1
|
Nikolova S, Chong C, Li J, Wu T, Dumkrieger G, Esterov D, Ross K, Starling A, Thomas A, Leonard M, Smith D, Schwedt TJ. Periaqueductal gray functional connectivity abnormalities associated with acute post-traumatic headache. J Neurol 2025; 272:356. [PMID: 40266360 DOI: 10.1007/s00415-025-13098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND The purpose of this study was to investigate pain network and periaqueductal gray matter (PAG) functional connectivity (FC) in participants with acute post-traumatic headache (PTH) due to mild traumatic brain injury (mTBI) compared to healthy controls (HC). METHODS Ninety-eight participants with acute PTH and 85 HC underwent 3 T magnetic resonance imaging. Static FC among regions of the pain matrix and between PAG to the rest of the brain were examined. Correlations between FC and clinical parameters were investigated using linear regression. PTH outcomes (improved or not improved) were determined at 3 months post-enrollment. RESULTS Stronger FC between the PAG and right somatosensory and left lingual areas, and weaker FC between left thalamus and left caudate were found in the PTH group compared to HC. Whole-brain analysis showed increased PAG FC, primarily with somatosensory, motor, and occipital areas of participants with PTH relative to HC. These differences had associations with headache frequency, state anxiety, and time since mTBI. A PAG FC model for PTH improvement at 3 months had a sensitivity of 82% and a specificity of 100%. Participants with PTH who did not improve at 3 months had stronger baseline FC from the PAG to the right temporal region and the left insula relative to the improved group or to HC. CONCLUSION PAG FC could serve as an early biomarker identifying participants with acute PTH at risk of developing persistent PTH.
Collapse
Affiliation(s)
- Simona Nikolova
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Catherine Chong
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Phoenix, AZ, USA
| | - Jing Li
- Georgia Tech, School of Industrial and Systems Engineering, Atlanta, GA, USA
| | - Teresa Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
| | - Gina Dumkrieger
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Dmitry Esterov
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Amaal Starling
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Aaron Thomas
- Department of Emergency Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Michael Leonard
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Dani Smith
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA.
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA.
| |
Collapse
|
2
|
Benoliel R, Sharav Y, Heiliczer S, Haviv Y. Orofacial Migraine and Neurovascular Orofacial Pain: Response to Treatment-A Pilot Study. Biomedicines 2025; 13:714. [PMID: 40149690 PMCID: PMC11940002 DOI: 10.3390/biomedicines13030714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Introduction: The International Classification of Orofacial Pain (ICOP) recognizes orofacial migraine (OFM) and neurovascular orofacial pain (NVOP) as migraine-related entities affecting the facial and oral regions. The diagnostic features of OFM and NVOP indicate that there are many similarities between the two. However, we recently demonstrated that NVOP and OFM are two distinct diagnostic entities, confirming the ICOP classification. It was the aim of the present study to examine whether OFM and NVOP differ in response to pharmacotherapy. Materials and Methods: The cohort was made up of 40 patients attending a tertiary orofacial pain clinic. When implementing ICOP criteria, an OFM diagnosis was made in 23 and an NVOP diagnosis in 17. Results: No statistically significant differences between NVOP versus OFM were observed in the global response to standard abortive therapy such as triptans, or NSAIDs. Similarly, no statistically significant differences were found following prophylactic therapy that included beta-blockers, anti-epileptic drugs, and tricyclic antidepressants. Up to 80% of patients responded favorably with ≥50% pain reduction. Conclusions: NVOP and OFM differ in diagnostic characteristics, demonstrating unique features, and were confirmed as two diagnostic entities. However, NVOP and OFM did not differ in their response to abortive or prophylactic treatments. Study limitations include the lack of starting data precluding a more precise pharmacological analysis. The small sample size limits any far reaching conclusions. This is particularly true regarding individual drug efficacy. We were unable to analyze drug and dose responses separately due to data constraints.
Collapse
Affiliation(s)
- Rafael Benoliel
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07103, USA;
| | - Yair Sharav
- Department of Oral Medicine, Sedation and Imaging, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Shimrit Heiliczer
- Oral Medicine Unit, Oral and Maxillofacial Surgery Department, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel;
| | - Yaron Haviv
- Department of Oral Medicine, Sedation and Imaging, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| |
Collapse
|
3
|
Esteves I, Fouto AR, Ruiz-Tagle A, Caetano G, Nunes RG, da Silva NA, Vilela P, Martins IP, Gil-Gouveia R, Caballero-Gaudes C, Figueiredo P. Uncovering longitudinal changes in the brain functional connectome along the migraine cycle: a multilevel clinical connectome fingerprinting framework. J Headache Pain 2025; 26:29. [PMID: 39930372 PMCID: PMC11812190 DOI: 10.1186/s10194-025-01969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Changes in large-scale brain networks have been reported in migraine patients, but it remains unclear how these manifest in the various phases of the migraine cycle. Case-control fMRI studies spanning the entire migraine cycle are lacking, precluding a complete assessment of brain functional connectivity in migraine. Such studies are essential for understanding the inherent changes in the brain of migraine patients as well as transient changes along the cycle. Here, we leverage the concept of functional connectome (FC) fingerprinting, whereby individual subjects may be identified based on their FC, to investigate changes in FC and its stability across different phases of the migraine cycle. METHODS We employ a case-control longitudinal design to study a group of 10 patients with episodic menstrual or menstrual-related migraine without aura, in the 4 phases of their spontaneous migraine cycle (preictal, ictal, postictal, interictal), and a group of 14 healthy controls in corresponding phases of the menstrual cycle, using resting-state functional magnetic resonance imaging (fMRI). We propose a novel multilevel clinical connectome fingerprinting approach to analyse the FC identifiability not only within-subject, but also within-session and within-group. RESULTS This approach allowed us to obtain individual FC fingerprints by reconstructing the data using the first 19 principal components to maximize identifiability at all levels. We found decreased FC identifiability for patients in the preictal phase relative to controls, which increased with the progression of the attack and became comparable to controls in the interictal phase. Using Network-Based Statistic analysis, we found increased FC strength across several brain networks for patients in the ictal and postictal phases relative to controls. CONCLUSION Our novel multilevel clinical connectome fingerprinting approach captured FC variations along the migraine cycle in a case-control longitudinal study, bringing new insights into the cyclic nature of the disorder.
Collapse
Affiliation(s)
- Inês Esteves
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal.
| | - Ana R Fouto
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Amparo Ruiz-Tagle
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Gina Caetano
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Rita G Nunes
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Nuno A da Silva
- Hospital da Luz Learning Health, Luz Saúde, Lisbon, Portugal
| | - Pedro Vilela
- Neurology Department, Hospital da Luz, Lisbon, Portugal
| | - Isabel Pavão Martins
- Centro de Estudos Egas Moniz e Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa (FMUL), Lisbon, Portugal
| | - Raquel Gil-Gouveia
- Neurology Department, Hospital da Luz, Lisbon, Portugal
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| | - César Caballero-Gaudes
- Basque Center on Cognition, Brain and Language, Donostia - San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Schulz E, Mayr A, Jahn P, Stankewitz A. Brain connectivity in individuals with migraine resets during the headache phase: a whole-brain connectivity study. Brain Commun 2025; 7:fcaf045. [PMID: 39958260 PMCID: PMC11829205 DOI: 10.1093/braincomms/fcaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/19/2024] [Accepted: 01/29/2025] [Indexed: 02/18/2025] Open
Abstract
Episodic migraine is reflected by cyclic changes in behavior and cortical processing. We aimed to identify how functional connectivity changes over the entire migraine cycle. By using longitudinal neuroimaging and a whole-brain connectivity analysis approach, we tested 12 episodic migraine patients across 82 functional MRI recordings during spontaneous migraine headaches with follow-up measurements over the pain-free interval without any external stimulation. We found that the functional connectivity linearly increased over the interictal interval. In the prodromal phase, we observed the strongest connections between the anterior agranular insula and the posterior orbitofrontal cortex with sensory, motor and cingulate areas. The strength of the connections dropped during the headache. Peak connectivity during the prodromal phase and its collapse during the headache can be regarded as a mechanism of normalizing cortical processing. We speculate about a malfunction at the molecular level in agranular frontal and insular regions, which needs to be addressed in subsequent studies.
Collapse
Affiliation(s)
- Enrico Schulz
- Department of Radiology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich 81377, Germany
- Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Astrid Mayr
- Department of Radiology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Pauline Jahn
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Anne Stankewitz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany
| |
Collapse
|
5
|
Fouto AR, Nunes RG, Guadilla I, Ruiz-Tagle A, Esteves I, Caetano G, Silva NA, Vilela P, Gil-Gouveia R, Figueiredo P. Alterations of White Matter Microstructure in Migraine Patients Vary in the Peri-ictal Phases. eNeuro 2025; 12:ENEURO.0300-24.2024. [PMID: 39622632 PMCID: PMC11747975 DOI: 10.1523/eneuro.0300-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 01/19/2025] Open
Abstract
Alterations in white matter (WM) microstructure are commonly found in migraine patients. Here, we employ a longitudinal study of episodic migraine without aura using diffusion magnetic resonance imaging (dMRI) to investigate whether such WM microstructure alterations vary through the different phases of the pain cycle. Fourteen patients with episodic migraine without aura related with menstruation were scanned through four phases of their (spontaneous) migraine cycle (interictal, preictal, ictal, and postictal). Fifteen healthy controls were studied in the corresponding phases of the menstrual cycle. Multishell dMRI data were acquired and preprocessed to obtain maps of diffusion parameters reflecting WM microstructure. After a whole-brain analysis comparing patients with controls, a region-of-interest analysis was performed to determine whether the patients' microstructural changes varied across the migraine cycle in specific WM tracts. Compared with controls, patients showed reduced axial diffusivity (AD) in several WM tracts across the whole brain in the interictal phase and increased fractional anisotropy (FA) in commissural fibers in the ictal phase. Interestingly, AD returned to baseline levels during peri-ictal phases in specific projection and association fibers. In contrast, FA values decreased in the ictal phase away from normal values in a few commissural and projection tracts. Widespread WM fiber tracts suffer structural variations across the migraine cycle, suggesting microstructural changes potentially associated with limbic and salience functional networks and highlighting the importance of the cycle phase in imaging studies of migraine.
