1
|
Bonnefond M, Jensen O. The role of alpha oscillations in resisting distraction. Trends Cogn Sci 2025; 29:368-379. [PMID: 39668059 DOI: 10.1016/j.tics.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
The role of alpha oscillations (8-13 Hz) in suppressing distractors is extensively debated. One debate concerns whether alpha oscillations suppress anticipated visual distractors through increased power. Whereas some studies suggest that alpha oscillations support distractor suppression, others do not. We identify methodological differences that may explain these discrepancies. A second debate concerns the mechanistic role of alpha oscillations. We and others previously proposed that alpha oscillations implement gain reduction in early visual regions when target load or distractor interference is high. Here, we suggest that parietal alpha oscillations support gating or stabilization of attentional focus and that alpha oscillations in ventral attention network (VAN) support resistance to attention capture. We outline future studies needed to uncover the precise mechanistic role of alpha oscillations.
Collapse
Affiliation(s)
- Mathilde Bonnefond
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500, Bron, France.
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK; Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK; Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
2
|
Akdogan I, Ogmen H, Kafaligonul H. The phase coherence of cortical oscillations predicts dynamic changes in perceived visibility. Cereb Cortex 2024; 34:bhae380. [PMID: 39319441 PMCID: PMC11422671 DOI: 10.1093/cercor/bhae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
The phase synchronization of brain oscillations plays an important role in visual processing, perceptual awareness, and performance. Yet, the cortical mechanisms underlying modulatory effects of post-stimulus phase coherence and frequency-specific oscillations associated with different aspects of vision are still subject to debate. In this study, we aimed to identify the post-stimulus phase coherence of cortical oscillations associated with perceived visibility and contour discrimination. We analyzed electroencephalogram data from two masking experiments where target visibility was manipulated by the contrast ratio or polarity of the mask under various onset timing conditions (stimulus onset asynchronies, SOAs). The behavioral results indicated an SOA-dependent suppression of target visibility due to masking. The time-frequency analyses revealed significant modulations of phase coherence over occipital and parieto-occipital regions. We particularly identified modulations of phase coherence in the (i) 2-5 Hz frequency range, which may reflect feedforward-mediated contour detection and sustained visibility; and (ii) 10-25 Hz frequency range, which may be associated with suppressed visibility through inhibitory interactions between and within synchronized neural pathways. Taken together, our findings provide evidence that oscillatory phase alignments, not only in the pre-stimulus but also in the post-stimulus window, play a crucial role in shaping perceived visibility and dynamic vision.
Collapse
Affiliation(s)
- Irem Akdogan
- Department of Neuroscience, Bilkent University, Cankaya, Ankara 06800, Türkiye
- Aysel Sabuncu Brain Research Center, Bilkent University, Cankaya, Ankara 06800, Türkiye
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Cankaya, Ankara 06800, Türkiye
| | - Haluk Ogmen
- Laboratory of Perceptual and Cognitive Dynamics, Electrical & Computer Engineering, Ritchie School of Engineering & Computer Science, University of Denver, Denver, CO 80210, United States
| | - Hulusi Kafaligonul
- Department of Neuroscience, Bilkent University, Cankaya, Ankara 06800, Türkiye
- Aysel Sabuncu Brain Research Center, Bilkent University, Cankaya, Ankara 06800, Türkiye
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Cankaya, Ankara 06800, Türkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Faculty of Medicine, Gazi University, Yenimahalle, Ankara 06560, Türkiye
| |
Collapse
|
3
|
De Filippo R, Schmitz D. Synthetic surprise as the foundation of the psychedelic experience. Neurosci Biobehav Rev 2024; 157:105538. [PMID: 38220035 PMCID: PMC10839673 DOI: 10.1016/j.neubiorev.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
4
|
Jaeger C, Nuttall R, Zimmermann J, Dowsett J, Preibisch C, Sorg C, Wohlschlaeger A. Targeted rhythmic visual stimulation at individual participants' intrinsic alpha frequency causes selective increase of occipitoparietal BOLD-fMRI and EEG functional connectivity. Neuroimage 2023; 270:119981. [PMID: 36848971 DOI: 10.1016/j.neuroimage.2023.119981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023] Open
Abstract
Neural oscillations in distinct frequency bands are ubiquitous in the brain and play a role in many cognitive processes. The "communication by coherence" hypothesis, poses that the synchronization through phase coupling of frequency-specific neural oscillations regulate information flow across distribute brain regions. Specifically, the posterior alpha frequency band (7-12 Hz) is thought to gate bottom-up visual information flow by inhibition during visual processing. Evidence shows that increased alpha phase coherency positively correlates with functional connectivity in resting state connectivity networks, supporting alpha mediates neural communication through coherency. However, these findings have mainly been derived from spontaneous changes in the ongoing alpha rhythm. In this study, we experimentally modulate the alpha rhythm by targeting individuals' intrinsic alpha frequency with sustained rhythmic light to investigate alpha-mediated synchronous cortical activity in both EEG and fMRI. We hypothesize increased alpha coherency and fMRI connectivity should arise from modulation of the intrinsic alpha frequency (IAF) as opposed to control frequencies in the alpha range. Sustained rhythmic and arrhythmic stimulation at the IAF and at neighboring frequencies within the alpha band range (7-12 Hz) was implemented and assessed in a separate EEG and fMRI study. We observed increased cortical alpha phase coherency in the visual cortex during rhythmic stimulation at the IAF as in comparison to rhythmic stimulation of control frequencies. In the fMRI, we found increased functional connectivity for stimulation at the IAF in visual and parietal areas as compared to other rhythmic control frequencies by correlating time courses from a set of regions of interest for the different stimulation conditions and applying network-based statistics. This suggests that rhythmic stimulation at the IAF frequency induces a higher degree of synchronicity of neural activity across the occipital and parietal cortex, which supports the role of the alpha oscillation in gating information flow during visual processing.
Collapse
Affiliation(s)
- Cilia Jaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neuroscience, Ludwig Maximilian University, Planneg-Martinsried, Germany
| | - Rachel Nuttall
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - James Dowsett
- Department of Psychology, Ludwig Maximilian University, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Clinic for Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Psychiatry, Technical University of Munich, Munich, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
5
|
Jiang Z, An X, Liu S, Wang L, Yin E, Yan Y, Ming D. The effect of prestimulus low-frequency neural oscillations on the temporal perception of audiovisual speech. Front Neurosci 2023; 17:1067632. [PMID: 36816126 PMCID: PMC9935937 DOI: 10.3389/fnins.2023.1067632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Objective Perceptual integration and segregation are modulated by the phase of ongoing neural oscillation whose frequency period is broader than the size of the temporal binding window (TBW). Studies have shown that the abstract beep-flash stimuli with about 100 ms TBW were modulated by the alpha band phase. Therefore, we hypothesize that the temporal perception of speech with about hundreds of milliseconds of TBW might be affected by the delta-theta phase. Methods Thus, we conducted a speech-stimuli-based audiovisual simultaneity judgment (SJ) experiment. Twenty human participants (12 females) attended this study, recording 62 channels of EEG. Results Behavioral results showed that the visual leading TBWs are broader than the auditory leading ones [273.37 ± 24.24 ms vs. 198.05 ± 19.28 ms, (mean ± sem)]. We used Phase Opposition Sum (POS) to quantify the differences in mean phase angles and phase concentrations between synchronous and asynchronous responses. The POS results indicated that the delta-theta phase was significantly different between synchronous and asynchronous responses in the A50V condition (50% synchronous responses in auditory leading SOA). However, in the V50A condition (50% synchronous responses in visual leading SOA), we only found the delta band effect. In the two conditions, we did not find a consistency of phases over subjects for both perceptual responses by the post hoc Rayleigh test (all ps > 0.05). The Rayleigh test results suggested that the phase might not reflect the neuronal excitability which assumed that the phases within a perceptual response across subjects concentrated on the same angle but were not uniformly distributed. But V-test showed the phase difference between synchronous and asynchronous responses across subjects had a significant phase opposition (all ps < 0.05) which is compatible with the POS result. Conclusion These results indicate that the speech temporal perception depends on the alignment of stimulus onset with an optimal phase of the neural oscillation whose frequency period might be broader than the size of TBW. The role of the oscillatory phase might be encoding the temporal information which varies across subjects rather than neuronal excitability. Given the enriched temporal structures of spoken language stimuli, the conclusion that phase encodes temporal information is plausible and valuable for future research.
Collapse
Affiliation(s)
- Zeliang Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,Xingwei An,
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lu Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Erwei Yin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing, China,Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin, China
| | - Ye Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing, China,Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,*Correspondence: Dong Ming,
| |
Collapse
|
6
|
Hardy SM, Jensen O, Wheeldon L, Mazaheri A, Segaert K. Modulation in alpha band activity reflects syntax composition: an MEG study of minimal syntactic binding. Cereb Cortex 2023; 33:497-511. [PMID: 35311899 PMCID: PMC9890467 DOI: 10.1093/cercor/bhac080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Successful sentence comprehension requires the binding, or composition, of multiple words into larger structures to establish meaning. Using magnetoencephalography, we investigated the neural mechanisms involved in binding at the syntax level, in a task where contributions from semantics were minimized. Participants were auditorily presented with minimal sentences that required binding (pronoun and pseudo-verb with the corresponding morphological inflection; "she grushes") and pseudo-verb wordlists that did not require binding ("cugged grushes"). Relative to no binding, we found that syntactic binding was associated with a modulation in alpha band (8-12 Hz) activity in left-lateralized language regions. First, we observed a significantly smaller increase in alpha power around the presentation of the target word ("grushes") that required binding (-0.05 to 0.1 s), which we suggest reflects an expectation of binding to occur. Second, during binding of the target word (0.15-0.25 s), we observed significantly decreased alpha phase-locking between the left inferior frontal gyrus and the left middle/inferior temporal cortex, which we suggest reflects alpha-driven cortical disinhibition serving to strengthen communication within the syntax composition neural network. Altogether, our findings highlight the critical role of rapid spatial-temporal alpha band activity in controlling the allocation, transfer, and coordination of the brain's resources during syntax composition.
