiments, and by the fact that only this mechanism fits the TMA data. We propose that choline, like TMA, is a partial agonist because it is very ineffective (approximately 600-fold less than acetylcholine) at eliciting the initial, pre-opening conformation change. Once flipping has occurred, all agonists, even choline, open the channel with similar efficiency.
Collapse
Affiliation(s)
- Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, Medical Sciences Building, University College London, Gower St, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
49
|
Scimemi A, Beato M. Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol 2009; 40:289-306. [PMID: 19844813 PMCID: PMC2777263 DOI: 10.1007/s12035-009-8087-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/30/2009] [Indexed: 10/29/2022]
Abstract
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission.
Collapse
Affiliation(s)
- Annalisa Scimemi
- Synaptic Physiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3701, USA.
| | | |
Collapse
|
50
|
Sivilotti LG. What single-channel analysis tells us of the activation mechanism of ligand-gated channels: the case of the glycine receptor. J Physiol 2009; 588:45-58. [PMID: 19770192 DOI: 10.1113/jphysiol.2009.178525] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Glycine receptors are, in several ways, the member of the nicotinic superfamily that is best-suited for single-channel recording. That means that they are ideal for testing ideas about how activation proceeds in a ligand-gated ion channel from the binding of the agonist to the opening of the channel. This review describes the quantitative characterization by single-channel analysis of a novel activation mechanism for the glycine receptor. The favourable properties of the glycine receptor allowed the first detection of a conformation change that follows the binding of the agonist but precedes the opening of the channel. We used the term 'flipping' to describe this pre-opening conformational change. The 'flipped' state has a binding affinity higher than the resting state, but lower than the open state. This increased affinity presumably reflects a structural change near the agonist binding site, possibly the 'capping' of the C-loop. The significance of the 'flip' activation mechanism goes beyond understanding the behaviour and the structure-function relation of glycine channels, as this mechanism can be applied also to other members of the superfamily, such as the muscle nicotinic receptor. The 'flip' mechanism has thrown light on the question of why partial agonists are not efficacious at keeping the channel open, a question that is fundamental to rational drug design. In both muscle nicotinic and glycine receptors, partial agonists are as good as full agonists at opening the channel once flipping has occurred, but are not as effective as full agonists in eliciting this early conformational change.
Collapse
Affiliation(s)
- Lucia G Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, Medical Sciences Building, University College London, Gower St, London WC1E 6BT, UK.
| |
Collapse
|