1
|
Toba MN, Malkinson TS, Howells H, Mackie MA, Spagna A. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev 2024; 34:418-454. [PMID: 36967445 DOI: 10.1007/s11065-023-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 03/29/2023]
Abstract
Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France.
- CHU Amiens Picardie - Site Sud, Centre Universitaire de Recherche en Santé, Avenue René Laënnec, 80054, Amiens Cedex 1, France.
| | - Tal Seidel Malkinson
- Paris Brain Institute, ICM, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Université de Lorraine, CRAN, F-54000, Nancy, France
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Humanitas Research Hospital, IRCCS, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa-Ann Mackie
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, 10025, USA.
| |
Collapse
|
2
|
Peña Pino I, Fellows E, McGovern RA, Chen CC, Sandoval-Garcia C. Structural and functional connectivity in hydrocephalus: a scoping review. Neurosurg Rev 2024; 47:201. [PMID: 38695962 DOI: 10.1007/s10143-024-02430-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 06/26/2024]
Abstract
Optimizing the treatment of hydrocephalus remains a major challenge in adult and pediatric neurosurgery. Currently, clinical treatment relies heavily on anatomic imaging of ventricular size and clinical presentation. The emergence of functional and structural brain connectivity imaging has provided the basis for a new paradigm in the management of hydrocephalus. Here we review the pertinent advances in this field. Following PRISMA-ScR guidelines for scoping reviews, we searched PubMed for relevant literature from 1994 to April 2023 using hydrocephalus and MRI-related terms. Included articles reported original MRI data on human subjects with hydrocephalus, while excluding non-English or pre-1994 publications that didn't match the study framework. The review identified 44 studies that investigated functional and/or structural connectivity using various MRI techniques across different hydrocephalus populations. While there is significant heterogeneity in imaging technology and connectivity analysis, there is broad consensus in the literature that 1) hydrocephalus is associated with disruption of functional and structural connectivity, 2) this disruption in cerebral connectivity can be further associated with neurologic compromise 3) timely treatment of hydrocephalus restores both cerebral connectivity and neurologic compromise. The robustness and consistency of these findings vary as a function of patient age, hydrocephalus etiology, and the connectivity region of interest studied. Functional and structural brain connectivity imaging shows potential as an imaging biomarker that may facilitate optimization of hydrocephalus treatment. Future research should focus on standardizing regions of interest as well as identifying connectivity analysis most pertinent to clinical outcome.
Collapse
Affiliation(s)
- Isabela Peña Pino
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Emily Fellows
- University of Minnesota Medical School, Minneapolis, MN, USA
| | - Robert A McGovern
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
3
|
Schinz D, Schmitz‐Koep B, Zimmermann J, Brandes E, Tahedl M, Menegaux A, Dukart J, Zimmer C, Wolke D, Daamen M, Boecker H, Bartmann P, Sorg C, Hedderich DM. Indirect evidence for altered dopaminergic neurotransmission in very premature-born adults. Hum Brain Mapp 2023; 44:5125-5138. [PMID: 37608591 PMCID: PMC10502650 DOI: 10.1002/hbm.26451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/23/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by evaluating the spatial co-localization of regional alterations in blood oxygenation fluctuations with the distribution of adult dopaminergic neurotransmission. The study cohort comprised 99 very premature-born (<32 weeks of gestation and/or birth weight below 1500 g) and 107 full-term born young adults, being assessed by resting-state functional MRI (rs-fMRI) and IQ testing. Normative molecular imaging dopamine neurotransmission maps were derived from independent healthy control groups. We computed the co-localization of local (rs-fMRI) activity alterations in premature-born adults with respect to term-born individuals to different measures of dopaminergic neurotransmission. We performed selectivity analyses regarding other neuromodulatory systems and MRI measures. In addition, we tested if the strength of the co-localization is related to perinatal measures and IQ. We found selectively altered co-localization of rs-fMRI activity in the premature-born cohort with dopamine-2/3-receptor availability in premature-born adults. Alterations were specific for the dopaminergic system but not for the used MRI measure. The strength of the co-localization was negatively correlated with IQ. In line with animal studies, our findings support the notion of altered dopaminergic neurotransmission in prematurity which is associated with cognitive performance.