Collapse
Affiliation(s)
- Sophie M Hardy
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Psychology, University of Warwick, Coventry CV4 7AL, UK
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Linda Wheeldon
- Department of Foreign Languages and Translations, University of Agder, Kristiansand 4630, Norway
| | - Ali Mazaheri
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Katrien Segaert
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Noah S, Meyyappan S, Ding M, Mangun GR. Anticipatory attention is a stable state induced by transient control mechanisms. Front Hum Neurosci 2022; 16:965689. [PMID: 35937681 PMCID: PMC9354136 DOI: 10.3389/fnhum.2022.965689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Anticipatory attention is a neurocognitive state in which attention control regions bias neural activity in sensory cortical areas to facilitate the selective processing of incoming targets. Previous electroencephalographic (EEG) studies have identified event-related potential (ERP) signatures of anticipatory attention, and implicated alpha band (8-12 Hz) EEG oscillatory activity in the selective control of neural excitability in visual cortex. However, the degree to which ERP and alpha band measures reflect related or distinct underlying neural processes remains to be further understood. To investigate this question, we analyzed EEG data from 20 human participants performing a cued object-based attention task. We used support vector machine (SVM) decoding analysis to compare the attentional time courses of ERP signals and alpha band power. We found that ERP signals encoding attentional instructions are dynamic and precede stable attention-related changes in alpha power, suggesting that ERP and alpha power reflect distinct neural processes. We proposed that the ERP patterns reflect transient attentional orienting signals originating in higher order control areas, whereas the patterns of synchronized oscillatory neural activity in the alpha band reflect a sustained attentional state. These findings support the hypothesis that anticipatory attention involves transient top-down control signals that establish more stable neural states in visual cortex, enabling selective sensory processing.
Collapse
Affiliation(s)
- Sean Noah
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Sreenivasan Meyyappan
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - George R. Mangun
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Pütz C, van den Berg B, Lorist MM. Dynamic modulation of neural feedback processing and attention during spatial probabilistic learning. iScience 2022; 25:104302. [PMID: 35602968 PMCID: PMC9118728 DOI: 10.1016/j.isci.2022.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Learned stimulus-reward associations can modulate behavior and the underlying neural processing of information. We investigated the cascade of these neurocognitive mechanisms involved in the learning of spatial stimulus-reward associations. Using electroencephalogram recordings while participants performed a probabilistic spatial reward learning task, we observed that the feedback-related negativity component was more negative in response to loss feedback compared to gain feedback but showed no modulation by learning. The late positive component became larger in response to losses as the learning set progressed but smaller in response to gains. In addition, feedback-locked alpha frequency oscillations measured over occipital sites were predictive of N2pc amplitudes—a marker of spatial attention orienting—observed on the next trial. This relationship was found to become stronger with learning set progression. Taken together, we elucidated neurocognitive dynamics underlying feedback processing during spatial reward learning, and the subsequent effects of these learned spatial stimulus-reward associations on spatial attention. We can learn which spatial location relates to the highest probability of reward Neural processing of feedback valence was not influenced by learning LPC amplitude was dynamically modulated by learning, reflecting context updating Feedback-locked alpha power was predictive of ensuing orientation of attention
Collapse
Affiliation(s)
- Celina Pütz
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands.,Department of Neurobiology, University of Groningen, P.O. Box 11103, Groningen 9700CC, the Netherlands.,Department of Neurology, University Medical Center Groningen, Postbus 30001, Groningen 9700RB, the Netherlands
| | - Berry van den Berg
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Monicque M Lorist
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| |
Collapse
|
9
|
α Phase-Amplitude Tradeoffs Predict Visual Perception. eNeuro 2022; 9:ENEURO.0244-21.2022. [PMID: 35105658 PMCID: PMC8868024 DOI: 10.1523/eneuro.0244-21.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
Spontaneous α oscillations (∼10 Hz) have been associated with various cognitive functions, including perception. Their phase and amplitude independently predict cortical excitability and subsequent perceptual performance. However, the causal role of α phase-amplitude tradeoffs on visual perception remains ill-defined. We aimed to fill this gap and tested two clear predictions from the pulsed inhibition theory according to which α oscillations are associated with periodic functional inhibition. (1) High-α amplitude induces cortical inhibition at specific phases, associated with low perceptual performance, while at opposite phases, inhibition decreases (potentially increasing excitation) and perceptual performance increases. (2) Low-α amplitude is less susceptible to these phasic (periodic) pulses of inhibition, leading to overall higher perceptual performance. Here, cortical excitability was assessed in humans using phosphene (illusory) perception induced by single pulses of transcranial magnetic stimulation (TMS) applied over visual cortex at perceptual threshold, and its postpulse evoked activity recorded with simultaneous electroencephalography (EEG). We observed that prepulse α phase modulates the probability to perceive a phosphene, predominantly for high-α amplitude, with a nonoptimal phase for phosphene perception between -π/2 and -π/4. The prepulse nonoptimal phase further leads to an increase in postpulse-evoked activity [event-related potential (ERP)], in phosphene-perceived trials specifically. Together, these results show that α oscillations create periodic inhibitory moments when α amplitude is high, leading to periodic decrease of perceptual performance. This study provides strong causal evidence in favor of the pulsed inhibition theory.
Collapse
|
10
|
Ongoing neural oscillations influence behavior and sensory representations by suppressing neuronal excitability. Neuroimage 2021; 247:118746. [PMID: 34875382 DOI: 10.1016/j.neuroimage.2021.118746] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022] Open
Abstract
The ability to process and respond to external input is critical for adaptive behavior. Why, then, do neural and behavioral responses vary across repeated presentations of the same sensory input? Ongoing fluctuations of neuronal excitability are currently hypothesized to underlie the trial-by-trial variability in sensory processing. To test this, we capitalized on intracranial electrophysiology in neurosurgical patients performing an auditory discrimination task with visual cues: specifically, we examined the interaction between prestimulus alpha oscillations, excitability, task performance, and decoded neural stimulus representations. We found that strong prestimulus oscillations in the alpha+ band (i.e., alpha and neighboring frequencies), rather than the aperiodic signal, correlated with a low excitability state, indexed by reduced broadband high-frequency activity. This state was related to slower reaction times and reduced neural stimulus encoding strength. We propose that the alpha+ rhythm modulates excitability, thereby resulting in variability in behavior and sensory representations despite identical input.
Collapse
|
11
|
Robinson PA. Discrete spectral eigenmode-resonance network of brain dynamics and connectivity. Phys Rev E 2021; 104:034411. [PMID: 34654199 DOI: 10.1103/physreve.104.034411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
The problem of finding a compact natural representation of brain dynamics and connectivity is addressed using an expansion in terms of physical spatial eigenmodes and their frequency resonances. It is demonstrated that this discrete expansion via the system transfer function enables linear and nonlinear dynamics to be analyzed in compact form in terms of natural dynamic "atoms," each of which is a frequency resonance of an eigenmode. Because these modal resonances are determined by the system dynamics, not the investigator, they are privileged over widely used phenomenological patterns, and obviate the need for artificial discretizations and thresholding in coordinate space. It is shown that modal resonances participate as nodes of a discrete spectral network, are noninteracting in the linear regime, but are linked nonlinearly by wave-wave coalescence and decay processes. The modal resonance formulation is shown to be capable of speeding numerical calculations of strongly nonlinear interactions. Recent work in brain dynamics, especially based on neural field theory (NFT) approaches, allows eigenmodes and their resonances to be estimated from data without assuming a specific brain model. This means that dynamic equations can be inferred using system identification methods from control theory, rather than being assumed, and resonances can be interpreted as control-systems data filters. The results link brain activity and connectivity with control-systems functions such as prediction and attention via gain control and can also be linked to specific NFT predictions if desired, thereby providing a convenient bridge between physiologically based theories and experiment. Amplitudes of modes and resonances can also be tracked to provide a more direct and temporally localized representation of the dynamics than correlations and covariances, which are widely used in the field. By synthesizing many different lines of research, this work provides a way to link quantitative electrophysiological and imaging measurements, connectivity, brain dynamics, and function. This underlines the need to move between coordinate and spectral representations as required. Moreover, standard theoretical-physics approaches and mathematical methods can be used in place of ad hoc statistical measures such as those based on graph theory of artificially discretized and decimated networks, which are highly prone to selection effects and artifacts.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
12
|
Vecchio F, Alù F, Orticoni A, Miraglia F, Judica E, Cotelli M, Rossini PM. Performance prediction in a visuo-motor task: the contribution of EEG analysis. Cogn Neurodyn 2021; 16:297-308. [PMID: 35401869 PMCID: PMC8934791 DOI: 10.1007/s11571-021-09713-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022] Open
Abstract
Brain state in the time preceding the task affects motor performance at single trial level. Aim of the study was to investigate, through a single trial analysis of the Power Spectral Density (PSD) of the cortical sources of EEG rhythms, whether there are EEG markers, which can predict trial-by-trial the subject's performance as measured by the reaction time (RT). 20 healthy adult volunteers performed a specific visuomotor task while continuously recorded with a 64 electrodes EEG. For each single trial, the PSD of the cortical sources of EEG rhythms was obtained from EEG data to cortical current density time series in 12 regions of interest at Brodmann areas level. Results showed a statistically significant increase of posterior and limbic alpha 1 and of frontal beta 2 power, and a reduction of frontal and limbic delta and of temporal alpha 1 power, during triggering stimulus presentation for better performance, namely faster responses. At single trial level, correlation analyses between RTs and significant PSD, revealed positive correlations in frontal delta, temporal alpha 1, and limbic delta bands, and negative ones in frontal beta 2, parietal alpha 1, and occipital alpha 1 bands. Furthermore, the subject's faster responses have been found as correlated with the similarity between the PSD values in parietal and occipital alpha 1. Predicting individual's performance at single trial level, might be extremely useful in the clinical context, since it could allow to launch rehabilitative therapies in the most efficient brain state, avoiding useless interventions.