Collapse
Affiliation(s)
- Ana R Fouto
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Rita G Nunes
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Irene Guadilla
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
- Universidad Autónoma de Madrid, Madrid 29049, Spain
| | - Amparo Ruiz-Tagle
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Inês Esteves
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Gina Caetano
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Nuno A Silva
- Learning Health, Hospital da Luz, Lisbon 1500-650, Portugal
| | - Pedro Vilela
- Imaging Department, Hospital da Luz, Lisbon 1500-650, Portugal
| | - Raquel Gil-Gouveia
- Neurology Department, Hospital da Luz, Lisbon 1500-650, Portugal
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon 1649-023, Portugal
| | - Patrícia Figueiredo
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| |
Collapse
|
6
|
Byrd K, Lund M, Pan Y, Chung BH, Child K, Fowler D, Burns-Martin J, Sanikommu M, Henderson H, Gregory C, Fleming RK, Xie JY. Potential mechanisms for osteopathic manipulative treatment to alleviate migraine-like pain in female rats. FRONTIERS IN PAIN RESEARCH 2024; 5:1280589. [PMID: 38380374 PMCID: PMC10877942 DOI: 10.3389/fpain.2024.1280589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Migraines are the leading cause of disability in the United States, and the use of non-pharmaceutical treatments like osteopathic manipulative treatment (OMT) has shown promise. Despite its potential, the lack of mechanistic understanding has hindered widespread adoption. This study aims to investigate the efficacy of OMT in treating acute migraines and unravel its underlying mechanisms of action. Methods Female rats were subjected to a "two-hit" approach to induce migraine-like pain. This involved bilateral injections of Complete Freund's Adjuvant (CFA) into the trapezius muscle (1st hit) followed by exposure to Umbellulone, a human migraine trigger, on Day 6 post-CFA (2nd hit). Soft tissue and articulatory techniques were applied to the cervical region for acute abortive or repeated prophylactic treatment. Cutaneous allodynia and trigeminal system activation were assessed through behavioral tests and immunohistochemical staining. Results Following Umbellulone inhalation, CFA-primed rats exhibited periorbital and hind paw allodynia. Immediate application of OMT after Umbellulone inhalation as an abortive treatment partially alleviated cutaneous allodynia. With OMT applied thrice as a prophylactic measure, complete suppression of tactile hypersensitivity was observed. Prophylactic OMT also prevented the increase of c-fos signals in the trigeminal nucleus caudalis and the elevation of calcitonin gene-related peptide expression in trigeminal ganglia induced by CFA and Umbellulone exposure at 2 h post-inhalation. Discussion These findings provide mechanistic insights into OMT's migraine-relief potential and underscore its viability as a non-pharmacological avenue for managing migraines.
Collapse
Affiliation(s)
- Katherine Byrd
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Makayla Lund
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Yan Pan
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Brandon H. Chung
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Kaitlyn Child
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Danny Fowler
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Jared Burns-Martin
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Mythili Sanikommu
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Hallie Henderson
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Caroline Gregory
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Regina K. Fleming
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Jennifer Yanhua Xie
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| |
Collapse
|
7
|
Mainland RL, Skinner CR, Saary J. Aeromedical Risk of Migraine. Aerosp Med Hum Perform 2024; 95:101-112. [PMID: 38263111 DOI: 10.3357/amhp.6291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
INTRODUCTION: Migraine is a common condition that can carry considerable risk to aeromedical duties. Because randomized controlled trials are not an appropriate method to evaluate flight safety risk for medical conditions that may cause subtle or sudden incapacitation, the determination of fitness-to-fly must be based on risk assessments informed by extrapolated evidence. Therefore, we conducted a review of current literature to provide background information to inform the aeromedical risk assessment of migraine using a risk matrix approach.METHODS: We identified studies on topics pertinent to conducting an aeromedical risk assessment of migraine. We generated an overview of the literature synthesizing the findings of articles retrieved from searches of Scopus, Ovid, PubMed, and the Cochrane Library published in English from all years, in both general and aircrew populations. International headache and neurology guidelines, as well as headache policies from the U.S. Air Force, were also reviewed.RESULTS: This review includes information on the following topics relevant to conducting an evidence-based risk assessment of migraine: diagnosis, prevalence, incidence, natural course, clinical presentation, triggers, comorbidities, neuroimaging, implications of family history, and efficacy of pharmacological and nonpharmacological therapies.DISCUSSION: This review summarizes current literature on migraine for use in a risk matrix approach to the aeromedical assessment of migraine in prospective and current aircrew. Awareness of the most current epidemiological data related to a variety of migraine parameters facilitates an evidence-based risk assessment of migraine in aircrew and requires iterative updates as new information becomes available.Mainland RL, Skinner CR, Saary J. Aeromedical risk of migraine. Aerosp Med Hum Perform. 2024; 95(2):101-112.
Collapse
|
8
|
Lambert GA, Zagami AS. Effects of somatostatin, a somatostatin agonist, and an antagonist, on a putative migraine trigger pathway. Neuropeptides 2024; 103:102399. [PMID: 38118293 DOI: 10.1016/j.npep.2023.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVE To determine whether somatostatin (SST) could be a cortico-brainstem neurotransmitter involved in producing the headache of migraine. BACKGROUND There is evidence to support the idea that a cortico-brainstem-trigeminal nucleus neuraxis might be responsible for producing migraine headache; we have suggested that SST may be one of the neurotransmitters involved. METHODS Rats were anesthetised and prepared for recording neurons in either the periaqueductal gray matter (PAG) or nucleus raphe magnus (NRM), as well as the trigeminal nucleus caudalis (TNC). The dura mater and facial skin were stimulated electrically or mechanically. SST, the SST agonist L054264 and the SST antagonist CYN54806 were injected intravenously, by microinjection, or by iontophoresis into the PAG or NRM. Cortical neuronal activity was provoked by cortical spreading depression (CSD) or light flash (LF) and was monitored by recording cortical blood flow (CBF). RESULTS Intravenous injection of SST: (a) selectively decreased the responses of TNC neurons to stimulation of the dura, but not skin, for up to 5 h; (b) decreased the ongoing discharge rate of TNC neurons while simultaneously increasing the discharge rate of neurons in either brainstem nucleus and; (c) prevented, or reversed, the effect of CSD and LF on brainstem and trigeminal neuron discharge rates. CSD and LF decreased the discharge rate of neurons in both brainstem nuclei and increased the discharge rate of TNC neurons. These effects were reversed by L054264 and mimicked by CYN54806. Injections of L054264 into the PAG or NRM reduced the response of TNC neurons to dural stimulation and skin stimulation differentially, depending on the nucleus injected. Injections of CYN54806 into either brainstem nucleus potentiated the responses of TNC neurons to dural and skin stimulation, but without a marked differential effect. CONCLUSIONS These results imply that SST could be a neurotransmitter in a pathway responsible for migraine pain.
Collapse
Affiliation(s)
- Geoffrey A Lambert
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Australia.
| | - Alessandro S Zagami
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Australia; Institute of Neurological Sciences, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| |
Collapse
|
9
|
Shibata M. In Search of More Leaps to Realize the Precision Medicine of Migraine. Int J Mol Sci 2023; 24:17375. [PMID: 38139204 PMCID: PMC10744148 DOI: 10.3390/ijms242417375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Migraine, clinically characterized by recurrent headache attacks of moderate-to-severe intensity, is the second most disabling disease in terms of years lived with disability [...].
Collapse
Affiliation(s)
- Mamoru Shibata
- Department of Neurology, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8513, Japan
| |
Collapse
|
10
|
Filippi M, Messina R, Bartezaghi M, Cetta I, Colombo B, Grazzi L, Martinelli D, Ornello R, Pichiecchio A, Raimondi D, Russo A, Sacco S, Splendiani A, Tassorelli C, Turrini R, Valsasina P, Rocca MA. The effect of erenumab on brain network function in episodic migraine patients: a randomized, placebo-controlled clinical trial (RESET BRAIN). J Neurol 2023; 270:5600-5612. [PMID: 37550498 PMCID: PMC10576673 DOI: 10.1007/s00415-023-11879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND We aimed to explore whether erenumab, a monoclonal antibody targeting the calcitonin gene-related peptide receptor, could exert a central effect on brain network function in migraine, and investigate the persistence of such an effect following treatment discontinuation. METHODS This was a randomized, double-blind, placebo-controlled, multicenter trial with a crossover design performed in adult episodic migraine patients with previous treatment failure. Patients were randomized (1:1) to 12 weeks of erenumab 140 mg or placebo, followed by a 12-week crossover. Resting state (RS) functional connectivity (FC) changes of brain networks involved in migraine were investigated using a seed-based correlation approach. RESULTS Sixty-one patients were randomized to treatment. In each treatment sequence, 27 patients completed the visit at week 12. Forty-four enrolled patients, 22 in each treatment sequence, completed the study procedures with no major protocol violations. We observed a carry-over effect of erenumab during the placebo treatment and therefore data analysis was performed as a parallel comparison of erenumab vs placebo of the first 12 weeks of treatment. From baseline to week 12, compared to placebo, patients receiving erenumab showed RS FC changes within the cerebellar, thalamic and periaqueductal gray matter networks, significantly associated with clinical improvement. Compared to non-responders, patients achieving a 50% reduction in migraine days had distinct patterns of thalamic and visual network RS FC. Brain RS FC changes reversed when erenumab was stopped. A lower baseline RS FC of the pontine network identified patients responding to erenumab. CONCLUSION Erenumab modulates RS FC of networks involved in migraine pathophysiology. In line with clinical response, erenumab-induced brain RS FC changes tend to reverse when treatment is stopped.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Ilaria Cetta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Bruno Colombo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Licia Grazzi
- Neuroalgology Unit, Headache Center Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Daniele Martinelli
- Headache Science and Rehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Raffaele Ornello
- Department Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences (DAMSS), Headache Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Simona Sacco
- Department Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandra Splendiani
- Department Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Cristina Tassorelli
- Headache Science and Rehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Chou BC, Lerner A, Barisano G, Phung D, Xu W, Pinto SN, Sheikh-Bahaei N. Functional MRI and Diffusion Tensor Imaging in Migraine: A Review of Migraine Functional and White Matter Microstructural Changes. J Cent Nerv Syst Dis 2023; 15:11795735231205413. [PMID: 37900908 PMCID: PMC10612465 DOI: 10.1177/11795735231205413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Migraine is a complex and heterogenous disorder whose disease mechanisms remain disputed. This narrative review summarizes functional MRI (fMRI) and diffusion tensor imaging (DTI) findings and interprets their association with migraine symptoms and subtype to support and expand our current understanding of migraine pathophysiology. Our PubMed search evaluated and included fMRI and DTI studies involving comparisons between migraineurs vs healthy controls, migraineurs with vs without aura, and episodic vs chronic migraineurs. Migraineurs demonstrate changes in functional connectivity (FC) and regional activation in numerous pain-related networks depending on migraine phase, presence of aura, and chronicity. Changes to diffusion indices are observed in major cortical white matter tracts extending to the brainstem and cerebellum, more prominent in chronic migraine and associated with FC changes. Reported changes in FC and regional activation likely relate to pain processing and sensory hypersensitivities. Diffuse white matter microstructural changes in dysfunctional cortical pain and sensory pathways complement these functional differences. Interpretations of reported fMRI and DTI measure trends have not achieved a clear consensus due to inconsistencies in the migraine neuroimaging literature. Future fMRI and DTI studies should establish and implement a uniform methodology that reproduces existing results and directly compares migraineurs with different subtypes. Combined fMRI and DTI imaging may provide better pathophysiological explanations for nonspecific FC and white matter microstructural differences.