Collapse
Affiliation(s)
- David Schinz
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Benita Schmitz‐Koep
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Elin Brandes
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Marlene Tahedl
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Aurore Menegaux
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Juergen Dukart
- Institute of Neuroscience and MedicineBrain & Behaviour (INM‐7), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Claus Zimmer
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Dieter Wolke
- Department of PsychologyUniversity of WarwickCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Marcel Daamen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Department of NeonatologyUniversity Hospital BonnBonnGermany
| | - Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Peter Bartmann
- Department of NeonatologyUniversity Hospital BonnBonnGermany
| | - Christian Sorg
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
- Department of Psychiatry, School of MedicineTechnical University of MunichMunichGermany
| | - Dennis M. Hedderich
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| |
Collapse
|
4
|
Vanes LD, Murray RM, Nosarti C. Adult outcome of preterm birth: Implications for neurodevelopmental theories of psychosis. Schizophr Res 2022; 247:41-54. [PMID: 34006427 DOI: 10.1016/j.schres.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth is associated with an elevated risk of developmental and adult psychiatric disorders, including psychosis. In this review, we evaluate the implications of neurodevelopmental, cognitive, motor, and social sequelae of preterm birth for developing psychosis, with an emphasis on outcomes observed in adulthood. Abnormal brain development precipitated by early exposure to the extra-uterine environment, and exacerbated by neuroinflammation, neonatal brain injury, and genetic vulnerability, can result in alterations of brain structure and function persisting into adulthood. These alterations, including abnormal regional brain volumes and white matter macro- and micro-structure, can critically impair functional (e.g. frontoparietal and thalamocortical) network connectivity in a manner characteristic of psychotic illness. The resulting executive, social, and motor dysfunctions may constitute the basis for behavioural vulnerability ultimately giving rise to psychotic symptomatology. There are many pathways to psychosis, but elucidating more precisely the mechanisms whereby preterm birth increases risk may shed light on that route consequent upon early neurodevelopmental insult.
Collapse
Affiliation(s)
- Lucy D Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
5
|
Grannis C, Hung A, French RC, Mattson WI, Fu X, Hoskinson KR, Gerry Taylor H, Nelson EE. Multimodal classification of extremely preterm and term adolescents using the fusiform gyrus: A machine learning approach. Neuroimage Clin 2022; 35:103078. [PMID: 35687994 PMCID: PMC9189188 DOI: 10.1016/j.nicl.2022.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Extremely preterm birth has been associated with atypical visual and neural processing of faces, as well as differences in gray matter structure in visual processing areas relative to full-term peers. In particular, the right fusiform gyrus, a core visual area involved in face processing, has been shown to have structural and functional differences between preterm and full-term individuals from childhood through early adulthood. The current study used multiple neuroimaging modalities to build a machine learning model based on the right fusiform gyrus to classify extremely preterm birth status. METHOD Extremely preterm adolescents (n = 20) and full-term peers (n = 24) underwent structural and functional magnetic resonance imaging. Group differences in gray matter density, measured via voxel-based morphometry (VBM), and blood-oxygen level-dependent (BOLD) response to face stimuli were explored within the right fusiform. Using group difference clusters as seed regions, analyses investigating outgoing white matter streamlines, regional homogeneity, and functional connectivity during a face processing task and at rest were conducted. A data driven approach was utilized to determine the most discriminative combination of these features within a linear support vector machine classifier. RESULTS Group differences in two partially overlapping clusters emerged: one from the VBM analysis showing less density in the extremely preterm cohort and one from BOLD response to faces showing greater activation in the extremely preterm relative to full-term youth. A classifier fit to the data from the cluster identified in the BOLD analysis achieved an accuracy score of 88.64% when BOLD, gray matter density, regional homogeneity, and functional connectivity during the task and at rest were included. A classifier fit to the data from the cluster identified in the VBM analysis achieved an accuracy score of 95.45% when only BOLD, gray matter density, and regional homogeneity were included. CONCLUSION Consistent with previous findings, we observed neural differences in extremely preterm youth in an area that plays an important role in face processing. Multimodal analyses revealed differences in structure, function, and connectivity that, when taken together, accurately distinguish extremely preterm from full-term born youth. Our findings suggest a compensatory role of the fusiform where less dense gray matter is countered by increased local BOLD signal. Importantly, sub-threshold differences in many modalities within the same region were informative when distinguishing between extremely preterm and full-term youth.