Collapse
Affiliation(s)
- Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166 Rome, Italy
- eCampus University, Novedrate, Como, Italy
| | - Francesca Alù
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166 Rome, Italy
| | - Alessandro Orticoni
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166 Rome, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166 Rome, Italy
| | - Elda Judica
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milano, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Via Val Cannuta, 247, 00166 Rome, Italy
| |
Collapse
|
13
|
Yokota H, Otsuru N, Saito K, Kojima S, Miyaguchi S, Inukai Y, Nagasaka K, Onishi H. Region-Specific Effects of 10-Hz Transcranial Alternate Current Stimulation Over the Left Posterior Parietal Cortex and Primary Somatosensory Area on Tactile Two-Point Discrimination Threshold. Front Neurosci 2021; 15:576526. [PMID: 33679291 PMCID: PMC7930224 DOI: 10.3389/fnins.2021.576526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Changes in α-band cortical oscillatory activity (8-13 Hz) affect perception; however, how these changes in the left posterior parietal cortex (PPC) and primary somatosensory cortex (S1), which play different roles in determining the two-point discrimination (TPD) threshold, affect TPD threshold remains unelucidated. Therefore, to determine TPD threshold, we aimed to investigate the function of the left PPC and S1 by applying α-band transcranial alternating current stimulation (α-tACS; 10 Hz). TPD threshold was examined at the pad of the right index finger, contralateral to the stimulation site, in 17 healthy adults using a custom-made, computer-controlled, two-point tactile stimulation device, with random application of either active or sham α-tACS over the left PPC (Experiment 1) and left S1 (Experiment 2). Then, 50% TPD threshold was obtained in the active and sham conditions via logistic regression analysis. Afterward, we compared the difference between the active and sham conditions at 50% TPD threshold in each region and found that α-tACS reduced TPD threshold when applied over the left PPC (P = 0.010); however, its effect was insignificant when applied over the left S1 (P = 0.74). Moreover, a comparison of the change in 50% TPD threshold among the regions revealed that α-tACS applied over the left PPC significantly reduced TPD threshold compared with that applied over the left S1 (P = 0.003). Although we did not reveal the actual changes in cortical activity induced by α-tACS, this is the first empirical evidence that α-tACS applied over the left PPC and left S1 exerts region-specific effects on determining TPD threshold assessed in the contralateral index finger pad by stimulation.
Collapse
Affiliation(s)
- Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
14
|
Iliopoulos F, Taskin B, Villringer A, Nierhaus T. Imperceptible Somatosensory Single Pulse and Pulse Train Stimulation Oppositely Modulate Mu Rhythm Activity and Perceptual Performance. Cereb Cortex 2020; 30:6284-6295. [PMID: 32776096 PMCID: PMC7609940 DOI: 10.1093/cercor/bhaa185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 12/02/2022] Open
Abstract
Subliminal stimulation alters conscious perception – a potential mechanism is the modulation of cortical background rhythms especially in the alpha range. Here, in the human somatosensory domain, we assessed effects of subthreshold (imperceptible) electrical finger nerve stimulation – either presented as single pulses or as brief (1 s) 7 Hz pulse trains—on mu-alpha rhythm and perceptual performance. In electroencephalography, subthreshold single pulses transiently (~150–350 ms poststimulus) increased mu activity (event-related synchronization), while, interestingly, subthreshold trains led to prolonged (>1 s) mu desynchronization. In psychophysics, detection of near-threshold target stimuli was consistently reduced when presented together with subthreshold trains (at three delays), whereas for targets paired with subthreshold single pulses detection remained unaffected (30 and 180 ms) or was even elevated (60 ms). Though both imperceptible, single pulses and pulse trains exerted opposite effects on neural signaling and perception. We suggest that the common neural basis is preferential activation of cortical inhibitory interneurons. While the inhibitory impact of a subthreshold single pulse (reflected by mu synchronization) is not psychophysically detectable—rather perception may be facilitated—repetition of the same subthreshold pulse shifts the excitation-inhibition balance toward an inhibitory cortical state (reflected by perceptual impediment) accompanied by mu desynchronization. These differential findings provide novel insights on the notion of alpha activity mediating functional inhibition.
Collapse
Affiliation(s)
- Fivos Iliopoulos
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.,MindBrainBody Institute, Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin and Humboldt-University Berlin, 10099 Berlin, Germany.,International Max Planck Research School LIFE, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Birol Taskin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.,MindBrainBody Institute, Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin and Humboldt-University Berlin, 10099 Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.,MindBrainBody Institute, Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin and Humboldt-University Berlin, 10099 Berlin, Germany
| | - Till Nierhaus
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.,Department of Education and Psychology, Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
15
|
Qin Y, Zhang N, Chen Y, Tan Y, Dong L, Xu P, Guo D, Zhang T, Yao D, Luo C. How Alpha Rhythm Spatiotemporally Acts Upon the Thalamus-Default Mode Circuit in Idiopathic Generalized Epilepsy. IEEE Trans Biomed Eng 2020; 68:1282-1292. [PMID: 32976091 DOI: 10.1109/tbme.2020.3026055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
GOAL Idiopathic generalized epilepsy (IGE) represents generalized spike-wave discharges (GSWD) and distributed changes in thalamocortical circuit. The purpose of this study is to investigate how the ongoing alpha oscillation acts upon the local temporal dynamics and spatial hyperconnectivity in epilepsy. METHODS We evaluated the spatiotemporal regulation of alpha oscillations in epileptic state based on simultaneous EEG-fMRI recordings in 45 IGE patients. The alpha-BOLD temporal consistency, as well as the effect of alpha power windows on dynamic functional connectivity strength (dFCS) was analyzed. Then, stable synchronization networks during GSWD were constructed, and the spatial covariation with alpha-based network integration was investigated. RESULTS Increased temporal covariation was demonstrated between alpha power and BOLD fluctuations in thalamus and distributed cortical regions in IGE. High alpha power had inhibition effect on dFCS in healthy controls, while in epilepsy, high alpha windows arose along with the enhancement of dFCS in thalamus, caudate and some default mode network (DMN) regions. Moreover, synchronization networks in GSWD-before, GSWD-onset and GSWD-after stages were constructed, and the connectivity strength in prominent hub nodes (precuneus, thalamus) was associated with the spatially disturbed alpha-based network integration. CONCLUSION The results indicated spatiotemporal regulation of alpha in epilepsy by means of the increased power and decreased coherence communication. It provided links between alpha rhythm and the altered temporal dynamics, as well as the hyperconnectivity in thalamus-default mode circuit. SIGNIFICANCE The combination between neural oscillations and epileptic representations may be of clinical importance in terms of seizure prediction and non-invasive interventions.
Collapse
|
16
|
Resolving the Connectome, Spectrally-Specific Functional Connectivity Networks and Their Distinct Contributions to Behavior. eNeuro 2020; 7:ENEURO.0101-20.2020. [PMID: 32826259 PMCID: PMC7484267 DOI: 10.1523/eneuro.0101-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
The resting human brain exhibits spontaneous patterns of activity that reflect features of the underlying neural substrate. Examination of interareal coupling of resting-state oscillatory activity has revealed that the brain’s resting activity is composed of functional networks, whose topographies differ depending on oscillatory frequency, suggesting a role for carrier frequency as a means of creating multiplexed, or functionally segregated, communication channels between brain areas. Using canonical correlation analysis (CCA), we examined spectrally resolved resting-state connectivity patterns derived from magnetoencephalography (MEG) recordings to determine the relationship between connectivity intrinsic to different frequency channels and a battery of over a hundred behavioral and demographic indicators, in a group of 89 young healthy participants. We demonstrate that each of the classical frequency bands in the range 1–40 Hz (δ, θ, α, β, and γ) delineates a subnetwork that is behaviorally relevant, spatially distinct, and whose expression is either negatively or positively predictive of individual traits, with the strongest link in the α-band being negative and networks oscillating at different frequencies, such as θ, β, and γ carrying positive function.
Collapse
|
17
|
Li Y, Ward MJ, Richardson RM, G'Sell M, Ghuman AS. Endogenous activity modulates stimulus and circuit-specific neural tuning and predicts perceptual behavior. Nat Commun 2020; 11:4014. [PMID: 32782303 PMCID: PMC7419548 DOI: 10.1038/s41467-020-17729-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/07/2020] [Indexed: 11/08/2022] Open
Abstract
Perception reflects not only sensory inputs, but also the endogenous state when these inputs enter the brain. Prior studies show that endogenous neural states influence stimulus processing through non-specific, global mechanisms, such as spontaneous fluctuations of arousal. It is unclear if endogenous activity influences circuit and stimulus-specific processing and behavior as well. Here we use intracranial recordings from 30 pre-surgical epilepsy patients to show that patterns of endogenous activity are related to the strength of trial-by-trial neural tuning in different visual category-selective neural circuits. The same aspects of the endogenous activity that relate to tuning in a particular neural circuit also correlate to behavioral reaction times only for stimuli from the category that circuit is selective for. These results suggest that endogenous activity can modulate neural tuning and influence behavior in a circuit- and stimulus-specific manner, reflecting a potential mechanism by which endogenous neural states facilitate and bias perception.
Collapse
Affiliation(s)
- Yuanning Li
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA.