Collapse
Affiliation(s)
- Brendon C. Chou
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander Lerner
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Daniel Phung
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wilson Xu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Soniya N. Pinto
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nasim Sheikh-Bahaei
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Blumenfeld AM, Lipton RB, Silberstein S, Tepper SJ, Charleston L, Landy S, Kuruvilla DE, Manack Adams A. Multimodal Migraine Management and the Pursuit of Migraine Freedom: A Narrative Review. Neurol Ther 2023; 12:1533-1551. [PMID: 37542624 PMCID: PMC10444724 DOI: 10.1007/s40120-023-00529-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023] Open
Abstract
Migraine is a neurologic disease with a complex pathophysiology that can be controlled with current treatment options but not cured. Therefore, treatment expectations are highly variable. The concept of migraine freedom was recently introduced and can mean different things, with some, for example, expecting complete freedom from headache and associated symptoms and others accepting the occasional migraine attack if it does not impact functioning. Therefore, migraine management should be optimized so that patients can have the best opportunity to achieve their optimal treatment goals. With migraine freedom as a goal and, given the complex pathophysiology of migraine and the high incidence of comorbidities among individuals with migraine, treatment with a single modality may be insufficient, as it may not achieve migraine freedom in those with more frequent or disabling attacks. In this clinical perspective article, we have identified four key, partially overlapping principles of multimodal migraine treatment: (1) manage common comorbidities; (2) control modifiable risk factors for progression by addressing medication and caffeine overuse; (3) diagnose and treat secondary causes of headache, if present; and (4) individualize acute and preventive treatments to minimize pain, functional disability, and allodynia. There are many barriers to pursuing migraine freedom, and strategies to overcome them should be optimized. Migraine freedom should be an aspirational goal both at the individual attack level and for the disease overall. We believe that a comprehensive and multimodal approach that addresses all barriers people with migraine face could move patients closer to migraine freedom.
Collapse
Affiliation(s)
| | | | | | - Stewart J Tepper
- New England Institute for Neurology and Headache, Stamford, CT, USA
| | - Larry Charleston
- Department of Neurology and Ophthalmology, Michigan State University College of Human Medicine, East Lansing, MI, USA
| | | | | | | |
Collapse
|
13
|
Noseda R, Villanueva L. Central generators of migraine and autonomic cephalalgias as targets for personalized pain management: Translational links. Eur J Pain 2023; 27:1126-1138. [PMID: 37421221 PMCID: PMC10979820 DOI: 10.1002/ejp.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Migraine oscillates between different states in association with internal homeostatic functions and biological rhythms that become more easily dysregulated in genetically susceptible individuals. Clinical and pre-clinical data on migraine pathophysiology support a primary role of the central nervous system (CNS) through 'dysexcitability' of certain brain networks, and a critical contribution of the peripheral sensory and autonomic signalling from the intracranial meningeal innervation. This review focuses on the most relevant back and forward translational studies devoted to the assessment of CNS dysfunctions involved in primary headaches and discusses the role they play in rendering the brain susceptible to headache states. METHODS AND RESULTS We collected a body of scientific literature from human and animal investigations that provide a compelling perspective on the anatomical and functional underpinnings of the CNS in migraine and trigeminal autonomic cephalalgias. We focus on medullary, hypothalamic and corticofugal modulation mechanisms that represent strategic neural substrates for elucidating the links between trigeminovascular maladaptive states, migraine triggering and the temporal phenotype of the disease. CONCLUSION It is argued that a better understanding of homeostatic dysfunctional states appears fundamental and may benefit the development of personalized therapeutic approaches for improving clinical outcomes in primary headache disorders. SIGNIFICANCE This review focuses on the most relevant back and forward translational studies showing the crucial role of top-down brain modulation in triggering and maintaining primary headache states and how these central dysfunctions may interact with personalized pain management strategies.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Luis Villanueva
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris-Cité, Team Imaging Biomarkers of Brain Disorders (IMA-Brain), INSERM U1266, Paris, France
| |
Collapse
|
14
|
Messina R, Rocca MA, Goadsby PJ, Filippi M. Insights into migraine attacks from neuroimaging. Lancet Neurol 2023; 22:834-846. [PMID: 37478888 DOI: 10.1016/s1474-4422(23)00152-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 07/23/2023]
Abstract
Migraine is one of the most common neurological diseases and it has a huge social and personal impact. Although head pain is the core symptom, individuals with migraine can have a plethora of non-headache symptoms that precede, accompany, or follow the pain. Neuroimaging studies have shown that the involvement of specific brain areas can explain many of the symptoms reported during the different phases of migraine. Recruitment of the hypothalamus, pons, spinal trigeminal nucleus, thalamus, and visual and pain-processing cortical areas starts during the premonitory phase and persists through the headache phase, contributing to the onset of pain and associated symptoms. Once the pain stops, the involvement of most brain areas ends, although the pons, hypothalamus, and visual cortex remain active after acute treatment intake and resolution of migraine symptoms. A better understanding of the correlations between imaging findings and migraine symptomatology can provide new insight into migraine pathophysiology and the mechanisms of novel migraine-specific treatments.
Collapse
Affiliation(s)
- Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Peter J Goadsby
- NIHR King's Clinical Research Facility, King's College, London, UK; Department of Neurology, University of California, Los Angeles, CA, USA
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
15
|
Pleș H, Florian IA, Timis TL, Covache-Busuioc RA, Glavan LA, Dumitrascu DI, Popa AA, Bordeianu A, Ciurea AV. Migraine: Advances in the Pathogenesis and Treatment. Neurol Int 2023; 15:1052-1105. [PMID: 37755358 PMCID: PMC10535528 DOI: 10.3390/neurolint15030067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
This article presents a comprehensive review on migraine, a prevalent neurological disorder characterized by chronic headaches, by focusing on their pathogenesis and treatment advances. By examining molecular markers and leveraging imaging techniques, the research identifies key mechanisms and triggers in migraine pathology, thereby improving our understanding of its pathophysiology. Special emphasis is given to the role of calcitonin gene-related peptide (CGRP) in migraine development. CGRP not only contributes to symptoms but also represents a promising therapeutic target, with inhibitors showing effectiveness in migraine management. The article further explores traditional medical treatments, scrutinizing the mechanisms, benefits, and limitations of commonly prescribed medications. This provides a segue into an analysis of emerging therapeutic strategies and their potential to enhance migraine management. Finally, the paper delves into neuromodulation as an innovative treatment modality. Clinical studies indicating its effectiveness in migraine management are reviewed, and the advantages and limitations of this technique are discussed. In summary, the article aims to enhance the understanding of migraine pathogenesis and present novel therapeutic possibilities that could revolutionize patient care.
Collapse
Affiliation(s)
- Horia Pleș
- Department of Neurosurgery, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Teodora-Larisa Timis
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Luca-Andrei Glavan
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Andrei Adrian Popa
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Andrei Bordeianu
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| |
Collapse
|
16
|
Karsan N, Goadsby PJ. Neuroimaging in the pre-ictal or premonitory phase of migraine: a narrative review. J Headache Pain 2023; 24:106. [PMID: 37563570 PMCID: PMC10416375 DOI: 10.1186/s10194-023-01617-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The premonitory phase, or prodrome, of migraine, provides valuable opportunities to study attack initiation and for treating the attack before headache starts. Much that has been learned about this phase in recent times has come from the outcomes of functional imaging studies. This review will summarise these studies to date and use their results to provide some feasible insights into migraine neurobiology. MAIN BODY The ability to scan repeatedly a patient without radiation and with non-invasive imaging modalities, as well as the recognition that human experimental migraine provocation compounds, such as nitroglycerin (NTG) and pituitary adenylate cyclase activating polypeptide (PACAP), can trigger typical premonitory symptoms (PS) and migraine-like headache in patients with migraine, have allowed feasible and reproducible imaging of the premonitory phase using NTG. Some studies have used serial scanning of patients with migraine to image the migraine cycle, including the 'pre-ictal' phase, defined by timing to headache onset rather than symptom phenotype. Direct observation and functional neuroimaging of triggered PS have also revealed compatible neural substrates for PS in the absence of headache. Various imaging methods including resting state functional MRI (rsfMRI), arterial spin labelling (ASL), positron emission tomography (PET) and diffusion tensor imaging (DTI) have been used. The results of imaging the spontaneous and triggered premonitory phase have been largely consistent and support a theory of central migraine attack initiation involving brain areas such as the hypothalamus, midbrain and limbic system. Early dysfunctional pain, sensory, limbic and homeostatic processing via monoaminergic and peptidergic neurotransmission likely manifests in the heterogeneous PS phenotype. CONCLUSION Advances in human migraine research, including the use of functional imaging techniques lacking radiation or radio-isotope exposure, have led to an exciting opportunity to study the premonitory phase using repeated measures imaging designs. These studies have provided novel insights into attack initiation, migraine neurochemistry and therapeutic targets. Emerging migraine-specific therapies, such as those targeting calcitonin gene-related peptide (CGRP), are showing promise acutely when taken during premonitory phase to reduce symptoms and prevent subsequent headache. Therapeutic research in this area using PS for headache onset prediction and early treatment is likely to grow in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK.
| | - Peter J Goadsby
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK
- Department of Neurology, University of California, Los Angeles, USA
| |
Collapse
|
17
|
Di Antonio S, Arendt-Nielsen L, Castaldo M. Cervical musculoskeletal impairments and pain sensitivity in migraine patients. Musculoskelet Sci Pract 2023; 66:102817. [PMID: 37451884 DOI: 10.1016/j.msksp.2023.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Currently, examination of migraine patients relies on a clinical interview investigating symptoms characteristics. Despite this, to help identify distinct migraine subtypes and allow a personalized treatment approach, biomarkers to profile distinct migraine subtypes should be utilized in clinical and research settings. Therefore, there is a need to include physical and psychophysical examinations aimed at assessing migraine features quantitatively. PURPOSE This paper aimed to discuss if increased pressure pain sensitivity and impaired cervical musculoskeletal function could be considered 1) as quantitative features of migraine and 2) if they could be used as biomarkers to profile migraine patients in distinct subtypes. IMPLICATION Increased pain sensitivity and cervical musculoskeletal impairments have been suggested as quantitative biomarkers to phenotype and subgroup migraine patients in clinical and research settings. This could provide the first step for a mechanistically-driven and personalized treatment approach according to migraine phenotypes.
Collapse
Affiliation(s)
- Stefano Di Antonio
- Department of Health Science and Technology, Center for Pain and Neuroplasticity (CNAP), SMI, School of Medicine, Aalborg University, 9220, Aalborg, Denmark; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, 16132, Genoa, Italy
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Center for Pain and Neuroplasticity (CNAP), SMI, School of Medicine, Aalborg University, 9220, Aalborg, Denmark; Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, 9220, Aalborg, Denmark; Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, 9220, Aalborg, Denmark
| | - Matteo Castaldo
- Department of Health Science and Technology, Center for Pain and Neuroplasticity (CNAP), SMI, School of Medicine, Aalborg University, 9220, Aalborg, Denmark.
| |
Collapse
|
18
|
Stubberud A, Ingvaldsen SH, Brenner E, Winnberg I, Olsen A, Gravdahl GB, Matharu MS, Nachev P, Tronvik E. Forecasting migraine with machine learning based on mobile phone diary and wearable data. Cephalalgia 2023; 43:3331024231169244. [PMID: 37096352 DOI: 10.1177/03331024231169244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Triggers, premonitory symptoms and physiological changes occur in the preictal migraine phase and may be used in models for forecasting attacks. Machine learning is a promising option for such predictive analytics. The objective of this study was to explore the utility of machine learning to forecast migraine attacks based on preictal headache diary entries and simple physiological measurements. METHODS In a prospective development and usability study 18 patients with migraine completed 388 headache diary entries and self-administered app-based biofeedback sessions wirelessly measuring heart rate, peripheral skin temperature and muscle tension. Several standard machine learning architectures were constructed to forecast headache the subsequent day. Models were scored with area under the receiver operating characteristics curve. RESULTS Two-hundred-and-ninety-five days were included in the predictive modelling. The top performing model, based on random forest classification, achieved an area under the receiver operating characteristics curve of 0.62 in a hold-out partition of the dataset. DISCUSSION In this study we demonstrate the utility of using mobile health apps and wearables combined with machine learning to forecast headache. We argue that high-dimensional modelling may greatly improve forecasting and discuss important considerations for future design of forecasting models using machine learning and mobile health data.