Collapse
Affiliation(s)
- Connor Grannis
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.
| | - Andy Hung
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Roberto C French
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Whitney I Mattson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Xiaoxue Fu
- College of Education, University of South Carolina, Columbia, SC, United States
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, Ohio State University Wexner College of Medicine, Columbus, OH, United States
| | - H Gerry Taylor
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, Ohio State University Wexner College of Medicine, Columbus, OH, United States
| | - Eric E Nelson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, Ohio State University Wexner College of Medicine, Columbus, OH, United States
| |
Collapse
|
6
|
Advances in functional and diffusion neuroimaging research into the long-term consequences of very preterm birth. J Perinatol 2021; 41:689-706. [PMID: 33099576 DOI: 10.1038/s41372-020-00865-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Very preterm birth (<32 weeks of gestation) has been associated with lifelong difficulties in a variety of neurocognitive functions. Magnetic resonance imaging (MRI) combined with advanced analytical approaches have been employed in order to increase our understanding of the neurodevelopmental problems that many very preterm born individuals face as they grow up. In this review, we will focus on two novel imaging techniques that have explored relationships between specific brain mechanisms and behavioural outcomes. These are functional MRI, which maps regional, time-varying changes in brain metabolism and diffusion-weighted MRI, which measures the displacement of water molecules in tissue and provides quantitative information about tissue microstructure. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth could inform the development and implementation of preventative interventions (before any cognitive problem emerges) and could facilitate the identification of behavioural targets for improving the life course outcomes of very preterm individuals.
Collapse
|
7
|
Vanes LD, Dolan RJ. Transdiagnostic neuroimaging markers of psychiatric risk: A narrative review. NEUROIMAGE-CLINICAL 2021; 30:102634. [PMID: 33780864 PMCID: PMC8022867 DOI: 10.1016/j.nicl.2021.102634] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
We review the literature on neural correlates of a general psychopathology factor General psychopathology relates to structural and functional neurodevelopment Disrupted network connectivity maturation may underlie psychiatric vulnerability
Several decades of neuroimaging research in psychiatry have shed light on structural and functional neural abnormalities associated with individual psychiatric disorders. However, there is increasing evidence for substantial overlap in the patterns of neural dysfunction seen across disorders, suggesting that risk for psychiatric illness may be shared across diagnostic boundaries. Gaining insights on the existence of shared neural mechanisms which may transdiagnostically underlie psychopathology is important for psychiatric research in order to tease apart the unique and common aspects of different disorders, but also clinically, so as to help identify individuals early on who may be biologically vulnerable to psychiatric disorder in general. In this narrative review, we first evaluate recent studies investigating the functional and structural neural correlates of a general psychopathology factor, which is thought to reflect the shared variance across common mental health symptoms and therefore index psychiatric vulnerability. We then link insights from this research to existing meta-analytic evidence for shared patterns of neural dysfunction across categorical psychiatric disorders. We conclude by providing an integrative account of vulnerability to mental illness, whereby delayed or disrupted maturation of large-scale networks (particularly default-mode, executive, and sensorimotor networks), and more generally between-network connectivity, results in a compromised ability to integrate and switch between internally and externally focused tasks.
Collapse
Affiliation(s)
- Lucy D Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, United Kingdom.
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| |
Collapse
|
8
|
Functional Magnetic Resonance Imaging during Visual Perception Tasks in Adolescents Born Prematurely. J Int Neuropsychol Soc 2021; 27:270-281. [PMID: 32928332 DOI: 10.1017/s1355617720000867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Impairments in visual perception are among the most common developmental difficulties related to being born prematurely, and they are often accompanied by problems in other developmental domains. Neural activation in participants born prematurely and full-term during tasks that assess several areas of visual perception has not been studied. To better understand the neural substrates of the visual perceptual impairments, we compared behavioral performance and brain activations during visual perception tasks in adolescents born very preterm (birth weight ≤1500 g or gestational age <32 weeks) and full-term. METHODS Tasks assessing visual closure, discrimination of a deviating figure, and discrimination of figure and ground from the Motor-Free Visual Perception Test, Third Edition were performed by participants born very preterm (n = 37) and full-term (n = 34) at 12 years of age during functional magnetic resonance imaging. RESULTS Behavioral performance in the visual perception tasks did not differ between the groups. However, during the visual closure task, brain activation was significantly stronger in the group born very preterm in a number of areas including the frontal, anterior cingulate, temporal, and posterior medial parietal/cingulate cortices, as well as in parts of the cerebellum, thalamus, and caudate nucleus. CONCLUSIONS Differing activations during the visual closure task potentially reflect a compensatory neural process related to premature birth or lesser neural efficiency or may be a result of the use of compensatory behavioral strategies in the study group born very preterm.