- Program in Neural Computation and Machine Learning, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| | - Michael J Ward
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Max G'Sell
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Avniel Singh Ghuman
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA
- Program in Neural Computation and Machine Learning, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
McIntosh JR, Sajda P. Estimation of phase in EEG rhythms for real-time applications. J Neural Eng 2020; 17:034002. [DOI: 10.1088/1741-2552/ab8683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Alpha Synchrony and the Neurofeedback Control of Spatial Attention. Neuron 2020; 105:577-587.e5. [DOI: 10.1016/j.neuron.2019.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/16/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
|
20
|
Meyer MC, Scheeringa R, Webb AG, Petridou N, Kraff O, Norris DG. Adapted cabling of an EEG cap improves simultaneous measurement of EEG and fMRI at 7T. J Neurosci Methods 2019; 331:108518. [PMID: 31734326 DOI: 10.1016/j.jneumeth.2019.108518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The combination of EEG and ultra-high-field (7 T and above) fMRI holds the promise to relate electrophysiology and hemodynamics with greater signal to noise level and at higher spatial resolutions than conventional field strengths. Technical and safety restrictions have so far resulted in compromises in terms of MRI coil selection, resulting in reduced, signal quality, spatial coverage and resolution in EEG-fMRI studies at 7 T. NEW METHOD We adapted a 64-channel MRI-compatible EEG cap so that it could be used with a closed 32-channel MRI head coil thus avoiding several of these compromises. We compare functional and anatomical as well as the EEG quality recorded with this adapted setup with those recorded with a setup that uses an open-ended 8-channel head-coil. RESULTS Our set-up with the adapted EEG cap inside the closed 32 channel coil resulted in the recording of good quality EEG and (f)MRI data. Both functional and anatomical MRI images show no major effects of the adapted EEG cap on MR signal quality. We demonstrate the ability to compute ERPs and changes in alpha and gamma oscillations from the recorded EEG data. COMPARISON WITH EXISTING METHODS Compared to MRI recordings with an 8-channel open-ended head-coil, the loss in signal quality of the MRI images related to the adapted EEG cap is considerably reduced. CONCLUSIONS The adaptation of the EEG cap permits the simultaneous recording of good quality whole brain (f)MRI data using a 32 channel receiver coil, while maintaining the quality of the EEG data.
Collapse
Affiliation(s)
- Matthias C Meyer
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - René Scheeringa
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany.
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Natalia Petridou
- Radiology, Imaging Division, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Oliver Kraff
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
| | - David G Norris
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Parker DB, Razlighi QR. Task-evoked Negative BOLD Response and Functional Connectivity in the Default Mode Network are Representative of Two Overlapping but Separate Neurophysiological Processes. Sci Rep 2019; 9:14473. [PMID: 31597927 PMCID: PMC6785640 DOI: 10.1038/s41598-019-50483-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
The topography of the default mode network (DMN) can be obtained with one of two different functional magnetic resonance imaging (fMRI) methods: either from the spontaneous but organized synchrony of the low-frequency fluctuations in resting-state fMRI (rs-fMRI), known as "functional connectivity", or from the consistent and robust deactivations in task-based fMRI (tb-fMRI), here referred to as the "negative BOLD response" (NBR). These two methods are fundamentally different, but their results are often used interchangeably to describe the brain's resting-state, baseline, or intrinsic activity. While the DMN was initially defined by consistent task-based decreases in blood flow in a set of specific brain regions using PET imaging, recently nearly all studies on the DMN employ functional connectivity in rs-fMRI. In this study, we first show the high level of spatial overlap between NBR and functional connectivity of the DMN extracted from the same tb-fMRI scan; then, we demonstrate that the NBR in putative DMN regions can be significantly altered without causing any change in their overlapping functional connectivity. Furthermore, we present evidence that in the DMN, the NBR is more closely related to task performance than the functional connectivity. We conclude that the NBR and functional connectivity of the DMN reflect two separate but overlapping neurophysiological processes, and thus should be differentiated in studies investigating brain-behavior relationships in both healthy and diseased populations. Our findings further raise the possibility that the macro-scale networks of the human brain might internally exhibit a hierarchical functional architecture.
Collapse
Affiliation(s)
- David B Parker
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Qolamreza R Razlighi
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medial Center, New York, NY, 10032, USA.
- Taub Institute for research on Alzheimer's disease and the aging brain, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
22
|
Van Diepen RM, Foxe JJ, Mazaheri A. The functional role of alpha-band activity in attentional processing: the current zeitgeist and future outlook. Curr Opin Psychol 2019; 29:229-238. [DOI: 10.1016/j.copsyc.2019.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/08/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
|
23
|
Tamaki M, Wang Z, Watanabe T, Sasaki Y. Trained-feature-specific offline learning by sleep in an orientation detection task. J Vis 2019; 19:12. [PMID: 31622472 PMCID: PMC6797476 DOI: 10.1167/19.12.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/20/2019] [Indexed: 11/24/2022] Open
Abstract
Training-induced performance gains in a visual perceptual learning (VPL) task that take place during sleep are termed "offline performance gains." Offline performance gains of VPL so far have been reported in the texture discrimination task and other discrimination tasks. This raises the question as to whether offline performance gains on VPL occur exclusively in discrimination tasks. The present study examined whether offline performance gains occur in detection tasks. In Experiment 1, subjects were trained on a Gabor orientation detection task. They were retested after a 12-hr interval, which included either nightly sleep or only wakefulness. Offline performance gains occurred only after sleep on the trained orientation, not on an untrained orientation. In Experiment 2, we tested whether offline performance gains in the detection task occur over a nap using polysomnography. Moreover, we tested whether sigma activity during non-rapid eye movement (NREM) sleep recorded from occipital electrodes, previously implicated in offline performance gains of the texture discrimination task, was associated with the degree of offline performance gains of the Gabor orientation detection task. We replicated offline performance gains on the trained orientation in the detection task over the nap. Sigma activity during NREM sleep was significantly larger in the occipital electrodes relative to control electrodes in correlation with offline performance gains. The results suggest that offline performance gains occur over the sleep period generally in VPL. Moreover, sigma activity in the occipital region during NREM sleep may play an important role in offline performance gains of VPL.
Collapse
Affiliation(s)
- Masako Tamaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Zhiyan Wang
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
24
|
Wagner J, Makeig S, Hoopes D, Gola M. Can Oscillatory Alpha-Gamma Phase-Amplitude Coupling be Used to Understand and Enhance TMS Effects? Front Hum Neurosci 2019; 13:263. [PMID: 31427937 PMCID: PMC6689956 DOI: 10.3389/fnhum.2019.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recent applications of simultaneous scalp electroencephalography (EEG) and transcranial magnetic stimulation (TMS) suggest that adapting stimulation to underlying brain states may enhance neuroplastic effects of TMS. It is often assumed that longer-lasting effects of TMS on brain function may be mediated by phasic interactions between TMS pulses and endogenous cortical oscillatory dynamics. The mechanisms by which TMS exerts its neuromodulatory effects, however, remain unknown. Here, we discuss evidence concerning the functional effects on synaptic plasticity of oscillatory cross-frequency coupling in cortical networks as a potential framework for understanding the neuromodulatory effects of TMS. We first discuss evidence for interactions between endogenous oscillatory brain dynamics and externally induced electromagnetic field activity. Alpha band (8-12 Hz) activities are of special interest here because of the wide application and therapeutic effectiveness of rhythmic TMS (rTMS) using a stimulus repetition frequency at or near 10 Hz. We discuss the large body of literature on alpha oscillations suggesting that alpha oscillatory cycles produce periodic inhibition or excitation of neuronal processing through phase-amplitude coupling (PAC) of low-frequency oscillations with high-frequency broadband (or gamma) bursting. Such alpha-gamma coupling may reflect excitability of neuronal ensembles underlying neuroplasticity effects of TMS. We propose that TMS delivery with simultaneous EEG recording and near real-time estimation of source-resolved alpha-gamma PAC might be used to select the precise timing of TMS pulse deliveries so as to enhance the neuroplastic effects of TMS therapies.
Collapse
Affiliation(s)
- Johanna Wagner
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States
| | - Scott Makeig
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States
| | - David Hoopes
- Department of Radiation Medicine and Applied Sciences, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Mateusz Gola
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States.,Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
25
|
Zhigalov A, Herring JD, Herpers J, Bergmann TO, Jensen O. Probing cortical excitability using rapid frequency tagging. Neuroimage 2019; 195:59-66. [PMID: 30930309 PMCID: PMC6547046 DOI: 10.1016/j.neuroimage.2019.03.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022] Open
Abstract
Frequency tagging has been widely used to study the role of visual selective attention. Presenting a visual stimulus flickering at a specific frequency generates so-called steady-state visually evoked responses. However, frequency tagging is mostly done at lower frequencies (<30 Hz). This produces a visible flicker, potentially interfering with both perception and neuronal oscillations in the theta, alpha and beta band. To overcome these problems, we used a newly developed projector with a 1440 Hz refresh rate allowing for frequency tagging at higher frequencies. We asked participants to perform a cued spatial attention task in which imperative pictorial stimuli were presented at 63 Hz or 78 Hz while measuring whole-head magnetoencephalography (MEG). We found posterior sensors to show a strong response at the tagged frequency. Importantly, this response was enhanced by spatial attention. Furthermore, we reproduced the typical modulations of alpha band oscillations, i.e., decrease in the alpha power contralateral to the attentional cue. The decrease in alpha power and increase in frequency tagged signal with attention correlated over subjects. We hereby provide proof-of-principle for the use of high-frequency tagging to study sensory processing and neuronal excitability associated with attention.
Collapse
Affiliation(s)
- A Zhigalov
- Centre for Human Brain Health, School of Psychology, University of Birmingham, UK.
| | - J D Herring
- Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - J Herpers
- Laboratory for Neurophysiology and Psychophysiology, KU Leuven, Leuven, Belgium
| | - T O Bergmann
- Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands; Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - O Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, UK
| |
Collapse
|
26
|
Iemi L, Busch NA, Laudini A, Haegens S, Samaha J, Villringer A, Nikulin VV. Multiple mechanisms link prestimulus neural oscillations to sensory responses. eLife 2019; 8:e43620. [PMID: 31188126 PMCID: PMC6561703 DOI: 10.7554/elife.43620] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Spontaneous fluctuations of neural activity may explain why sensory responses vary across repeated presentations of the same physical stimulus. To test this hypothesis, we recorded electroencephalography in humans during stimulation with identical visual stimuli and analyzed how prestimulus neural oscillations modulate different stages of sensory processing reflected by distinct components of the event-related potential (ERP). We found that strong prestimulus alpha- and beta-band power resulted in a suppression of early ERP components (C1 and N150) and in an amplification of late components (after 0.4 s), even after controlling for fluctuations in 1/f aperiodic signal and sleepiness. Whereas functional inhibition of sensory processing underlies the reduction of early ERP responses, we found that the modulation of non-zero-mean oscillations (baseline shift) accounted for the amplification of late responses. Distinguishing between these two mechanisms is crucial for understanding how internal brain states modulate the processing of incoming sensory information.