Collapse
Affiliation(s)
- Anker Stubberud
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- NorHEAD, Norwegian Headache Research Centre, Norway
| | - Sigrid Hegna Ingvaldsen
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Psychology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Eiliv Brenner
- National Advisory Unit on Headaches, Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Ingunn Winnberg
- National Advisory Unit on Headaches, Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Alexander Olsen
- NorHEAD, Norwegian Headache Research Centre, Norway
- Department of Psychology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim, Norway
| | - Gøril Bruvik Gravdahl
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- NorHEAD, Norwegian Headache Research Centre, Norway
- National Advisory Unit on Headaches, Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Manjit Singh Matharu
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- NorHEAD, Norwegian Headache Research Centre, Norway
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | | | - Erling Tronvik
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- NorHEAD, Norwegian Headache Research Centre, Norway
- National Advisory Unit on Headaches, Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
19
|
Puledda F, Silva EM, Suwanlaong K, Goadsby PJ. Migraine: from pathophysiology to treatment. J Neurol 2023:10.1007/s00415-023-11706-1. [PMID: 37029836 DOI: 10.1007/s00415-023-11706-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Migraine is an extremely disabling, common neurological disorder characterized by a complex neurobiology, involving a series of central and peripheral nervous system areas and networks. A growing increase in the understanding of migraine pathophysiology in recent years has facilitated translation of that knowledge into novel treatments, which are currently becoming available to patients in many parts of the world and are substantially changing the clinical approach to the disease. In the first part of this review, we will provide an up to date overview of migraine pathophysiology by analyzing the anatomy and function of the main regions involved in the disease, focusing on how these give rise to the plethora of symptoms characterizing the attacks and overall disease. The second part of the paper will discuss the novel therapeutic agents that have emerged for the treatment of migraine, including molecules targeting calcitonin gene-related peptide (gepants and monoclonal antibodies), serotonin 5-HT1F receptor agonists (ditans) and non-invasive neuromodulation, as well as providing a brief overview of new evidence for classic migraine treatments.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and National Institute for Health Research (NIHR) SLaM Clinical Research Facility at King's, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK
| | | | - Kanokrat Suwanlaong
- Division of Neurology, Department of Medicine, Songkhla Medical Education Center, Songkhla, Thailand
| | - Peter J Goadsby
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and National Institute for Health Research (NIHR) SLaM Clinical Research Facility at King's, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK.
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Ashina S, Melo-Carrillo A, Szabo E, Borsook D, Burstein R. Pre-treatment non-ictal cephalic allodynia identifies responders to prophylactic treatment of chronic and episodic migraine patients with galcanezumab: A prospective quantitative sensory testing study (NCT04271202). Cephalalgia 2023; 43:3331024221147881. [PMID: 36786278 DOI: 10.1177/03331024221147881] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
BACKGROUND Migraine is a complex neurological disorder involving generalized abnormalities in processing sensory information. Adopting evidence that central sensitization imposes major hurdles in the treatment of migraine, we hypothesized that it is the non-ictal (rather than ictal) allodynia that may determine the outcome of migraine prevention with peripherally-acting drugs. METHODS To test this hypothesis, we used Quantitative Sensory Testing to determine whether it is possible to identify a patient's response to prophylactic treatment with galcanezumab based on presence/absence of cephalic and/or extracephalic allodynia during the pre-treatment non-ictal phase of migraine. RESULTS Using strict criteria for allodynia (heat 32-40°C, cold 32-20°C, mechanical <60 g), we report that (a) the incidence of pre-treatment non-ictal cephalic allodynia was 21% in the 24 responders (>50% decrease in monthly migraine days) and 85% in the 19 non-responders; (b) the incidence of non-ictal extracephalic allodynia distinguishes responders from non-responders less accurately; and that (c) the incidence of non-ictal cephalic allodynia was similar in the chronic migraine and high-frequency episodic migraine groups. CONCLUSIONS Clinically, the findings suggest that presence/absence of non-ictal allodynia can be used to identify galcanezumab responders with nearly 80% accuracy and galcanezumab non-responders with nearly 85% accuracy. Mechanistically, the presence of non-ictal allodynia (reflecting a state of activity-independent central sensitization) in both chronic migraine and high-frequency episodic migraine patients raises the possibility that the state of non-ictal allodynia may be attributed to physiological properties of central trigeminovascular neurons that are due to the genetic load of the individual patient rather than their migraine frequency.
Collapse
Affiliation(s)
- Sait Ashina
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Beth Israel Deaconess Medical Center Comprehensive Headache Center, Boston, MA, USA.,Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Beth Israel Deaconess Medical Center Comprehensive Headache Center, Boston, MA, USA
| | - Edina Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Departments of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Beth Israel Deaconess Medical Center Comprehensive Headache Center, Boston, MA, USA
| |
Collapse
|
21
|
Yao K, Zu HB. Isolated transient vertigo due to TIA: challenge for diagnosis and therapy. J Neurol 2023; 270:769-779. [PMID: 36371598 DOI: 10.1007/s00415-022-11443-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Abstract
As a prevalent vertigo disease in the clinic, isolated transient vertigo can present as a vertigo episode without focal signs and always free of symptoms on presentation. Previous studies showed a part of isolated transient vertigo events had a high risk of stroke during follow-up. However, how to discern posterior circulation ischemia become a great challenge for clinicians, especially in emergency, neurology, and ENT departments. Routine besides, hematological, and imaging examinations are often difficult provide a clear etiological diagnosis. Hence, this article reviews current knowledge about the epidemiology, risk factors, offending lesions, and clinical manifestation of transient ischemic attack (TIA) presenting as isolated transient vertigo. In addition, we summarize several advances in besides examinations, serum biomarkers, and imaging technologies to better identify stroke events. Finally, the current situation of therapy was briefly retrospected. Here we present a critical clinical puzzle that needs to be solved in the future. Of note, there is a still lack of high-quality studies in this field. The article reviews the keys to the diagnosis of isolated transient vertigo due to TIA and provides us with more methods to screen for high-risk stroke populations.
Collapse
Affiliation(s)
- Kai Yao
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
22
|
Sharav Y, Haviv Y, Benoliel R. Orofacial Migraine or Neurovascular Orofacial Pain from Pathogenesis to Treatment. Int J Mol Sci 2023; 24:2456. [PMID: 36768779 PMCID: PMC9917018 DOI: 10.3390/ijms24032456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
The purpose of the present study is to examine possible differences between orofacial migraine (OFM) and neurovascular orofacial pain (NVOP). Facial presentations of primary headache are comparable to primary headache disorders; but occurring in the V2 or V3 dermatomes of the trigeminal nerve. These were classified and recently published in the International Classification of Orofacial Pain, 1st edition (ICOP). A category in this classification is "orofacial pains resembling presentations of primary headaches," which encompasses OFM and NVOP. The differences between NVOP and OFM are subtle, and their response to therapy may be similar. While classified under two separate entities, they contain many features in common, suggesting a possible overlap between the two. Consequently, their separation into two entities warrants further investigations. We describe OFM and NVOP, and their pathophysiology is discussed. The similarities and segregating clinical signs and symptoms are analyzed, and the possibility of unifying the two entities is debated.
Collapse
Affiliation(s)
- Yair Sharav
- Department of Oral Medicine, Sedation & Maxillofacial Imaging, School of Dental Medicine, Hebrew University-Hadassah, Jerusalem 91010, Israel
| | - Yaron Haviv
- Department of Oral Medicine, Sedation & Maxillofacial Imaging, School of Dental Medicine, Hebrew University-Hadassah, Jerusalem 91010, Israel
| | - Rafael Benoliel
- Unit for Oral Medicine, Department of Oral and Maxillofacial Surgery Division of ENT, Head & Neck and Oral and Maxillofacial Surgery, Tel Aviv Sourasky Medical Center-Ichilov, Tel Aviv 61060, Israel
| |
Collapse
|
23
|
Dumkrieger G, Chong CD, Ross K, Berisha V, Schwedt TJ. The value of brain MRI functional connectivity data in a machine learning classifier for distinguishing migraine from persistent post-traumatic headache. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1012831. [PMID: 36700144 PMCID: PMC9869115 DOI: 10.3389/fpain.2022.1012831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/21/2022] [Indexed: 01/12/2023]
Abstract
Background Post-traumatic headache (PTH) and migraine often have similar phenotypes. The objective of this exploratory study was to develop classification models to differentiate persistent PTH (PPTH) from migraine using clinical data and magnetic resonance imaging (MRI) measures of brain structure and functional connectivity (fc). Methods Thirty-four individuals with migraine and 48 individuals with PPTH attributed to mild TBI were included. All individuals completed questionnaires assessing headache characteristics, mood, sensory hypersensitivities, and cognitive function and underwent brain structural and functional imaging during the same study visit. Clinical features, structural and functional resting-state measures were included as potential variables. Classifiers using ridge logistic regression of principal components were fit on the data. Average accuracy was calculated using leave-one-out cross-validation. Models were fit with and without fc data. The importance of specific variables to the classifier were examined. Results With internal variable selection and principal components creation the average accuracy was 72% with fc data and 63.4% without fc data. This classifier with fc data identified individuals with PPTH and individuals with migraine with equal accuracy. Conclusion Multivariate models based on clinical characteristics, fc, and brain structural data accurately classify and differentiate PPTH vs. migraine suggesting differences in the neuromechanism and clinical features underlying both headache disorders.
Collapse
Affiliation(s)
- Gina Dumkrieger
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, United States,Correspondence: Gina Dumkrieger
| | - Catherine D Chong
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Katherine Ross
- Phoenix VA health care system, Veterans Health Administration, Phoenix, AZ, United States
| | - Visar Berisha
- Department of Speech and Hearing Science and School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ, United States
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, United States
| |
Collapse
|
24
|
Messina R, Filippi M. What imaging has revealed about migraine and chronic migraine. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:105-116. [PMID: 38043956 DOI: 10.1016/b978-0-12-823356-6.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although migraine pathophysiology is not yet entirely understood, it is now established that migraine should be viewed as a complex neurological disease, which involves the interplay of different brain networks and the release of signaling molecules, instead of a pure vascular disorder. The field of migraine research has also progressed significantly due to the advancement of brain imaging techniques. Numerous studies have investigated the relation between migraine pathophysiology and cerebral hemodynamic changes, showing that vascular changes are neither necessary nor sufficient to cause the migraine pain. Abnormal function and structure of key cortical, subcortical, and brainstem regions involved in multisensory, including pain, processing have been shown to occur in migraine patients during both an acute attack and the interictal phase. Whether brain imaging alterations represent a predisposing trait or are the consequence of the recurrence of headache attacks is still a matter of debate. It is highly likely that brain functional and structural alterations observed in migraine patients derive from the interaction between predisposing brain traits and experience-dependent responses. Neuroimaging studies have also enriched our knowledge of the mechanisms responsible for migraine chronification and have shed light on the mechanisms of actions of acute and preventive migraine treatments.