Collapse
|
9
|
Torres-Prioris MJ, López-Barroso D, Càmara E, Fittipaldi S, Sedeño L, Ibáñez A, Berthier ML, García AM. Neurocognitive signatures of phonemic sequencing in expert backward speakers. Sci Rep 2020; 10:10621. [PMID: 32606382 PMCID: PMC7326922 DOI: 10.1038/s41598-020-67551-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/10/2020] [Indexed: 11/09/2022] Open
Abstract
Despite its prolific growth, neurolinguistic research on phonemic sequencing has largely neglected the study of individuals with highly developed skills in this domain. To bridge this gap, we report multidimensional signatures of two experts in backward speech, that is, the capacity to produce utterances by reversing the order of phonemes while retaining their identity. Our approach included behavioral assessments of backward and forward speech alongside neuroimaging measures of voxel-based morphometry, diffusion tensor imaging, and resting-state functional connectivity. Relative to controls, both backward speakers exhibited behavioral advantages for reversing words and sentences of varying complexity, irrespective of working memory skills. These patterns were accompanied by increased grey matter volume, higher mean diffusivity, and enhanced functional connectivity along dorsal and ventral stream regions mediating phonological and other linguistic operations, with complementary support of areas subserving associative-visual and domain-general processes. Still, the specific loci of these neural patterns differed between both subjects, suggesting individual variability in the correlates of expert backward speech. Taken together, our results offer new vistas on the domain of phonemic sequencing, while illuminating neuroplastic patterns underlying extraordinary language abilities.
Collapse
Affiliation(s)
- María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain.,Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain.,Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Estela Càmara
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sol Fittipaldi
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile.,Global Brain Health Institute, University of California, San Francisco, United States
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain
| | - Adolfo M García
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina. .,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina. .,Global Brain Health Institute, University of California, San Francisco, United States. .,Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina. .,Departamento de Lingüística Y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Hadaya L, Nosarti C. The neurobiological correlates of cognitive outcomes in adolescence and adulthood following very preterm birth. Semin Fetal Neonatal Med 2020; 25:101117. [PMID: 32451305 DOI: 10.1016/j.siny.2020.101117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Very preterm birth (<33 weeks of gestation) has been associated with alterations in structural and functional brain development in regions that are believed to underlie a variety of cognitive processes. While such alterations have been often studied in the context of cognitive vulnerability, early disruption to programmed developmental processes may also lead to neuroplastic and functional adaptations, which support cognitive performance. In this review, we will focus on executive function and intelligence as the main cognitive outcomes following very preterm birth in adolescence and adulthood in relation to their structural and functional neurobiological correlates. The neuroimaging modalities we review provide quantitative assessments of brain morphology, white matter macro and micro-structure, structural and functional connectivity and haemodynamic responses associated with specific cognitive operations. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth may guide the development and implementation of targeted neurobehaviourally-informed interventions for those at high risk.