Collapse
Affiliation(s)
- Luca Iemi
- Department of Neurological SurgeryColumbia University College of Physicians and SurgeonsNew York CityUnited States
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Centre for Cognition and Decision Making, Institute for Cognitive NeuroscienceNational Research University Higher School of EconomicsMoscowRussian Federation
| | - Niko A Busch
- Institute of PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Annamaria Laudini
- Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
| | - Saskia Haegens
- Department of Neurological SurgeryColumbia University College of Physicians and SurgeonsNew York CityUnited States
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenNetherlands
| | - Jason Samaha
- Department of PsychologyUniversity of California, Santa CruzSanta CruzUnited States
| | - Arno Villringer
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
| | - Vadim V Nikulin
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Centre for Cognition and Decision Making, Institute for Cognitive NeuroscienceNational Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyCharité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| |
Collapse
|
27
|
Shen L, Han B, Chen L, Chen Q. Perceptual inference employs intrinsic alpha frequency to resolve perceptual ambiguity. PLoS Biol 2019; 17:e3000025. [PMID: 30865621 PMCID: PMC6433295 DOI: 10.1371/journal.pbio.3000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/25/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
The brain uses its intrinsic dynamics to actively predict observed sensory inputs, especially under perceptual ambiguity. However, it remains unclear how this inference process is neurally implemented in biasing perception of ambiguous inputs towards the predicted percepts. The process of perceptual inference can be well illustrated by the phenomenon of bistable apparent motion in the Ternus display, in which subjective perception spontaneously alternates between element motion (EM) and group motion (GM) percepts depending on whether two consecutively presented frames are grouped over time or not. The frequency of alpha-band oscillations has long been hypothesized to gate the temporal window of perceptual grouping over time. Under this hypothesis, variation in the intrinsic alpha frequency should predict perceptual outcome of the bistable Ternus display. Moreover, we hypothesize that the perception system employs this prior knowledge on intrinsic alpha frequency to resolve perceptual ambiguity, by shifting perceptual inference towards the predicted percepts. Using electroencephalography and intracranial recordings, we showed that both between and within subjects, lower prestimulus alpha frequencies (PAFs) predicted the EM percepts since the two frames fell in the same alpha cycle and got temporally integrated, while higher PAFs predicted the GM percepts since the two frames fell in different alpha cycles. Multivariate decoding analysis between the EM percepts with lower PAFs and the GM percepts with higher PAFs further revealed a representation of the subsequently reported bistable percept in the neural signals shortly before the actual appearance of the second frame. Therefore, perceptual inference, based on variation in intrinsic PAFs, biases poststimulus neural representations by inducing preactivation of the predicted percepts. In addition, enhanced prestimulus blood-oxygen-level-dependent (BOLD) signals and network dynamics in the frontoparietal network, together with reduced prestimulus alpha power, upon perceiving the EM percepts suggest that temporal grouping is an attention-demanding process.
Collapse
Affiliation(s)
- Lu Shen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Biao Han
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lihan Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
28
|
Herring JD, Esterer S, Marshall TR, Jensen O, Bergmann TO. Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance. Neuroimage 2018; 184:440-449. [PMID: 30243972 DOI: 10.1016/j.neuroimage.2018.09.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022] Open
Abstract
Low frequency oscillations such as alpha (8-12 Hz) are hypothesized to rhythmically gate sensory processing, reflected by 40-100 Hz gamma band activity, via the mechanism of pulsed inhibition. We applied transcranial alternating current stimulation (TACS) at individual alpha frequency (IAF) and flanking frequencies (IAF-4 Hz, IAF+4 Hz) to the occipital cortex of healthy human volunteers during concurrent magnetoencephalography (MEG), while participants performed a visual detection task inducing strong gamma-band responses. Occipital (but not retinal) TACS phasically suppressed stimulus-induced gamma oscillations in the visual cortex and impaired target detection, with stronger phase-to-amplitude coupling predicting behavioral impairments. Retinal control TACS ruled out retino-thalamo-cortical entrainment resulting from (subthreshold) retinal stimulation. All TACS frequencies tested were effective, suggesting that visual gamma-band responses can be modulated by a range of low frequency oscillations. We propose that TACS-induced membrane potential modulations mimic the rhythmic change in cortical excitability by which spontaneous low frequency oscillations may eventually exert their impact when gating sensory processing via pulsed inhibition.
Collapse
Affiliation(s)
- Jim D Herring
- Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sophie Esterer
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Tom R Marshall
- Department of Experimental Psychology, University of Oxford, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ole Jensen
- School of Psychology, University of Birmingham, Birmingham, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Til O Bergmann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Toriyama H, Ushiba J, Ushiyama J. Subjective Vividness of Kinesthetic Motor Imagery Is Associated With the Similarity in Magnitude of Sensorimotor Event-Related Desynchronization Between Motor Execution and Motor Imagery. Front Hum Neurosci 2018; 12:295. [PMID: 30108492 PMCID: PMC6079198 DOI: 10.3389/fnhum.2018.00295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022] Open
Abstract
In the field of psychology, it has been well established that there are two types of motor imagery such as kinesthetic motor imagery (KMI) and visual motor imagery (VMI), and the subjective evaluation for vividness of motor imagery each differs across individuals. This study aimed to examine how the motor imagery ability assessed by the psychological scores is associated with the physiological measure using electroencephalogram (EEG) sensorimotor rhythm during KMI task. First, 20 healthy young individuals evaluated subjectively how vividly they can perform each of KMI and VMI by using the Kinesthetic and Visual Imagery Questionnaire (KVIQ). We assessed their motor imagery abilities by summing each of KMI and VMI scores in KVIQ (KMItotal and VMItotal). Second, in physiological experiments, they repeated two strengths (10 and 40% of maximal effort) of isometric voluntary wrist-dorsiflexion. Right after each contraction, they also performed its KMI. The scalp EEGs over the sensorimotor cortex were recorded during the tasks. The EEG power is known to decrease in the alpha-and-beta band (7–35 Hz) from resting state to performing state of voluntary contraction (VC) or motor imagery. This phenomenon is referred to as event-related desynchronization (ERD). For each strength of the tasks, we calculated the maximal peak of ERD during VC, and that during its KMI, and measured the degree of similarity (ERDsim) between them. The results showed significant negative correlations between KMItotal and ERDsim for both strengths (p < 0.05) (i.e., the higher the KMItotal, the smaller the ERDsim). These findings suggest that in healthy individuals with higher motor imagery ability from a first-person perspective, KMI efficiently engages the shared cortical circuits corresponding with motor execution, including the sensorimotor cortex, with high compliance.
Collapse
Affiliation(s)
- Hisato Toriyama
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,Keio Institute of Pure and Applied Sciences, Yokohama, Japan
| | - Junichi Ushiyama
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan.,Department of Rehabilitation Medicine, Keio University School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
30
|
Solís-Vivanco R, Jensen O, Bonnefond M. Top-Down Control of Alpha Phase Adjustment in Anticipation of Temporally Predictable Visual Stimuli. J Cogn Neurosci 2018; 30:1157-1169. [PMID: 29762100 DOI: 10.1162/jocn_a_01280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Alpha oscillations (8-14 Hz) are proposed to represent an active mechanism of functional inhibition of neuronal processing. Specifically, alpha oscillations are associated with pulses of inhibition repeating every ∼100 msec. Whether alpha phase, similar to alpha power, is under top-down control remains unclear. Moreover, the sources of such putative top-down phase control are unknown. We designed a cross-modal (visual/auditory) attention study in which we used magnetoencephalography to record the brain activity from 34 healthy participants. In each trial, a somatosensory cue indicated whether to attend to either the visual or auditory domain. The timing of the stimulus onset was predictable across trials. We found that, when visual information was attended, anticipatory alpha power was reduced in visual areas, whereas the phase adjusted just before the stimulus onset. Performance in each modality was predicted by the phase of the alpha oscillations previous to stimulus onset. Alpha oscillations in the left pFC appeared to lead the adjustment of alpha phase in visual areas. Finally, alpha phase modulated stimulus-induced gamma activity. Our results confirm that alpha phase can be top-down adjusted in anticipation of predictable stimuli and improve performance. Phase adjustment of the alpha rhythm might serve as a neurophysiological resource for optimizing visual processing when temporal predictions are possible and there is considerable competition between target and distracting stimuli.
Collapse
Affiliation(s)
- Rodolfo Solís-Vivanco
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico.,Donders Institute for Brain, Cognition, & Behaviour, Center for Cognitive Neuroimaging, Radboud University Nijmegen
| | - Ole Jensen
- Center for Human Brain Health, University of Birmingham
| | - Mathilde Bonnefond
- Donders Institute for Brain, Cognition, & Behaviour, Center for Cognitive Neuroimaging, Radboud University Nijmegen.,INSERM UMRS 1028, CNRS UMR 5292, Université de Lyon
| |
Collapse
|
31
|
Bolt T, Anderson ML, Uddin LQ. Beyond the evoked/intrinsic neural process dichotomy. Netw Neurosci 2018; 2:1-22. [PMID: 29911670 PMCID: PMC5989985 DOI: 10.1162/netn_a_00028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/28/2017] [Indexed: 01/20/2023] Open
Abstract
Contemporary functional neuroimaging research has increasingly focused on characterization of intrinsic or "spontaneous" brain activity. Analysis of intrinsic activity is often contrasted with analysis of task-evoked activity that has traditionally been the focus of cognitive neuroscience. But does this evoked/intrinsic dichotomy adequately characterize human brain function? Based on empirical data demonstrating a close functional interdependence between intrinsic and task-evoked activity, we argue that the dichotomy between intrinsic and task-evoked activity as unobserved contributions to brain activity is artificial. We present an alternative picture of brain function in which the brain's spatiotemporal dynamics do not consist of separable intrinsic and task-evoked components, but reflect the enaction of a system of mutual constraints to move the brain into and out of task-appropriate functional configurations. According to this alternative picture, cognitive neuroscientists are tasked with describing both the temporal trajectory of brain activity patterns across time, and the modulation of this trajectory by task states, without separating this process into intrinsic and task-evoked components. We argue that this alternative picture of brain function is best captured in a novel explanatory framework called enabling constraint. Overall, these insights call for a reconceptualization of functional brain activity, and should drive future methodological and empirical efforts.