Collapse
Affiliation(s)
- Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
25
|
Fischer-Schulte LH, Peng KP. Migraine prodromes and migraine triggers. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:135-148. [PMID: 38043958 DOI: 10.1016/b978-0-12-823356-6.00014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Migraine is characterized by a well-defined premonitory phase occurring hours or even days before the headache. Also, many migraineurs report typical triggers for their headaches. Triggers, however, are not consistent in their ability to precipitate migraine headaches. When looking at the clinical characteristics of both premonitory symptoms and triggers, a shared pathophysiological basis seems evident. Both seem to have their origin in basic homeostatic networks such as the feeding/fasting, the sleeping/waking, and the stress response network, all of which strongly rely on the hypothalamus as a hub of integration and are densely interconnected. They also influence the trigeminal pain processing system. Additionally, thalamic and hormonal mechanisms are involved. Activity within all those networks is influenced by various endogenous and external factors and might even cyclically change dependent on physiological internal rhythms. This might affect the threshold for the generation of migraine headaches. Premonitory symptoms thus appear as the result of an already ongoing alteration within those networks, whereas triggers might in this special situation only be able to further stress the system over the threshold for attack generation as catalysts of a process already in motion.
Collapse
Affiliation(s)
- Laura H Fischer-Schulte
- Clinic and Policlinic of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Kuan-Po Peng
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Schwedt TJ, Nikolova S, Dumkrieger G, Li J, Wu T, Chong CD. Longitudinal changes in functional connectivity and pain-induced brain activations in patients with migraine: a functional MRI study pre- and post- treatment with Erenumab. J Headache Pain 2022; 23:159. [PMCID: PMC9748909 DOI: 10.1186/s10194-022-01526-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract Background Migraine involves central and peripheral nervous system mechanisms. Erenumab, an anti-calcitonin gene-related peptide (CGRP) receptor monoclonal antibody with little central nervous system penetrance, is effective for migraine prevention. The objective of this study was to determine if response to erenumab is associated with alterations in brain functional connectivity and pain-induced brain activations. Methods Adults with 6–25 migraine days per month during a 4-week headache diary run-in phase underwent pre-treatment brain functional MRI (fMRI) that included resting-state functional connectivity and BOLD measurements in response to moderately painful heat stimulation to the forearm. This was followed by two treatments with 140 mg erenumab, at baseline and 4 weeks later. Post-treatment fMRI was performed 2 weeks and 8 weeks following the first erenumab treatment. A longitudinal Sandwich estimator analysis was used to identify pre- to post-treatment changes in resting-state functional connectivity and brain activations in response to thermal pain. fMRI findings were compared between erenumab treatment-responders vs. erenumab non-responders. Results Pre- and post-treatment longitudinal imaging data were available from 32 participants. Average age was 40.3 (+/− 13) years and 29 were female. Pre-treatment average migraine day frequency was 13.8 (+/− 4.7) / 28 days and average headache day frequency was 15.8 (+/− 4.4) / 28 days. Eighteen of 32 (56%) were erenumab responders. Compared to erenumab non-responders, erenumab responders had post-treatment differences in 1) network functional connectivity amongst pain-processing regions, including higher global efficiency, clustering coefficient, node degree, regional efficiency, and modularity, 2) region-to-region functional connectivity between several regions including temporal pole, supramarginal gyrus, and hypothalamus, and 3) pain-induced activations in the middle cingulate, posterior cingulate, and periaqueductal gray matter. Conclusions Reductions in migraine day frequency accompanying erenumab treatment are associated with changes in resting state functional connectivity and central processing of extracranial painful stimuli that differ from erenumab non-responders. Trial registration
clinicaltrials.gov
(NCT03773562).
Collapse
Affiliation(s)
- Todd J. Schwedt
- grid.470142.40000 0004 0443 9766Department of Neurology, Mayo Clinic, Phoenix, AZ USA
| | - Simona Nikolova
- grid.470142.40000 0004 0443 9766Department of Neurology, Mayo Clinic, Phoenix, AZ USA
| | - Gina Dumkrieger
- grid.470142.40000 0004 0443 9766Department of Neurology, Mayo Clinic, Phoenix, AZ USA
| | - Jing Li
- grid.213917.f0000 0001 2097 4943School of Industrial and Systems Engineering, Georgia Tech, Atlanta, GA USA
| | - Teresa Wu
- grid.215654.10000 0001 2151 2636School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, AZ USA
| | - Catherine D. Chong
- grid.470142.40000 0004 0443 9766Department of Neurology, Mayo Clinic, Phoenix, AZ USA
| |
Collapse
|
27
|
Kitagawa S, Tang C, Unekawa M, Kayama Y, Nakahara J, Shibata M. Sustained Effects of CGRP Blockade on Cortical Spreading Depolarization-Induced Alterations in Facial Heat Pain Threshold, Light Aversiveness, and Locomotive Activity in the Light Environment. Int J Mol Sci 2022; 23:ijms232213807. [PMID: 36430285 PMCID: PMC9698572 DOI: 10.3390/ijms232213807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
A migraine is clinically characterized by repeated headache attacks that entail considerable disability. Many patients with migraines experience postdrome, the symptoms of which include tiredness and photophobia. Calcitonin gene-related peptide (GGRP) is critically implicated in migraine pathogenesis. Cortical spreading depolarization (CSD), the biological correlate of migraine aura, sensitizes the trigeminovascular system. In our previous study, CSD caused hypomotility in the light zone and tendency for photophobia at 72 h, at which time trigeminal sensitization had disappeared. We proposed that this CSD-induced disease state would be useful for exploring therapeutic strategies for migraine postdrome. In the present study, we observed that the CGRP receptor antagonist, olcegepant, prevented the hypomotility in the light zone and ameliorated light tolerability at 72 h after CSD induction. Moreover, olcegepant treatment significantly elevated the threshold for facial heat pain at 72 h after CSD. Our results raise the possibility that CGRP blockade may be efficacious in improving hypoactivity in the light environment by enhancing light tolerability during migraine postdrome. Moreover, our data suggest that the CGRP pathway may lower the facial heat pain threshold even in the absence of overt trigeminal sensitization, which provides an important clue to the potential mechanism whereby CGRP blockade confers migraine prophylaxis.
Collapse
Affiliation(s)
- Satoshi Kitagawa
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chunhua Tang
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yohei Kayama
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mamoru Shibata
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Neurology, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8513, Japan
- Correspondence: ; Tel.: +81-3-5363-3788
| |
Collapse
|
28
|
Sueiro AC, Santos ÉMD, Tundisi LL, Fava ALM, Silvério LAL, Coco JC, Ataide JA, Paiva-Santos AC, Mazzola PG. Transdermal delivery systems for migraine treatment: A gap to explore. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Al Qawasmeh M, Ahmed YB, Al-Bzour AN, Al-Majali GN, Alzghoul SM, Al-Khalili AA, Ibrahim RB, Hamza AI, Al-Mannai RS, Refaie H, Alhayek K, Kofahi R, Leffler A, El Salem K. Meta-analytical evidence of functional and structural abnormalities associated with pain processing in migraine patients: An activation likelihood estimation. Medicine (Baltimore) 2022; 101:e31206. [PMID: 36316871 PMCID: PMC9622585 DOI: 10.1097/md.0000000000031206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Migraine is a primary headache disorder that causes debilitating throbbing pain. Several functional MRI (fMRI) and voxel-based morphometry (VBM) studies have been used to investigate the structural and functional alteration in migraine. Here, we aim to study the converged brain regions of functional and structural abnormalities in gray matter volume (GMV) associated with pain processing and management in migraineurs and healthy controls (HC). METHODS A systematic search through PubMed and Sleuth was carried out for peer-reviewed functional and structural neuroimaging studies on migraine patients and HC yielded a total of 1136 studies. We performed an activation likelihood estimation (ALE) meta-analysis on VBM and pain stimulation task-based fMRI studies to investigate the converged areas of GMV and functional abnormalities between migraineurs and HC. We performed two subgroup analyses between migraine with aura (MwA) and migraine without aura (MwoA) relative to HC, and between chronic migraine (CM) and episodic migraine (EM) compared to HC. RESULTS The total sample included 16 fMRI and 22 VBM studies, consisting of 1295 migraine patients, compared to 995 HC. In fMRI analysis, ALE maps for pain stimulation tasks revealed hyperactivation in migraineurs in the substantia nigra compared to HC, whereas hypoactivation was seen in the cerebellum. For the VBM analysis, ALE clusters of increased GMV in migraineurs were observed in the parahippocampus and putamen nucleus. Whereas clusters of reduced GMV in migraineurs were seen in the frontal gyri. Compared to HC, MwoA patients showed a GMV reduction in the insula, and anterior cingulate, whereas MwA patients showed GMV reduction in the cerebellum, cingulate gyrus, and insula. CM patients showed decreased GMV in the precentral gyrus, whereas EM patients showed decreased GMV in the parahippocampus, and inferior frontal gyrus when compared to HC. CONCLUSIONS Our findings represent a potential biomarker for the diagnosis and management of migraine, by showing clustered brain regions of abnormal patterns of activation and GMV changes between migraineurs and HC which might be associated with hyposensitivity to pain in migraineurs. Further studies are required to determine disease progression or therapeutic interventions' effect on migraine.
Collapse
Affiliation(s)
- Majdi Al Qawasmeh
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Yaman B. Ahmed
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- *Correspondence: Yaman B. Ahmed, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan (e-mail: )
| | - Ayah N. Al-Bzour
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Saja M. Alzghoul
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas A. Al-Khalili
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ruaa B. Ibrahim
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ammar I. Hamza
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ramaz S. Al-Mannai
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Haneen Refaie
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Kefah Alhayek
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Raed Kofahi
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Khalid El Salem
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
30
|
Chen Y, Liu Y, Song Y, Zhao S, Li B, Sun J, Liu L. Therapeutic applications and potential mechanisms of acupuncture in migraine: A literature review and perspectives. Front Neurosci 2022; 16:1022455. [PMID: 36340786 PMCID: PMC9630645 DOI: 10.3389/fnins.2022.1022455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Acupuncture is commonly used as a treatment for migraines. Animal studies have suggested that acupuncture can decrease neuropeptides, immune cells, and proinflammatory and excitatory neurotransmitters, which are associated with the pathogenesis of neuroinflammation. In addition, acupuncture participates in the development of peripheral and central sensitization through modulation of the release of neuronal-sensitization-related mediators (brain-derived neurotrophic factor, glutamate), endocannabinoid system, and serotonin system activation. Clinical studies have demonstrated that acupuncture may be a beneficial migraine treatment, particularly in decreasing pain intensity, duration, emotional comorbidity, and days of acute medication intake. However, specific clinical effectiveness has not been substantiated, and the mechanisms underlying its efficacy remain obscure. With the development of biomedical and neuroimaging techniques, the neural mechanism of acupuncture in migraine has gained increasing attention. Neuroimaging studies have indicated that acupuncture may alter the abnormal functional activity and connectivity of the descending pain modulatory system, default mode network, thalamus, frontal-parietal network, occipital-temporal network, and cerebellum. Acupuncture may reduce neuroinflammation, regulate peripheral and central sensitization, and normalize abnormal brain activity, thereby preventing pain signal transmission. To summarize the effects and neural mechanisms of acupuncture in migraine, we performed a systematic review of literature about migraine and acupuncture. We summarized the characteristics of current clinical studies, including the types of participants, study designs, and clinical outcomes. The published findings from basic neuroimaging studies support the hypothesis that acupuncture alters abnormal neuroplasticity and brain activity. The benefits of acupuncture require further investigation through basic and clinical studies.