Collapse
Affiliation(s)
- Laila Hadaya
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Faculty of Life Science and Medicine, King's College London, London, United Kingdom; Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Chiara Nosarti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
11
|
Kelly CE, Thompson DK, Chen J, Josev EK, Pascoe L, Spencer-Smith MM, Adamson C, Nosarti C, Gathercole S, Roberts G, Lee KJ, Doyle LW, Seal ML, Anderson PJ. Working memory training and brain structure and function in extremely preterm or extremely low birth weight children. Hum Brain Mapp 2019; 41:684-696. [PMID: 31713952 PMCID: PMC6977425 DOI: 10.1002/hbm.24832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 01/31/2023] Open
Abstract
This study in children born extremely preterm (EP; <28 weeks' gestational age) or extremely low birth weight (ELBW; <1,000 g) investigated whether adaptive working memory training using Cogmed® is associated with structural and/or functional brain changes compared with a placebo program. Ninety-one EP/ELBW children were recruited at a mean (standard deviation) age of 7.8 (0.4) years. Children were randomly allocated to Cogmed or placebo (45-min sessions, 5 days a week over 5-7 weeks). A subset had usable magnetic resonance imaging (MRI) data pretraining and 2 weeks posttraining (structural, n = 48; diffusion, n = 43; task-based functional, n = 18). Statistical analyses examined whether cortical morphometry, white matter microstructure and blood oxygenation level-dependent (BOLD) signal during an n-back working memory task changed from pretraining to posttraining in the Cogmed and placebo groups separately. Interaction analyses between time point and group were then performed. There was a significant increase in neurite density in several white matter regions from pretraining to posttraining in both the Cogmed and placebo groups. BOLD signal in the posterior cingulate and precuneus cortices during the n-back task increased from pretraining to posttraining in the Cogmed but not placebo group. Evidence for group-by-time interactions for the MRI measures was weak, suggesting that brain changes generally did not differ between Cogmed and placebo groups. Overall, while some structural and functional MRI changes between the pretraining and posttraining period in EP/ELBW children were observed, there was little evidence of training-induced neuroplasticity, with changes generally identified in both groups. Trial registration Australian New Zealand Clinical Trials Registry, anzctr.org.au; ACTRN12612000124831.
Collapse
Affiliation(s)
- Claire E Kelly
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jian Chen
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Elisha K Josev
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Leona Pascoe
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Megan M Spencer-Smith
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Chris Adamson
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Susan Gathercole
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Gehan Roberts
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Health Services, Population Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Centre for Community Child Health, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Katherine J Lee
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Clinical Epidemiology & Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Newborn Research, The Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marc L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Kroll J, Karolis V, Brittain PJ, Tseng CEJ, Froudist-Walsh S, Murray RM, Nosarti C. Systematic assessment of perinatal and socio-demographic factors associated with IQ from childhood to adult life following very preterm birth. INTELLIGENCE 2019. [DOI: 10.1016/j.intell.2019.101401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Working Memory Training Is Associated with Changes in Resting State Functional Connectivity in Children Who Were Born Extremely Preterm: a Randomized Controlled Trial. JOURNAL OF COGNITIVE ENHANCEMENT 2019. [DOI: 10.1007/s41465-019-00150-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Abstract
Children born extremely preterm (EP; < 28 weeks of gestation) or extremely low birth weight (ELBW; < 1000 g) are at increased risk of working memory deficits compared with their term-born peers and may benefit from working memory training. This study aimed to determine whether Cogmed Working Memory Training®, compared with a placebo training program, was associated with changes in resting-state functional connectivity (rsfc) and whether these changes correlated with working memory performance in EP/ELBW children. Twenty-one 7-year-old EP/ELBW children were enrolled in a double-blinded randomized controlled trial and had magnetic resonance imaging (MRI) assessments (Cogmed, n = 12; placebo (a non-adaptive version of Cogmed), n = 9). Prior to training (baseline) and 2 weeks post-training, all children received a cognitive assessment, inclusive of immediate memory and working memory measures and an MRI. The Cogmed Improvement Index was used as a measure of improvement in trained activities in the Cogmed group. Resting-state functional MRI was used to measure training-related changes in intra- and inter-network rsfc. The networks assessed include the default mode network, the left and right central executive networks, the bilateral executive network, the dorsal attention network, and the salience network. rsfc data were compared between treatment groups and investigated in relation to changes in working memory performance. There was little evidence of differences in intra- or inter-network rsfc strength changes from baseline to post-training between treatment groups. In the Cogmed group, working memory performance was associated with increased rsfc from baseline to post-training within the precuneus network, but not in the placebo group. In the Cogmed group, results that did not survive multiple comparison correction further showed that improvement in trained activities was associated with increased rsfc between the left central and bilateral executive networks, and with decreased rsfc within the right central executive network and between the right central executive and salience networks. Changes in rsfc may facilitate working memory performance following Cogmed training. Further studies are needed to investigate how changes in rsfc are associated with behavioral changes to better support working memory in vulnerable groups.