Collapse
Affiliation(s)
- Taylor Bolt
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Michael L. Anderson
- Department of Philosophy and Brain and Mind Institute, Western University, London, ON, Canada
- Institute for Advanced Computer Studies, Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Lucina Q. Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
32
|
Huang Z, Zhang J, Longtin A, Dumont G, Duncan NW, Pokorny J, Qin P, Dai R, Ferri F, Weng X, Northoff G. Is There a Nonadditive Interaction Between Spontaneous and Evoked Activity? Phase-Dependence and Its Relation to the Temporal Structure of Scale-Free Brain Activity. Cereb Cortex 2018; 27:1037-1059. [PMID: 26643354 DOI: 10.1093/cercor/bhv288] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of our study was to use functional magnetic resonance imaging to investigate how spontaneous activity interacts with evoked activity, as well as how the temporal structure of spontaneous activity, that is, long-range temporal correlations, relate to this interaction. Using an extremely sparse event-related design (intertrial intervals: 52-60 s), a novel blood oxygen level-dependent signal correction approach (accounting for spontaneous fluctuations using pseudotrials) and phase analysis, we provided direct evidence for a nonadditive interaction between spontaneous and evoked activity. We demonstrated the discrepancy between the present and previous observations on why a linear superposition between spontaneous and evoked activity can be seen by using co-occurring signals from homologous brain regions. Importantly, we further demonstrated that the nonadditive interaction can be characterized by phase-dependent effects of spontaneous activity, which is closely related to the degree of long-range temporal correlations in spontaneous activity as indexed by both power-law exponent and phase-amplitude coupling. Our findings not only contribute to the understanding of spontaneous brain activity and its scale-free properties, but also bear important implications for our understanding of neural activity in general.
Collapse
Affiliation(s)
- Zirui Huang
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4, Canada
| | - Jianfeng Zhang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 311121, PR China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou 310015, PR China
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Grégory Dumont
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4, Canada.,Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Niall W Duncan
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4, Canada.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 311121, PR China.,Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Johanna Pokorny
- Department of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada
| | - Pengmin Qin
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4, Canada.,Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Rui Dai
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 311121, PR China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou 310015, PR China.,School of Life Science, South China Normal University, Guangzhou 510613, PR China
| | - Francesca Ferri
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4, Canada
| | - Xuchu Weng
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 311121, PR China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou 310015, PR China
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4, Canada.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 311121, PR China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou 310015, PR China.,Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| |
Collapse
|
33
|
Zhang D, Gu R. Behavioral preference in sequential decision-making and its association with anxiety. Hum Brain Mapp 2018; 39:2482-2499. [PMID: 29468778 DOI: 10.1002/hbm.24016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/26/2017] [Accepted: 02/13/2018] [Indexed: 02/04/2023] Open
Abstract
In daily life, people often make consecutive decisions before the ultimate goal is reached (i.e., sequential decision-making). However, this kind of decision-making has been largely overlooked in the literature. The current study investigated whether behavioral preference would change during sequential decisions, and the neural processes underlying the potential changes. For this purpose, we revised the classic balloon analogue risk task and recorded the electroencephalograph (EEG) signals associated with each step of decision-making. Independent component analysis performed on EEG data revealed that four EEG components elicited by periodic feedback in the current step predicted participants' decisions (gamble vs. no gamble) in the next step. In order of time sequence, these components were: bilateral occipital alpha rhythm, bilateral frontal theta rhythm, middle frontal theta rhythm, and bilateral sensorimotor mu rhythm. According to the information flows between these EEG oscillations, we proposed a brain model that describes the temporal dynamics of sequential decision-making. Finally, we found that the tendency to gamble (as well as the power intensity of bilateral frontal theta rhythms) was sensitive to the individual level of trait anxiety in certain steps, which may help understand the role of emotion in decision-making.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Psychology, College of Psychology and Sociology, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Department of Psychology, Stony Brook University, Stony Brook, New York
| |
Collapse
|
34
|
The Caveats of observing Inter-Trial Phase-Coherence in Cognitive Neuroscience. Sci Rep 2018; 8:2990. [PMID: 29445210 PMCID: PMC5813180 DOI: 10.1038/s41598-018-20423-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/15/2018] [Indexed: 11/08/2022] Open
Abstract
Many studies have now consistently reported that the phase angle of ongoing oscillatory activity (measured using EEG/MEG), at time of stimulus presentation influences detection when stimuli are near-threshold. However, studies examining whether the adjustment of the phase angle of oscillations is under top-down attentional control have thus far yielded conflicting results. A possible source for the discrepancy could be that the estimation of the phase of ongoing oscillations as well as its uniformity across trials could be affected by task induced changes in the power of oscillations or concurrent evoked responses. One measure, Inter-Trial Phase-Locking (ITPC), or the uniformity of phase angles across trials, is particularly vulnerable to these factors. Here, using various simulations modelling the common task induced changes in the EEG reported in the literature, we demonstrate that apparent changes in Inter-Trial Phase-Locking of oscillatory activity can occur independent of any actual change in the phase of the ongoing activity.
Collapse
|
35
|
McKillop LE, Vyazovskiy VV. Sleep- and Wake-Like States in Small Networks In Vivo and In Vitro. Handb Exp Pharmacol 2018; 253:97-121. [PMID: 30443784 DOI: 10.1007/164_2018_174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wakefulness and sleep are highly complex and heterogeneous processes, involving multiple neurotransmitter systems and a sophisticated interplay between global and local networks of neurons and non-neuronal cells. Macroscopic approaches applied at the level of the whole organism, view sleep as a global behaviour and allow for investigation into aspects such as the effects of insufficient or disrupted sleep on cognitive function, metabolism, thermoregulation and sensory processing. While significant progress has been achieved using such large-scale approaches, the inherent complexity of sleep-wake regulation has necessitated the development of methods which tackle specific aspects of sleep in isolation. One way this may be achieved is by investigating specific cellular or molecular phenomena in the whole organism in situ, either during spontaneous or induced sleep-wake states. This approach has greatly advanced our knowledge about the electrophysiology and pharmacology of ion channels, specific receptors, intracellular pathways and the small networks implicated in the control and regulation of the sleep-wake cycle. Importantly though, there are a variety of external and internal factors that influence global behavioural states which are difficult to control for using these approaches. For this reason, over the last few decades, ex vivo experimental models have become increasingly popular and have greatly advanced our understanding of many fundamental aspects of sleep, including the neuroanatomy and neurochemistry of sleep states, sleep regulation, the origin and dynamics of specific sleep oscillations, network homeostasis as well as the functional roles of sleep. This chapter will focus on the use of small neuronal networks as experimental models and will highlight the most significant and novel insights these approaches have provided.
Collapse
Affiliation(s)
- Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
36
|
Abstract
Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8-10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6-7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception.
Collapse
|
37
|
Alpha Oscillations Reduce Temporal Long-Range Dependence in Spontaneous Human Brain Activity. J Neurosci 2017; 38:755-764. [PMID: 29167403 DOI: 10.1523/jneurosci.0831-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/18/2017] [Accepted: 11/12/2017] [Indexed: 01/26/2023] Open
Abstract
Ongoing neural dynamics comprise both frequency-specific oscillations and broadband-features, such as long-range dependence (LRD). Despite both being behaviorally relevant, little is known about their potential interactions. In humans, 8-12 Hz α oscillations constitute the strongest deviation from 1/f power-law scaling, the signature of LRD. We postulated that α oscillations, believed to exert active inhibitory gating, downmodulate the temporal width of LRD in slower ongoing brain activity. In two independent "resting-state" datasets (electroencephalography surface recordings and magnetoencephalography source reconstructions), both across space and dynamically over time, power of α activity covaried with the power slope <5 Hz (i.e., greater α activity shortened LRD). Causality of α activity dynamics was implied by its temporal precedence over changes of slope. A model where power-law fluctuations of the α envelope inhibit baseline activity closely replicated our results. Thus, α oscillations may provide an active control mechanism to adaptively regulate LRD of brain activity at slow temporal scales, thereby shaping internal states and cognitive processes.SIGNIFICANCE STATEMENT The two prominent features of ongoing brain activity are oscillations and temporal long-range dependence. Both shape behavioral performance, but little is known about their interaction. Here, we demonstrate such an interaction in EEG and MEG recordings of task-free human brain activity. Specifically, we show that spontaneous dynamics in alpha activity explain ensuing variations of dependence in the low and ultra-low-frequency range. In modeling, two features of alpha oscillations are critical to account for the observed effects on long-range dependence, scale-free properties of alpha oscillations themselves, and a modulation of baseline levels, presumably inhibitory. Both these properties have been observed empirically, and our study hence establishes alpha oscillations as a regulatory mechanism governing long-range dependence or "memory" in slow ongoing brain activity.