Collapse
|
31
|
Tsao YC, Wang YF, Fuh JL, Chen WT, Lai KL, Liu HY, Wang SJ, Chen SP. Non-aura visual disturbance with high visual aura rating scale scores has stronger association with migraine chronification than typical aura. Cephalalgia 2022; 42:1487-1497. [PMID: 36068697 DOI: 10.1177/03331024221123074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To investigate the clinical correlates of visual symptoms in patients with migraine. METHOD Patients with migraine that attended our headache clinics were enrolled. Headache profiles, disability, and comorbidities were acquired with structured questionnaires. A semi-structured visual phenomenon questionnaire was also used to assess the characteristics of visual symptoms, including visual aura in patients with migraine with aura and transient visual disturbance in patients with migraine without aura. Headache specialists interviewed with the participants for the ascertainment of diagnosis and verification of the questionnaires. RESULT Migraine with aura patients with visual aura (n = 743, female/male = 2.3, mean age: 34.7 ± 12.2 years) and migraine without aura patients with non-aura transient visual disturbance (n = 1,808, female/male = 4.4, mean age: 39.4 ± 12.6 years) were enrolled. Patients with transient visual disturbance had higher headache-related disability and more psychiatric comorbidities. Chronic migraine was more common in migraine without aura than migraine with aura patients (41.9% vs. 11.8%, OR = 5.48 [95% CI: 4.33-7.02], p < 0.001). The associations remained after adjusting confounding factors. CONCLUSION Presence of non-aura transient visual disturbance may suggest a higher migraine-related disability and is linked to higher risk of chronic migraine than typical migraine aura in migraine patients. Further studies are needed to elucidate the potential mechanism.
Collapse
Affiliation(s)
- Yu-Chien Tsao
- Keelung Hospital of the Ministry of Health and Welfare, Keelung, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ling Fuh
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ta Chen
- Keelung Hospital of the Ministry of Health and Welfare, Keelung, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuan-Lin Lai
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Yu Liu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Nikolova S, Schwedt TJ. Magnetic resonance spectroscopy studies in migraine. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100102. [PMID: 36531616 PMCID: PMC9755026 DOI: 10.1016/j.ynpai.2022.100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 06/17/2023]
Abstract
This review summarizes major findings and recent advances in magnetic resonance spectroscopy (MRS) of migraine. A multi database search of PubMed, EMBASE, and Web of Science was performed with variations of magnetic resonance spectroscopy and headache until 20th September 2021. The search generated 2897 studies, 676 which were duplicates and 1836 were not related to headache. Of the remaining 385 studies examined, further exclusions for not migraine (n = 114), and not MRS of human brain (n = 128), and non-original contributions (n = 51) or conferences (n = 24) or case studies (n = 11) or non-English (n = 3), were applied. The manuscripts of all resulting reports were reviewed for their possible inclusion in this manuscript (n = 54). The reference lists of all included reports were carefully reviewed and articles relevant to this review were added (n = 2).Included are 56 studies of migraine with and without aura that involve magnetic resonance spectroscopy of the human brain. The topics are presented in the form of a narrative review. This review aims to provide a summary of the metabolic changes measured by MRS in patients with migraine. Despite the variability reported between studies, common findings focused on regions functionally relevant to migraine such as occipital cortices, thalamic nuclei, cerebellum and cingulate. The most reproducible results were decreased N-acetyl-aspartate (NAA) in cerebellum in patients with hemiplegic migraine and in the thalamus of chronic migraine patients. Increased lactate (Lac) in the occipital cortex was found for migraine with aura but not in subjects without aura. MRS studies support the hypothesis of impaired energetics and mitochondrial dysfunction in migraine. Although results regarding GABA and Glu were less consistent, studies suggest there might be an imbalance of these important inhibitory and excitatory neurotransmitters in the migraine brain. Multinuclear imaging studies in migraine with and without aura, predominantly investigating phosphorous, report alterations of PCr in occipital, parietal, and posterior brain regions. There have been too few studies to assess the diagnostic relevance of sodium imaging in migraine.
Collapse
Affiliation(s)
| | - Todd J. Schwedt
- Corresponding author at: 5777 East Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
33
|
Noseda R. Cerebro-Cerebellar Networks in Migraine Symptoms and Headache. FRONTIERS IN PAIN RESEARCH 2022; 3:940923. [PMID: 35910262 PMCID: PMC9326053 DOI: 10.3389/fpain.2022.940923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing—all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Rodrigo Noseda
| |
Collapse
|
34
|
Peng KP, Benoliel R, May A. A Review of Current Perspectives on Facial Presentations of Primary Headaches. J Pain Res 2022; 15:1613-1621. [PMID: 35685300 PMCID: PMC9174019 DOI: 10.2147/jpr.s294404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Orofacial pain (OFP) has recently been classified and subdivided into a number of groups, similar to headache disorders in the International Classification of Headache Disorders (ICHD). A novel group of OFP has been established whose major feature is that they resemble primary headache disorders occurring in the V2 or V3 dermatomes. These follow the clinical criteria and associated symptoms of the eponymous headache syndromes. Following the recent International Classification of Orofacial Pain (ICOP), three types are differentiated: Headache which spread into the face (type 1), facial pain which replaced headache but maintained the same characteristics and associated symptoms of the former headache (type 2), and de-novo orofacial pain that resembles primary headache types without any involvement of the ophthalmic trigeminal branch (type 3). The epidemiology is unclear: type 1 and 2 are not exactly common, they certainly exist in a notable proportion of headache patients, whereas type 3 may be rather rare. Since effective treatment options are available, it is important for clinicians to recognize such syndromes early to avoid misdiagnosis and unnecessary treatment, which most of these patients still experience. This review gives an up-to-date summary of diagnosis, pathophysiology and treatment of attack-like non-dental facial pain disorders.
Collapse
Affiliation(s)
- Kuan-Po Peng
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rafael Benoliel
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers University, Newark, NJ, USA
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Correspondence: Arne May, Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany, Tel +49-40-7410-59189, Fax +49-40-7410-59955, Email
| |
Collapse
|
35
|
Cycling multisensory changes in migraine: more than a headache. Curr Opin Neurol 2022; 35:367-372. [PMID: 35674081 DOI: 10.1097/wco.0000000000001059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Research on migraine usually focuses on the headache; however, accumulating evidence suggests that migraine not only changes the somatosensory system for nociception (pain), but also the other modalities of perception, such as visual, auditory or tactile sense. More importantly, the multisensory changes exist beyond the headache (ictal) phase of migraine and show cyclic changes, suggesting a central generator driving the multiple sensory changes across different migraine phases. This review summarizes the latest studies that explored the cyclic sensory changes of migraine. RECENT FINDINGS Considerable evidence from recent neurophysiological and functional imaging studies suggests that alterations in brain activation start at least 48 h before the migraine headache and outlast the pain itself for 24 h. Several sensory modalities are involved with cyclic changes in sensitivity that peak during the ictal phase. SUMMARY In many ways, migraine represents more than just vascular-mediated headaches. Migraine alters the propagation of sensory information long before the headache attack starts.
Collapse
|
36
|
Hsiao FJ, Chen WT, Pan LLH, Liu HY, Wang YF, Chen SP, Lai KL, Coppola G, Wang SJ. Dynamic brainstem and somatosensory cortical excitability during migraine cycles. J Headache Pain 2022; 23:21. [PMID: 35123411 PMCID: PMC8903675 DOI: 10.1186/s10194-022-01392-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Background Migraine has complex pathophysiological characteristics and episodic attacks. To decipher the cyclic neurophysiological features of migraine attacks, in this study, we compared neuronal excitability in the brainstem and primary somatosensory (S1) region between migraine phases for 30 consecutive days in two patients with episodic migraine. Methods Both patients underwent EEG recording of event-related potentials with the somatosensory and paired-pulse paradigms for 30 consecutive days. The migraine cycle was divided into the following phases: 24–48 h before headache onset (Pre2), within 24 h before headache onset (Pre1), during the migraine attack (Ictal), within 24 h after headache offset (Post1), and the interval of ˃48 h between the last and next headache phase (Interictal). The normalised current intensity in the brainstem and S1 and gating ratio in the S1 were recorded and examined. Results Six migraine cycles (three for each patient) were analysed. In both patients, the somatosensory excitability in the brainstem (peaking at 12–14 ms after stimulation) and S1 (peaking at 18–19 ms after stimulation) peaked in the Pre1 phase. The S1 inhibitory capability was higher in the Ictal phase than in the Pre1 phase. Conclusion This study demonstrates that migraine is a cyclic excitatory disorder and that the neural substrates involved include the somatosensory system, starting in the brainstem and spanning subsequently to the S1 before the migraine occurs. Further investigations with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan. .,Department of Neurology, Keelung Hospital, Ministry of Health and Welfare, Keelung, Taiwan.
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Kuan-Lin Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan.
| |
Collapse
|
37
|
Di Antonio S, Castaldo M, Ponzano M, Bovis F, Hugo Villafañe J, Torelli P, Finocchi C, Arendt‐Nielsen L. Trigeminal and cervical sensitization during the four phases of the migraine cycle in patients with episodic migraine. Headache 2022; 62:176-190. [DOI: 10.1111/head.14261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Stefano Di Antonio
- Department of Health Science and Technology Center for Pain and Neuroplasticity School of Medicine Aalborg University Aalborg Denmark
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health University of Genoa Genoa Italy
| | - Matteo Castaldo
- Department of Health Science and Technology Center for Pain and Neuroplasticity School of Medicine Aalborg University Aalborg Denmark
| | - Marta Ponzano
- Department of Health Sciences Section of Biostatistics University of Genoa Genoa Italy
| | - Francesca Bovis
- Department of Health Sciences Section of Biostatistics University of Genoa Genoa Italy
| | | | - Paola Torelli
- Headache Centre Department of Medicine and Surgery University of Parma Parma Italy
| | - Cinzia Finocchi
- Headache Centre IRCCS Ospedale Policlinico San Martino Genoa Italy
| | - Lars Arendt‐Nielsen
- Department of Health Science and Technology Center for Pain and Neuroplasticity School of Medicine Aalborg University Aalborg Denmark
- Department of Medical Gastroenterology Mech‐Sense Aalborg University Hospital Aalborg Denmark
| |
Collapse
|
38
|
Dobos D, Szabó E, Baksa D, Gecse K, Kocsel N, Pap D, Zsombók T, Kozák LR, Kökönyei G, Juhász G. Regular Practice of Autogenic Training Reduces Migraine Frequency and Is Associated With Brain Activity Changes in Response to Fearful Visual Stimuli. Front Behav Neurosci 2022; 15:780081. [PMID: 35126068 PMCID: PMC8814632 DOI: 10.3389/fnbeh.2021.780081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Several factors can contribute to the development and chronification of migraines, including stress, which is undoubtedly a major trigger. Beyond pharmacotherapy, other treatment methods also exist, including behavioral techniques aiming at reducing patients’ stress response. However, the exact brain mechanisms underlying the efficacy of such methods are poorly understood. Our pilot study examined whether the regular practice of autogenic training (AT) induces functional brain changes and if so, how it could be associated with the improvement of migraine parameters. By exploring neural changes through which AT exerts its effect, we can get closer to the pathomechanism of migraine. In particular, we investigated the effect of a headache-specific AT on brain activation using an implicit face emotion processing functional MRI (fMRI) task in female subjects with and without episodic migraine. Our focus was on migraine- and psychological stress-related brain regions. After a 16-week training course, migraineurs showed decreased activation in the migraine-associated dorsal pons to fearful compared with neutral visual stimuli. We also detected decreasing differences in supplementary motor area (SMA) activation to fearful stimuli, and in posterior insula activation to happy stimuli between healthy subjects and migraineurs. Furthermore, migraineurs reported significantly less migraine attacks. These brain activation changes suggest that AT may influence the activity of brain regions responsible for emotion perception, emotional and motor response integration, as well as cognitive control, while also being able to diminish the activation of regions that have an active role in migraine attacks. Improvements induced by the training and the underlying neurophysiological mechanisms are additional arguments in favor of evidence-based personalized behavioral therapies.