Collapse
|
14
|
Shang J, Fisher P, Bäuml JG, Daamen M, Baumann N, Zimmer C, Bartmann P, Boecker H, Wolke D, Sorg C, Koutsouleris N, Dwyer DB. A machine learning investigation of volumetric and functional MRI abnormalities in adults born preterm. Hum Brain Mapp 2019; 40:4239-4252. [PMID: 31228329 DOI: 10.1002/hbm.24698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Imaging studies have characterized functional and structural brain abnormalities in adults after premature birth, but these investigations have mostly used univariate methods that do not account for hypothesized interdependencies between brain regions or quantify accuracy in identifying individuals. To overcome these limitations, we used multivariate machine learning to identify gray matter volume (GMV) and amplitude of low frequency fluctuations (ALFF) brain patterns that best classify young adults born very preterm/very low birth weight (VP/VLBW; n = 94) from those born full-term (FT; n = 92). We then compared the spatial maps of the structural and functional brain signatures and validated them by assessing associations with clinical birth history and basic cognitive variables. Premature birth could be predicted with a balanced accuracy of 80.7% using GMV and 77.4% using ALFF. GMV predictions were mediated by a pattern of subcortical and middle temporal reductions and volumetric increases of the lateral prefrontal, medial prefrontal, and superior temporal gyrus regions. ALFF predictions were characterized by a pattern including increases in the thalamus, pre- and post-central gyri, and parietal lobes, in addition to decreases in the superior temporal gyri bilaterally. Decision scores from each classification, assessing the degree to which an individual was classified as a VP/VLBW case, were predicted by the number of days in neonatal hospitalization and birth weight. ALFF decision scores also contributed to the prediction of general IQ, which highlighted their potential clinical significance. Combined, the results clarified previous research and suggested that primary subcortical and temporal damage may be accompanied by disrupted neurodevelopment of the cortex.
Collapse
Affiliation(s)
- Jing Shang
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.,TUM-NIC Neuroimaging Center, Technische Universität München
| | - Paul Fisher
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Josef G Bäuml
- TUM-NIC Neuroimaging Center, Technische Universität München.,Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Marcel Daamen
- Department of Neonatology, University Hospital Bonn, Bonn, Germany.,Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technische Universität München.,Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
15
|
More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury. Neuropsychologia 2019; 128:178-186. [DOI: 10.1016/j.neuropsychologia.2017.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/26/2017] [Accepted: 11/12/2017] [Indexed: 11/18/2022]
|
16
|
Verbal Fluency Is Affected by Altered Brain Lateralization in Adults Who Were Born Very Preterm. eNeuro 2019; 6:eN-NWR-0274-18. [PMID: 31001576 PMCID: PMC6469882 DOI: 10.1523/eneuro.0274-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 02/01/2023] Open
Abstract
Language difficulties have been reported in children and adolescents who were born very preterm (<32 weeks’ gestation) and associated with an atypical lateralization of language processing, i.e., increased right-hemispheric engagement. This study used functional magnetic resonance imaging (fMRI) and spherical deconvolution tractography to study the hemodynamic responses associated with verbal fluency processing (easy and hard letter trials) and verbal fluency-related white matter fiber tracts in 64 very preterm born adults and 36 adult controls (mean age: 30 years). Tractography of the arcuate fasciculus (AF) and frontal aslant tract (FAT) was performed. Tracts were quantified in terms of mean volume, hindrance modulated orientational anisotropy, and lateralization, assessed using a laterality index (LI) to indicate hemispheric dominance. During verbal fluency fMRI, very preterm participants displayed decreased hemodynamic response suppression in both the Easy > Rest and Hard > Rest conditions, compared to controls, in superior temporal gyrus (STG), insula, thalamus, and sensorimotor cortex, particularly in the right hemisphere. At the whole-group level, decreased hemodynamic response suppression in the right sensorimotor cortex was associated with worse on-line performance on the hard letter trials. Increased left-laterality in the AF was present alongside increased right hemispheric hemodynamic response suppression in controls. When only right-handed participants were considered, decreased hemodynamic response suppression in the right STG during hard letter trials was related to weaker left and right FAT white matter integrity in the preterm group only. These results show that verbal fluency is affected by altered functional lateralization in adults who were born very preterm.