Collapse
|
38
|
Furman AJ, Meeker TJ, Rietschel JC, Yoo S, Muthulingam J, Prokhorenko M, Keaser ML, Goodman RN, Mazaheri A, Seminowicz DA. Cerebral peak alpha frequency predicts individual differences in pain sensitivity. Neuroimage 2017; 167:203-210. [PMID: 29175204 DOI: 10.1016/j.neuroimage.2017.11.042] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022] Open
Abstract
The identification of neurobiological markers that predict individual predisposition to pain are not only important for development of effective pain treatments, but would also yield a more complete understanding of how pain is implemented in the brain. In the current study using electroencephalography (EEG), we investigated the relationship between the peak frequency of alpha activity over sensorimotor cortex and pain intensity during capsaicin-heat pain (C-HP), a prolonged pain model known to induce spinal central sensitization in primates. We found that peak alpha frequency (PAF) recorded during a pain-free period preceding the induction of prolonged pain correlated with subsequent pain intensity reports: slower peak frequency at pain-free state was associated with higher pain during the prolonged pain condition. Moreover, the degree to which PAF decreased between pain-free and prolonged pain states was correlated with pain intensity. These two metrics were statistically uncorrelated and in combination were able to account for 50% of the variability in pain intensity. Altogether, our findings suggest that pain-free state PAF over relevant sensory systems could serve as a marker of individual predisposition to prolonged pain. Moreover, slowing of PAF in response to prolonged pain could represent an objective marker for subjective pain intensity. Our findings potentially lead the way for investigations in clinical populations in which alpha oscillations and the brain areas contributing to their generation are used in identifying and formulating treatment strategies for patients more likely to develop chronic pain.
Collapse
Affiliation(s)
- Andrew J Furman
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, United States
| | - Timothy J Meeker
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, United States
| | - Jeremy C Rietschel
- Maryland Exercise and Robotics Center of Excellence, Veterans Health Administration, Baltimore, MD, United States
| | - Sooyoung Yoo
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States
| | - Janusiya Muthulingam
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States
| | - Mariya Prokhorenko
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States
| | - Michael L Keaser
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, United States
| | - Ronald N Goodman
- Maryland Exercise and Robotics Center of Excellence, Veterans Health Administration, Baltimore, MD, United States
| | - Ali Mazaheri
- Center for Human Brain Health, School of Psychology, University of Birmingham, B15 2TT, United Kingdom.
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, United States.
| |
Collapse
|
39
|
Scheeringa R, Fries P. Cortical layers, rhythms and BOLD signals. Neuroimage 2017; 197:689-698. [PMID: 29108940 PMCID: PMC6666418 DOI: 10.1016/j.neuroimage.2017.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
This review investigates how laminar fMRI can complement insights into brain function derived from the study of rhythmic neuronal synchronization. Neuronal synchronization in various frequency bands plays an important role in neuronal communication between brain areas, and it does so on the backbone of layer-specific interareal anatomical projections. Feedforward projections originate predominantly in supragranular cortical layers and terminate in layer 4, and this pattern is reflected in inter-laminar and interareal directed gamma-band influences. Thus, gamma-band synchronization likely subserves feedforward signaling. By contrast, anatomical feedback projections originate predominantly in infragranular layers and terminate outside layer 4, and this pattern is reflected in inter-laminar and interareal directed alpha- and/or beta-band influences. Thus, alpha-beta band synchronization likely subserves feedback signaling. Furthermore, these rhythms explain part of the BOLD signal, with independent contributions of alpha-beta and gamma. These findings suggest that laminar fMRI can provide us with a potentially useful method to test some of the predictions derived from the study of neuronal synchronization. We review central findings regarding the role of layer-specific neuronal synchronization for brain function, and regarding the link between neuronal synchronization and the BOLD signal. We discuss the role that laminar fMRI could play by comparing it to invasive and non-invasive electrophysiological recordings. Compared to direct electrophysiological recordings, this method provides a metric of neuronal activity that is slow and indirect, but that is uniquely non-invasive and layer-specific with potentially whole brain coverage.
Collapse
Affiliation(s)
- René Scheeringa
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Institut National De La Santé Et De La Recherche Médicale U1028, Centre National De La Recherche Scientifique UMR S5292, Centre De Recherche En Neurosciences De Lyon, Bron, France
| | - Pascal Fries
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany.
| |
Collapse
|
40
|
Barrett LF. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci 2017; 12:1-23. [PMID: 27798257 PMCID: PMC5390700 DOI: 10.1093/scan/nsw154] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022] Open
Abstract
The science of emotion has been using folk psychology categories derived from philosophy to search for the brain basis of emotion. The last two decades of neuroscience research have brought us to the brink of a paradigm shift in understanding the workings of the brain, however, setting the stage to revolutionize our understanding of what emotions are and how they work. In this article, we begin with the structure and function of the brain, and from there deduce what the biological basis of emotions might be. The answer is a brain-based, computational account called the theory of constructed emotion.
Collapse
Affiliation(s)
- Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA.,Athinoula, A. Martinos Center for Biomedical Imaging.,Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
41
|
Ronconi L, Bellacosa Marotti R. Awareness in the crowd: Beta power and alpha phase of prestimulus oscillations predict object discrimination in visual crowding. Conscious Cogn 2017; 54:36-46. [DOI: 10.1016/j.concog.2017.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 12/23/2022]
|
42
|
Spontaneous Neural Oscillations Bias Perception by Modulating Baseline Excitability. J Neurosci 2017; 37:807-819. [PMID: 28123017 DOI: 10.1523/jneurosci.1432-16.2016] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 11/21/2022] Open
Abstract
The brain exhibits organized fluctuations of neural activity, even in the absence of tasks or sensory input. A prominent type of such spontaneous activity is the alpha rhythm, which influences perception and interacts with other ongoing neural activity. It is currently hypothesized that states of decreased prestimulus α oscillations indicate enhanced neural excitability, resulting in improved perceptual acuity. Nevertheless, it remains debated how changes in excitability manifest at the behavioral level in perceptual tasks. We addressed this issue by comparing two alternative models describing the effect of spontaneous α power on signal detection. The first model assumes that decreased α power increases baseline excitability, amplifying the response to both signal and noise, predicting a liberal detection criterion with no effect on sensitivity. The second model predicts that decreased α power increases the trial-by-trial precision of the sensory response, resulting in improved sensitivity. We tested these models in two EEG experiments in humans where we analyzed the effects of prestimulus α power on visual detection and discrimination using a signal detection framework. Both experiments provide strong evidence that decreased α power reflects a more liberal detection criterion, rather than improved sensitivity, consistent with the baseline model. In other words, when the task requires detecting stimulus presence versus absence, reduced α oscillations make observers more likely to report the stimulus regardless of actual stimulus presence. Contrary to previous interpretations, these results suggest that states of decreased α oscillations increase the global baseline excitability of sensory systems without affecting perceptual acuity. SIGNIFICANCE STATEMENT Spontaneous fluctuations of brain activity explain why a faint sensory stimulus is sometimes perceived and sometimes not. The prevailing view is that heightened neural excitability, indexed by decreased α oscillations, promotes better perceptual performance. Here, we provide evidence that heightened neural excitability instead reflects a state of biased perception, during which a person is more likely to see a stimulus, whether or not it is actually present. Therefore, we propose that changes in neural excitability leave the precision of sensory processing unaffected. These results establish the link between spontaneous brain activity and the variability in human perception.
Collapse
|
43
|
Benedetto A, Spinelli D, Morrone MC. Rhythmic modulation of visual contrast discrimination triggered by action. Proc Biol Sci 2017; 283:rspb.2016.0692. [PMID: 27226468 DOI: 10.1098/rspb.2016.0692] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022] Open
Abstract
Recent evidence suggests that ongoing brain oscillations may be instrumental in binding and integrating multisensory signals. In this experiment, we investigated the temporal dynamics of visual-motor integration processes. We show that action modulates sensitivity to visual contrast discrimination in a rhythmic fashion at frequencies of about 5 Hz (in the theta range), for up to 1 s after execution of action. To understand the origin of the oscillations, we measured oscillations in contrast sensitivity at different levels of luminance, which is known to affect the endogenous brain rhythms, boosting the power of alpha-frequencies. We found that the frequency of oscillation in sensitivity increased at low luminance, probably reflecting the shift in mean endogenous brain rhythm towards higher frequencies. Importantly, both at high and at low luminance, contrast discrimination showed a rhythmic motor-induced suppression effect, with the suppression occurring earlier at low luminance. We suggest that oscillations play a key role in sensory-motor integration, and that the motor-induced suppression may reflect the first manifestation of a rhythmic oscillation.
Collapse
Affiliation(s)
- Alessandro Benedetto
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy Department of Translational Research on New Technologies in Medicines and Surgery, University of Pisa, Via San Zeno 31, 56123 Pisa, Italy Institute of Neuroscience, National Research Council (CNR), 56124 Pisa, Italy
| | - Donatella Spinelli
- Department of Human Movement, Social and Health Sciences, University of Rome, 'Foro Italico', Pizza Lauro De Bosis 15, 00135, Rome, Italy IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Concetta Morrone
- Department of Translational Research on New Technologies in Medicines and Surgery, University of Pisa, Via San Zeno 31, 56123 Pisa, Italy Scientific Institute Stella Maris, Viale del Tirreno 331, 56018 Calambrone, Pisa, Italy
| |
Collapse
|
44
|
Hermes D, Nguyen M, Winawer J. Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential. PLoS Biol 2017; 15:e2001461. [PMID: 28742093 PMCID: PMC5524566 DOI: 10.1371/journal.pbio.2001461] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/22/2017] [Indexed: 01/07/2023] Open
Abstract
The most widespread measures of human brain activity are the blood-oxygen-level dependent (BOLD) signal and surface field potential. Prior studies report a variety of relationships between these signals. To develop an understanding of how to interpret these signals and the relationship between them, we developed a model of (a) neuronal population responses and (b) transformations from neuronal responses into the functional magnetic resonance imaging (fMRI) BOLD signal and electrocorticographic (ECoG) field potential. Rather than seeking a transformation between the two measures directly, this approach interprets each measure with respect to the underlying neuronal population responses. This model accounts for the relationship between BOLD and ECoG data from human visual cortex in V1, V2, and V3, with the model predictions and data matching in three ways: across stimuli, the BOLD amplitude and ECoG broadband power were positively correlated, the BOLD amplitude and alpha power (8-13 Hz) were negatively correlated, and the BOLD amplitude and narrowband gamma power (30-80 Hz) were uncorrelated. The two measures provide complementary information about human brain activity, and we infer that features of the field potential that are uncorrelated with BOLD arise largely from changes in synchrony, rather than level, of neuronal activity.