Collapse
Affiliation(s)
- Dóra Dobos
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Edina Szabó
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Center for Pain and the Brain (PAIN Research Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Baksa
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Natália Kocsel
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Pap
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Terézia Zsombók
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Lajos R. Kozák
- Magnetic Resonance Research Center, Semmelweis University, Budapest, Hungary
| | - Gyöngyi Kökönyei
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Juhász
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Gabriella Juhász,
| |
Collapse
|
39
|
Stankewitz A, Schulz E. Intrinsic network connectivity reflects the cyclic trajectory of migraine attacks. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100085. [PMID: 35243179 PMCID: PMC8861450 DOI: 10.1016/j.ynpai.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Episodic migraine is considered to be cyclic in nature, triggered by the hypothalamus. To assess the natural trajectory of intrinsic networks over an entire migraine cycle, we designed a longitudinal intra-individual study using functional magnetic resonance imaging (fMRI). METHODS Intrinsic network connectivity was assessed for 12 migraineurs in 82 sessions including spontaneous, untriggered headache attacks and follow-up recordings towards the next attack. RESULTS We found cyclic changes in the visual, auditory, and somatosensory networks, in limbic networks (e.g. thalamo-insular, parahippocampal), and in the salience network (anterior insula and dorsal anterior cingulate cortex). Connectivity changes also extended to further cortical networks, such as the central executive network, the default mode network, as well as subcortical networks. Almost all of these network connectivity changes followed the trajectory of a linear increase over the pain-free interval that peaked immediately prior to the headache, and "dropped" to the baseline level during the headache. These network alterations are associated with a number of cortical functions that may explain the variety of ictal and pre-ictal physiological and psychological migraine symptoms. CONCLUSION Our results suggest that migraine disease is associated with widespread cyclic alterations of intrinsic networks that develop before the headache is initiated, i.e. during the interictal and premonitory phase. The increasing magnitude of connectivity within these networks towards the next attack may reflect an increasing effort to maintain network integrity.
Collapse
Affiliation(s)
- Anne Stankewitz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Enrico Schulz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
40
|
Mayr A, Jahn P, Stankewitz A, Deak B, Winkler A, Witkovsky V, Eren O, Straube A, Schulz E. Patients with chronic pain exhibit individually unique cortical signatures of pain encoding. Hum Brain Mapp 2021; 43:1676-1693. [PMID: 34921467 PMCID: PMC8886665 DOI: 10.1002/hbm.25750] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic pain is characterised by an ongoing and fluctuating intensity over time. Here, we investigated how the trajectory of the patients' endogenous pain is encoded in the brain. In repeated functional MRI (fMRI) sessions, 20 patients with chronic back pain and 20 patients with chronic migraine were asked to continuously rate the intensity of their endogenous pain. Linear mixed effects models were used to disentangle cortical processes related to pain intensity and to pain intensity changes. At group level, we found that the intensity of pain in patients with chronic back pain is encoded in the anterior insular cortex, the frontal operculum, and the pons; the change of pain in chronic back pain and chronic migraine patients is mainly encoded in the anterior insular cortex. At the individual level, we identified a more complex picture where each patient exhibited their own signature of endogenous pain encoding. The diversity of the individual cortical signatures of chronic pain encoding results bridge between clinical observations and neuroimaging; they add to the understanding of chronic pain as a complex and multifaceted disease.
Collapse
Affiliation(s)
- Astrid Mayr
- Department of Radiology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pauline Jahn
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Stankewitz
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bettina Deak
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anderson Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ozan Eren
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Straube
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Enrico Schulz
- Department of Neurology, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
41
|
Hoffmann J, Mehnert J, Koo EM, May A. Greater occipital nerve block modulates nociceptive signals within the trigeminocervical complex. J Neurol Neurosurg Psychiatry 2021; 92:1335-1340. [PMID: 34312221 DOI: 10.1136/jnnp-2021-326433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/28/2021] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The pharmacological block of the greater occipital nerve has been proven effective in numerous headache and facial pain syndromes. This clinical effect supports the hypothesis of a strong functional interaction between the occipital and trigeminal nerves which has been proposed in neurophysiological in vivo experiments in rodents. Although it is likely that the interaction has to occur in the central nervous system, the exact site and the mechanisms of the interaction remain largely unknown. METHODS Focusing on these questions we investigated in a double-blind, placebo-controlled, randomised study the influence of an occipital nerve block with lidocaine 1% on neuronal activation in the trigeminocervical complex using high-resolution functional magnetic resonance on a 3T scanner. In order to investigate potential clinical effects on the trigeminal nerve, we further performed quantitative sensory testing and analysed a potential shift in thermal detection and pain thresholds. RESULTS The pharmacological block of the greater occipital nerve induced an occipital anaesthesia ipsilateral to the block. Functional imaging revealed that the occipital injection of lidocaine but not placebo significantly reduced nociceptive trigeminal activation. CONCLUSIONS These data suggest that the functional inhibition of the occipital nerve block on trigeminal nociceptive activity is likely to occur at the C2 level where the occipital nerve enters the trigeminocervical complex and converges on the same central nuclei before the signal crosses the midline at that level and is then transmitted to higher processing centres.
Collapse
Affiliation(s)
- Jan Hoffmann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jan Mehnert
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena M Koo
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
A Narrative Review of Neuroimaging Studies in Acupuncture for Migraine. Pain Res Manag 2021; 2021:9460695. [PMID: 34804268 PMCID: PMC8598357 DOI: 10.1155/2021/9460695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/10/2021] [Indexed: 12/18/2022]
Abstract
Acupuncture has been widely used as an alternative and complementary therapy for migraine. With the development of neuroimaging techniques, the central mechanism of acupuncture for migraine has gained increasing attention. This review aimed to analyze the study design and main findings of neuroimaging studies of acupuncture for migraine to provide the reference for future research. The original studies were collected and screened in three English databases (PubMed, Embase, and Cochrane Library) and four Chinese databases (Chinese National Knowledge Infrastructure, Chinese Biomedical Literature database, the Chongqing VIP database, and Wanfang database). As a result, a total of 28 articles were included. Functional magnetic resonance imaging was the most used neuroimaging technique to explore the cerebral activities of acupuncture for migraine. This review manifested that acupuncture could elicit cerebral responses on patients with migraine, different from sham acupuncture. The results indicated that the pain systems, including the medial pain pathway, lateral pain pathway, and descending pain modulatory system, participated in the modulation of the cerebral activities of migraine by acupuncture.
Collapse
|
43
|
Erdener ŞE, Kaya Z, Dalkara T. Parenchymal neuroinflammatory signaling and dural neurogenic inflammation in migraine. J Headache Pain 2021; 22:138. [PMID: 34794382 PMCID: PMC8600694 DOI: 10.1186/s10194-021-01353-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pain is generally concomitant with an inflammatory reaction at the site where the nociceptive fibers are activated. Rodent studies suggest that a sterile meningeal inflammatory signaling cascade may play a role in migraine headache as well. Experimental studies also suggest that a parenchymal inflammatory signaling cascade may report the non-homeostatic conditions in brain to the meninges to induce headache. However, how these signaling mechanisms function in patients is unclear and debated. Our aim is to discuss the role of inflammatory signaling in migraine pathophysiology in light of recent developments. Body Rodent studies suggest that a sterile meningeal inflammatory reaction can be initiated by release of peptides from active trigeminocervical C-fibers and stimulation of resident macrophages and dendritic/mast cells. This inflammatory reaction might be needed for sustained stimulation and sensitization of meningeal nociceptors after initial activation along with ganglionic and central mechanisms. Most migraines likely have cerebral origin as suggested by prodromal neurologic symptoms. Based on rodent studies, a parenchymal inflammatory signaling cascade has been proposed as a potential mechanism linking cortical spreading depolarization (CSD) to meningeal nociception. A recent PET/MRI study using a sensitive inflammation marker showed the presence of meningeal inflammatory activity in migraine with aura patients over the occipital cortex generating the visual aura. These studies also suggest the presence of a parenchymal inflammatory activity, supporting the experimental findings. In rodents, parenchymal inflammatory signaling has also been shown to be activated by migraine triggers such as sleep deprivation without requiring a CSD because of the resultant transcriptional changes, predisposing to inadequate synaptic energy supply during intense excitatory transmission. Thus, it may be hypothesized that neuronal stress created by either CSD or synaptic activity-energy mismatch could both initiate a parenchymal inflammatory signaling cascade, propagating to the meninges, where it is converted to a lasting headache with or without aura. Conclusion Experimental studies in animals and emerging imaging findings from patients warrant further research to gain deeper insight to the complex role of inflammatory signaling in headache generation in migraine.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Zeynep Kaya
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
44
|
Porcaro C, Di Renzo A, Tinelli E, Di Lorenzo G, Seri S, Di Lorenzo C, Parisi V, Caramia F, Fiorelli M, Di Piero V, Pierelli F, Coppola G. Hypothalamic structural integrity and temporal complexity of cortical information processing at rest in migraine without aura patients between attacks. Sci Rep 2021; 11:18701. [PMID: 34548562 PMCID: PMC8455544 DOI: 10.1038/s41598-021-98213-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
The hypothalamus has been attributed an important role during the premonitory phase of a migraine attack. Less is known about the role played by the hypothalamus in the interictal period and its relationship with the putative neurocognitive networks previously identified in the pathophysiology of migraine. Our aim was to test whether the hypothalamic microstructure would be altered during the interictal period and whether this co-existed with aberrant connectivity at cortical level. We collected multimodal MRI data from 20 untreated patients with migraine without aura between attacks (MO) and 20 healthy controls (HC) and studied fractional anisotropy, mean (MD), radial (RD), and axial diffusivity of the hypothalamus ROI as a whole from diffusion tensor imaging (DTI). Moreover, we performed an exploratory analysis of the same DTI metrics separately for the anterior and posterior hypothalamic ROIs bilaterally. From resting-state functional MRI, we estimated the Higuchi's fractal dimension (FD), an index of temporal complexity sensible to describe non-periodic patterns characterizing BOLD signature. Finally, we correlated neuroimaging findings with migraine clinical features. In comparison to HC, MO had significantly higher MD, AD, and RD values within the hypothalamus. These findings were confirmed also in the exploratory analysis on the sub-regions of the hypothalamus bilaterally, with the addition of lower FA values on the posterior ROIs. Patients showed higher FD values within the salience network (SN) and the cerebellum, and lower FD values within the primary visual (PV) network compared to HC. We found a positive correlation between cerebellar and SN FD values and severity of migraine. Our findings of hypothalamic abnormalities between migraine attacks may form part of the neuroanatomical substrate that predisposes the onset of the prodromal phase and, therefore, the initiation of an attack. The peculiar fractal dimensionality we found in PV, SN, and cerebellum may be interpreted as an expression of abnormal efficiency demand of brain networks devoted to the integration of sensory, emotional, and cognitive information related to the severity of migraine.