Collapse
|
17
|
Smyser CD, Wheelock MD, Limbrick DD, Neil JJ. Neonatal brain injury and aberrant connectivity. Neuroimage 2019; 185:609-623. [PMID: 30059733 PMCID: PMC6289815 DOI: 10.1016/j.neuroimage.2018.07.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Brain injury sustained during the neonatal period may disrupt development of critical structural and functional connectivity networks leading to subsequent neurodevelopmental impairment in affected children. These networks can be characterized using structural (via diffusion MRI) and functional (via resting state-functional MRI) neuroimaging techniques. Advances in neuroimaging have led to expanded application of these approaches to study term- and prematurely-born infants, providing improved understanding of cerebral development and the deleterious effects of early brain injury. Across both modalities, neuroimaging data are conducive to analyses ranging from characterization of individual white matter tracts and/or resting state networks through advanced 'connectome-style' approaches capable of identifying highly connected network hubs and investigating metrics of network topology such as modularity and small-worldness. We begin this review by summarizing the literature detailing structural and functional connectivity findings in healthy term and preterm infants without brain injury during the postnatal period, including discussion of early connectome development. We then detail common forms of brain injury in term- and prematurely-born infants. In this context, we next review the emerging body of literature detailing studies employing diffusion MRI, resting state-functional MRI and other complementary neuroimaging modalities to characterize structural and functional connectivity development in infants with brain injury. We conclude by reviewing technical challenges associated with neonatal neuroimaging, highlighting those most relevant to studying infants with brain injury and emphasizing the need for further targeted study in this high-risk population.
Collapse
Affiliation(s)
- Christopher D Smyser
- Departments of Neurology, Pediatrics and Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA.
| | - Muriah D Wheelock
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8134, St. Louis, MO, 63110, USA.
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine, One Children's Place, Suite S20, St. Louis, MO, 63110, USA.
| | - Jeffrey J Neil
- Department of Pediatric Neurology, Boston Children's Hospital, 300 Longwood Avenue, BCH3443, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Shang J, Bäuml JG, Koutsouleris N, Daamen M, Baumann N, Zimmer C, Bartmann P, Boecker H, Wolke D, Sorg C. Decreased BOLD fluctuations in lateral temporal cortices of premature born adults. Hum Brain Mapp 2018; 39:4903-4912. [PMID: 30208256 DOI: 10.1002/hbm.24332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022] Open
Abstract
Lasting volume reductions in subcortical and temporal-insular cortices after premature birth suggest altered ongoing activity in these areas. We hypothesized altered fluctuations in ongoing neural excitability and activity, as measured by slowly fluctuating blood oxygenation of resting-state functional MRI (rs-fMRI), in premature born adults, with altered fluctuations being linked with underlying brain volume reductions. To investigate this hypothesis, 94 very preterm/very low birth weight (VP/VLBW) and 92 full-term born young adults underwent structural and rs-fMRI data acquisition with voxel-based morphometry and amplitude of low-frequency fluctuations (ALFF) as main outcome measure. In VP/VLBW adults, ALFF was reduced in lateral temporal cortices, and this reduction was positively associated with lower birth weight. Regions of reduced ALFF overlapped with reduced brain volume. On the one hand, ALFF reduction remained after controlling for volume loss, supporting the functional nature of ALFF reductions. On the other hand, ALFF decreases were positively associated with underlying brain volume loss, indicating a relation between structural and functional changes. Furthermore, within the VP/VLBW group, reduced ALFF was associated with reduced IQ, indicating the behavioral relevance of ALFF decreases in temporal cortices. These results demonstrate long-term impact of premature birth on ongoing BOLD fluctuations in lateral temporal cortices, which are linked with brain volume reductions. Data suggest permanently reduced fluctuations in ongoing neural excitability and activity in structurally altered lateral temporal cortices after premature birth.