Collapse
Affiliation(s)
- Dora Hermes
- Department of Psychology, New York University, New York, New York, United States of America
- Brain Center Rudolf Magnus, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - Mai Nguyen
- Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, New York, United States of America
| |
Collapse
|
45
|
Balderston NL, Hale E, Hsiung A, Torrisi S, Holroyd T, Carver FW, Coppola R, Ernst M, Grillon C. Threat of shock increases excitability and connectivity of the intraparietal sulcus. eLife 2017; 6. [PMID: 28555565 PMCID: PMC5478270 DOI: 10.7554/elife.23608] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/29/2017] [Indexed: 11/30/2022] Open
Abstract
Anxiety disorders affect approximately 1 in 5 (18%) Americans within a given 1 year period, placing a substantial burden on the national health care system. Therefore, there is a critical need to understand the neural mechanisms mediating anxiety symptoms. We used unbiased, multimodal, data-driven, whole-brain measures of neural activity (magnetoencephalography) and connectivity (fMRI) to identify the regions of the brain that contribute most prominently to sustained anxiety. We report that a single brain region, the intraparietal sulcus (IPS), shows both elevated neural activity and global brain connectivity during threat. The IPS plays a key role in attention orienting and may contribute to the hypervigilance that is a common symptom of pathological anxiety. Hyperactivation of this region during elevated state anxiety may account for the paradoxical facilitation of performance on tasks that require an external focus of attention, and impairment of performance on tasks that require an internal focus of attention. DOI:http://dx.doi.org/10.7554/eLife.23608.001 Anxiety disorders affect around one in five Americans, and in many cases people experience anxiety so intensely that they have difficulties performing day-to-day activities. To help these people, it is important to understand how anxiety works. Current research suggests that anxiety disorders are caused when the connections in the brain that control our response to threat are either excessively or inappropriately activated. However, it was not clear what causes the anxiety to last for long periods. To better understand this phenomenon, Balderston et al. studied the brains of over 30 volunteers using two types of measurements called magnetoencephalography and fMRI. In the each experiment, participants experienced periods of threat, where they could receive unpredictable electric shocks. In the first experiment, Balderston et al. measured the brain activity by recording the magnetic fields generated in the brain. In the second experiment, they used fMRI to record changes in the blood flow throughout the brain to measure how the different regions in the brain communicate. The recordings identified a single part of the brain that increased its activity and changed its communication pattern with the other regions in the brain, when people are anxious. This region in a part of the brain called parietal lobe, is also important for processing attention, which suggests that anxiety might make people also more aware of their surroundings. However, this extra awareness might also make it more difficult for people to concentrate. Future studies may be able to stimulate this area of the brain through the scalp to potentially reduce anxiety, as the affected area is close to the skull. DOI:http://dx.doi.org/10.7554/eLife.23608.002
Collapse
Affiliation(s)
- Nicholas L Balderston
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Elizabeth Hale
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Abigail Hsiung
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Salvatore Torrisi
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Tom Holroyd
- MEG Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Frederick W Carver
- MEG Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Richard Coppola
- MEG Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Christian Grillon
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| |
Collapse
|
46
|
Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, Sack AT, Miniussi C, Antal A, Siebner HR, Ziemann U, Herrmann CS. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clin Neurophysiol 2017; 128:843-857. [PMID: 28233641 PMCID: PMC5385293 DOI: 10.1016/j.clinph.2017.01.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/10/2016] [Accepted: 01/08/2017] [Indexed: 01/31/2023]
Abstract
Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges.
Collapse
Affiliation(s)
- Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| | - Til Ole Bergmann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Institute for Medical Psychology and Behavioral Neurobiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Flavio Fröhlich
- Department of Psychiatry & Department of Biomedical Engineering & Department of Cell Biology and Physiology & Neuroscience Center & Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Surjo R Soekadar
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy & MEG Center, University Hospital of Tübingen, Tübingen, Germany
| | - John-Stuart Brittain
- Nuffield Department of Clinical Neurosciences, Charles Wolfson Neuroscience Clinical Research Facility, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Institut du Cerveau et la Moelle (ICM), CNRS UMR 7225-INSERM U-117, Université Pierre et Marie Curie, Paris, France
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Carlo Miniussi
- Center for Mind/Brain Sciences CIMeC University of Trento, Rovereto, Italy & Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Göttingen, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Center for Excellence "Hearing4all", European Medical School, Carl von Ossietzky University & Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
47
|
Mayhew SD, Bagshaw AP. Dynamic spatiotemporal variability of alpha-BOLD relationships during the resting-state and task-evoked responses. Neuroimage 2017; 155:120-137. [PMID: 28454820 DOI: 10.1016/j.neuroimage.2017.04.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/27/2017] [Accepted: 04/21/2017] [Indexed: 11/29/2022] Open
Abstract
Accurate characterization of the spatiotemporal relationship between two of the most prominent neuroimaging measures of neuronal activity, the 8-13Hz, occipito-parietal EEG alpha oscillation and the BOLD fMRI signal, must encompass the intrinsically dynamic nature of both alpha power and brain function. Here, during the eyes-open resting state, we use a 16s sliding-window analysis and demonstrate that the mean spatial network of dynamic alpha-BOLD correlations is highly comparable to the static network calculated over six minutes. However, alpha-BOLD correlations showed substantial spatiotemporal variability within-subjects and passed through many different configurations such that the static network was fully represented in only ~10% of 16s epochs, with visual and parietal regions (coherent on average) often opposingly correlated with each other or with alpha. We find that the common assumption of static-alpha BOLD correlations greatly oversimplifies temporal variation in brain network dynamics. Fluctuations in alpha-BOLD coupling significantly depended upon the instantaneous amplitude of alpha power, and primary and lateral visual areas were most strongly negatively correlated with alpha during different alpha power states, possibly suggesting the action of multiple alpha mechanisms. Dynamic alpha-BOLD correlations could not be explained by eye-blinks/movements, head motion or non-neuronal physiological variability. Individual's mean alpha power and frequency were found to contribute to between-subject variability in alpha-BOLD correlations. Additionally, application to a visual stimulation dataset showed that dynamic alpha-BOLD correlations provided functional information pertaining to the brain's response to stimulation by exhibiting spatiotemporal fluctuations related to variability in the trial-by-trial BOLD response magnitude. Significantly weaker visual alpha-BOLD correlations were found both preceding and following small amplitude BOLD response trials compared to large response trials.
Collapse
Affiliation(s)
- S D Mayhew
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - A P Bagshaw
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
48
|
Petro NM, Gruss LF, Yin S, Huang H, Miskovic V, Ding M, Keil A. Multimodal Imaging Evidence for a Frontoparietal Modulation of Visual Cortex during the Selective Processing of Conditioned Threat. J Cogn Neurosci 2017; 29:953-967. [PMID: 28253082 DOI: 10.1162/jocn_a_01114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Emotionally salient cues are detected more readily, remembered better, and evoke greater visual cortical responses compared with neutral stimuli. The current study used concurrent EEG-fMRI recordings to identify large-scale network interactions involved in the amplification of visual cortical activity when viewing aversively conditioned cues. To generate a continuous neural signal from pericalcarine visual cortex, we presented rhythmic (10/sec) phase-reversing gratings, the orientation of which predicted the presence (CS+) or absence (CS-) of a cutaneous electric shock (i.e., the unconditioned stimulus). The resulting single trial steady-state visual evoked potential (ssVEP) amplitude was regressed against the whole-brain BOLD signal, resulting in a measure of ssVEP-BOLD coupling. Across all trial types, ssVEP-BOLD coupling was observed in both primary and extended visual cortical regions, the rolandic operculum, as well as the thalamus and bilateral hippocampus. For CS+ relative to CS- trials during the conditioning phase, BOLD-alone analyses showed CS+ enhancement at the occipital pole, superior temporal sulci, and the anterior insula bilaterally, whereas ssVEP-BOLD coupling was greater in the pericalcarine cortex, inferior parietal cortex, and middle frontal gyrus. Dynamic causal modeling analyses supported connectivity models in which heightened activity in pericalcarine cortex for threat (CS+) arises from cortico-cortical top-down modulation, specifically from the middle frontal gyrus. No evidence was observed for selective pericalcarine modulation by deep cortical structures such as the amygdala or anterior insula, suggesting that the heightened engagement of pericalcarine cortex for threat stimuli is mediated by cortical structures that constitute key nodes of canonical attention networks.
Collapse
|
49
|
Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control. Trends Cogn Sci 2016; 20:805-817. [PMID: 27707588 DOI: 10.1016/j.tics.2016.09.004] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 09/06/2016] [Indexed: 01/21/2023]
Abstract
The most salient electrical signal measured from the human brain is the α-rhythm, neural activity oscillating at ∼100ms intervals. Recent findings challenge the longstanding dogma of α-band oscillations as the signature of a passively idling brain state but diverge in terms of interpretation. Despite firm correlations with behavior, the mechanistic role of the α-rhythm in brain function remains debated. We suggest that three large-scale brain networks involved in different facets of top-down cognitive control differentially modulate α-oscillations, ranging from power within and synchrony between brain regions. Thereby, these networks selectively influence local signal processing, widespread information exchange, and ultimately perception and behavior.
Collapse
|
50
|
Perceptual Cycles. Trends Cogn Sci 2016; 20:723-735. [DOI: 10.1016/j.tics.2016.07.006] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 11/21/2022]
|