Collapse
Affiliation(s)
- Camillo Porcaro
- grid.428479.40000 0001 2297 9633Institute of Cognitive Sciences and Technologies (ISTC) - National Research Council (CNR), Rome, Italy ,grid.6572.60000 0004 1936 7486Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK ,S. Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy ,grid.7010.60000 0001 1017 3210Department of Information Engineering - Università Politecnica delle Marche, Ancona, Italy
| | | | - Emanuele Tinelli
- grid.7841.aDepartment of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giorgio Di Lorenzo
- grid.6530.00000 0001 2300 0941Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy ,grid.417778.a0000 0001 0692 3437IRCCS - Fondazione Santa Lucia, Rome, Italy
| | - Stefano Seri
- grid.7273.10000 0004 0376 4727College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham, UK ,grid.498025.2Department of Clinical Neurophysiology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Cherubino Di Lorenzo
- grid.7841.aDepartment of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100 Latina, Italy
| | | | - Francesca Caramia
- grid.7841.aDepartment of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marco Fiorelli
- grid.7841.aDepartment of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Di Piero
- grid.7841.aDepartment of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Pierelli
- grid.7841.aDepartment of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100 Latina, Italy ,grid.419543.e0000 0004 1760 3561IRCCS - Neuromed, Pozzilli, IS Italy
| | - Gianluca Coppola
- grid.7841.aDepartment of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
45
|
Kim YE, Kim MK, Suh SI, Kim JH. Altered trigeminothalamic spontaneous low-frequency oscillations in migraine without aura: a resting-state fMRI study. BMC Neurol 2021; 21:342. [PMID: 34493235 PMCID: PMC8422747 DOI: 10.1186/s12883-021-02374-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Recent resting-state fMRI studies demonstrated functional dysconnectivity within the central pain matrix in migraineurs. This study aimed to investigate the spatial distribution and amplitude of low-frequency oscillations (LFOs) using fractional amplitude of low-frequency fluctuation (fALFF) analysis in migraine patients without aura, and to examine relationships between regional LFOs and clinical variables. Methods Resting-state fMRI data were obtained and preprocessed in 44 migraine patients without aura and 31 matched controls. fALFF was computed according to the original method, z-transformed for standardization, and compared between migraineurs and controls. Correlation analysis between regional fALFF and clinical variables was performed in migraineurs as well. Results Compared with controls, migraineurs had significant fALFF increases in bilateral ventral posteromedial (VPM) thalamus and brainstem encompassing rostral ventromedial medulla (RVM) and trigeminocervical complex (TCC). Regional fALFF values of bilateral VPM thalamus and brainstem positively correlated with disease duration, but not with migraine attack frequency or Migraine Disability Assessment Scale score. Conclusions We have provided evidence for abnormal LFOs in the brainstem including RVM/TCC and thalamic VPM nucleus in migraine without aura, implicating trigeminothalamic network oscillations in migraine pathophysiology. Our results suggest that enhanced LFO activity may underpin the interictal trigeminothalamic dysrhythmia that could contribute to the impairments of pain transmission and modulation in migraine. Given our finding of increasing fALFF in relation to increasing disease duration, the observed trigeminothalamic dysrhythmia may indicate either an inherent pathology leading to migraine headaches or a consequence of repeated attacks on the brain.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea
| | - Min Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Stankewitz A, Keidel L, Rehm M, Irving S, Kaczmarz S, Preibisch C, Witkovsky V, Zimmer C, Schulz E, Toelle TR. Migraine attacks as a result of hypothalamic loss of control. NEUROIMAGE-CLINICAL 2021; 32:102784. [PMID: 34425551 PMCID: PMC8379646 DOI: 10.1016/j.nicl.2021.102784] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022]
Abstract
Hypothalamo-limbic connectivity reflects the cyclic nature of migraine. Hypothalamo-limbic connectivity is largest just before the attack. Hypothalamo-limbic connectivity is collapsing during the attack. Limbic perfusion is increasing and has a maximum during the attack. The disrupted connectivity allows high limbic perfusion, resulting in migraine attack.
Migraine is a complex neurological disorder affecting approximately 12% of the population. The pathophysiology is not yet fully understood, however the clinical features of the disease, such as the cyclic behaviour of attacks and vegetative symptoms, suggest a prominent role of the hypothalamus. Previous research has observed neuronal alterations at different time points during the migraine interval, specifically just before the headache is initiated. We therefore aimed to assess the trajectory of migraineurs’ brain activity over an entire migraine cycle. Using functional magnetic resonance imaging (fMRI) with pseudo-continuous arterial spin labelling (ASL), we designed a longitudinal intra-individual study to detect the rhythmicity of (1) the cerebral perfusion and (2) the hypothalamic connectivity over an entire migraine cycle. Twelve episodic migraine patients were examined in 82 sessions during spontaneous headache attacks with follow-up recordings towards the next attack. We detected cyclic changes of brain perfusion in the limbic circuit (insula and nucleus accumbens), with the highest perfusion during the headache attack. In addition, we found an increase of hypothalamic connectivity to the limbic system over the interictal interval towards the attack, then collapsing during the headache phase. The present data provide strong evidence for the predominant role of the hypothalamus in generating migraine attacks. Due to a genetically-determined cortical hyperexcitability, migraineurs are most likely characterised by an increased susceptibility of limbic neurons to the known migraine trigger. The hypothalamus as a metronome of internal processes is suggested to control these limbic circuits: migraine attacks may occur as a result of the hypothalamus losing control over the limbic system. Repetitive psychosocial stress, one of the leading trigger factors reported by patients, might make the limbic system even more vulnerable and lead to a premature triggering of a migraine attack. Potential therapeutic interventions are therefore suggested to strengthen limbic circuits with dedicated medication or psychological approaches.
Collapse
Affiliation(s)
- Anne Stankewitz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Leonie Keidel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Ophthalmology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias Rehm
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephanie Irving
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Kaczmarz
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christine Preibisch
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Enrico Schulz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Thomas R Toelle
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
47
|
Zobdeh F, Ben Kraiem A, Attwood MM, Chubarev VN, Tarasov VV, Schiöth HB, Mwinyi J. Pharmacological treatment of migraine: Drug classes, mechanisms of action, clinical trials and new treatments. Br J Pharmacol 2021; 178:4588-4607. [PMID: 34379793 DOI: 10.1111/bph.15657] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022] Open
Abstract
Migraine is the sixth most prevalent disease globally, a major cause of disability, and it imposes an enormous personal and socioeconomic burden. Migraine treatment is often limited by insufficient therapy response, leading to the need for individually adjusted treatment approaches. In this review, we analyse historical and current pharmaceutical development approaches in acute and chronic migraine based on a comprehensive and systematic analysis of Food and Drug Administration (FDA)-approved drugs and those under investigation. The development of migraine therapeutics has significantly intensified during the last 3 years, as shown by our analysis of the trends of drug development between 1970 and 2020. The spectrum of drug targets has expanded considerably, which has been accompanied by an increase in the number of specialised clinical trials. This review highlights the mechanistic implications of FDA-approved and currently investigated drugs and discusses current and future therapeutic options based on identified drug classes of interest.
Collapse
Affiliation(s)
- Farzin Zobdeh
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Aziza Ben Kraiem
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Vladimir N Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
48
|
White matter changes in the trigeminal spinal tract in chronic migraineurs: an ex vivo study combining ultra-high field diffusion tensor imaging and polarized light imaging microscopy. Pain 2021; 163:779-785. [PMID: 34321411 DOI: 10.1097/j.pain.0000000000002424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic migraine (CM) is a disabling neurologic disorder that affects approximately 2% of the general population. Neuroimaging studies show functional involvement of trigeminal structures, such as the trigeminal spinal nucleus (Sp5) in migraine. However, structural changes in the Sp5 and the afferent trigeminal spinal tract (sp5) have never been found. The aim of this study was to test the hypothesis that white matter changes in the sp5 are a key feature of brain alterations in CM patients. We used diffusion Magnetic Resonance Imaging (dMRI) and polarized light imaging (PLI) of post mortem brainstem specimens from healthy controls (n = 5) and CM patients (n = 5) to study white matter alterations in the sp5. Within the sp5, dMRI metrics included fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) values. PLI was used to assess myelin density by measure of the retardance values in the sp5. The present study provides histological evidence that structural alterations occur in the sp5 in CM patients as compared to healthy controls. Myelin-density, as assessed by retardance values, showed to be higher and a corresponding increase in FA-values was observed. In addition, accompanying decreases in MD-, AD- and RD-values were observed. This study shows that the sp5 undergoes neuroplastic changes, a feature which substantiates evidence for the hyperactivity of the Sp5 in migraine patients. More insights are needed to observe whether these changes only occur in CM patients.
Collapse
|
49
|
Abstract
Background Key structures for the pathophysiology of primary headache disorders such as migraine, cluster headache, and other trigeminal autonomic cephalalgias were identified by imaging in the past years. Objective Available data on functional imaging in primary headache disorders are summarized in this review. Material and Methods We performed a MEDLINE search on December 27th, 2020 using the search terms "primary headache" AND "imaging" that returned 453 results in English, out of which 137 were labeled reviews. All articles were evaluated for content and relevance for this narrative review. Results The structure depicted most consistently using functional imaging in different states of primary headaches (without and with pain) was the posterior hypothalamus. Whole-brain imaging techniques such as resting-state functional resonance imaging showed a wide-ranging association of cortical and subcortical areas with human nociceptive processing in the pathophysiological mechanisms underlying the different TACs. Similarities of distinct groups of primary headache disorders, as well as their differences in brain activation across these disorders, were highlighted. Conclusion The importance of neuroimaging research from clinical practice point of view remains the reliable and objective distinction of each individual pain syndrome from one another. This will help to make the correct clinical diagnosis and pave the way for better and effective treatment in the future. More research will be necessary to fulfill this unmet need.
Collapse
Affiliation(s)
- Steffen Naegel
- Department of Neurology, Martin Luther University Halle- Wittenberg and University Hospital Halle, Halle (Saale), Germany
| | - Mark Obermann
- Department of Neurology, Klinikum Weser-Egge, Höxter, Germany
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW This article summarizes the current understanding of the pathophysiology of migraine, including some controversial aspects of the underlying mechanisms of the disorder. RECENT FINDINGS Recent functional neuroimaging studies focusing on the nonpainful symptoms of migraine have identified key areas of the central nervous system implicated in the early phases of a migraine attack. Clinical studies of spontaneous and provoked migraine attacks, together with preclinical studies using translational animal models, have led to a better understanding of the disease and the development of disease-specific and targeted therapies. SUMMARY Our knowledge of the pathophysiology of migraine has advanced significantly in the past decades. Current evidence supports our understanding of migraine as a complex cyclical brain disorder that likely results from dysfunctional sensory processing and dysregulation of homeostatic mechanisms. This article reviews the underlying mechanisms of the clinical manifestations of each phase of the migraine cycle.
Collapse
|