Collapse
Affiliation(s)
- Jing Shang
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Josef G Bäuml
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany.,Department of Neuroradiology, Technische Universität München, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Claus Zimmer
- Department of Neuroradiology, Technische Universität München, Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany.,Department of Neuroradiology, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar and, Technische Universität München, Munich, Germany
| |
Collapse
|
19
|
Kroll J, Froudist-Walsh S, Brittain PJ, Tseng CEJ, Karolis V, Murray RM, Nosarti C. A dimensional approach to assessing psychiatric risk in adults born very preterm. Psychol Med 2018; 48:1738-1744. [PMID: 29350124 DOI: 10.1017/s0033291717003804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Individuals who were born very preterm have higher rates of psychiatric diagnoses compared with term-born controls; however, it remains unclear whether they also display increased sub-clinical psychiatric symptomatology. Hence, our objective was to utilize a dimensional approach to assess psychiatric symptomatology in adult life following very preterm birth. METHODS We studied 152 adults who were born very preterm (before 33 weeks' gestation; gestational range 24-32 weeks) and 96 term-born controls. Participants' clinical profile was examined using the Comprehensive Assessment of At-Risk Mental States (CAARMS), a measure of sub-clinical symptomatology that yields seven subscales including general psychopathology, positive, negative, cognitive, behavioural, motor and emotional symptoms, in addition to a total psychopathology score. Intellectual abilities were examined using the Wechsler Abbreviated Scale of Intelligence. RESULTS Between-group differences on the CAARMS showed elevated symptomatology in very preterm participants compared with controls in positive, negative, cognitive and behavioural symptoms. Total psychopathology scores were significantly correlated with IQ in the very preterm group only. In order to examine the characteristics of participants' clinical profile, a principal component analysis was conducted. This revealed two components, one reflecting a non-specific psychopathology dimension, and the other indicating a variance in symptomatology along a positive-to-negative symptom axis. K-means (k = 4) were used to further separate the study sample into clusters. Very preterm adults were more likely to belong to a high non-specific psychopathology cluster compared with controls.Conclusion and RelevanceVery preterm individuals demonstrated elevated psychopathology compared with full-term controls. Their psychiatric risk was characterized by a non-specific clinical profile and was associated with lower IQ.
Collapse
Affiliation(s)
- Jasmin Kroll
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Sean Froudist-Walsh
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Philip J Brittain
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Chieh-En J Tseng
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Vyacheslav Karolis
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Robin M Murray
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Chiara Nosarti
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| |
Collapse
|
20
|
Telford EJ, Cox SR, Fletcher-Watson S, Anblagan D, Sparrow S, Pataky R, Quigley A, Semple SI, Bastin ME, Boardman JP. A latent measure explains substantial variance in white matter microstructure across the newborn human brain. Brain Struct Funct 2017; 222:4023-4033. [PMID: 28589258 PMCID: PMC5686254 DOI: 10.1007/s00429-017-1455-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/24/2017] [Indexed: 01/12/2023]
Abstract
A latent measure of white matter microstructure (g WM) provides a neural basis for information processing speed and intelligence in adults, but the temporal emergence of g WM during human development is unknown. We provide evidence that substantial variance in white matter microstructure is shared across a range of major tracts in the newborn brain. Based on diffusion MRI scans from 145 neonates [gestational age (GA) at birth range 23+2-41+5 weeks], the microstructural properties of eight major white matter tracts were calculated using probabilistic neighborhood tractography. Principal component analyses (PCAs) were carried out on the correlations between the eight tracts, separately for four tract-averaged water diffusion parameters: fractional anisotropy, and mean, radial and axial diffusivities. For all four parameters, PCAs revealed a single latent variable that explained around half of the variance across all eight tracts, and all tracts showed positive loadings. We considered the impact of early environment on general microstructural properties, by comparing term-born infants with preterm infants at term equivalent age. We found significant associations between GA at birth and the latent measure for each water diffusion measure; this effect was most apparent in projection and commissural fibers. These data show that a latent measure of white matter microstructure is present in very early life, well before myelination is widespread. Early exposure to extra-uterine life is associated with altered general properties of white matter microstructure, which could explain the high prevalence of cognitive impairment experienced by children born preterm.
Collapse
Affiliation(s)
- Emma J Telford
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Simon R Cox
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Sue Fletcher-Watson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Devasuda Anblagan
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Sarah Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Rozalia Pataky
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Alan Quigley
- Department of Radiology, Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh, EH9 1LF, UK
| | - Scott I Semple
- University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Clinical Research Imaging Centre, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
21
|
Froudist-Walsh S, Bloomfield MA, Veronese M, Kroll J, Karolis VR, Jauhar S, Bonoldi I, McGuire PK, Kapur S, Murray RM, Nosarti C, Howes O. The effect of perinatal brain injury on dopaminergic function and hippocampal volume in adult life. eLife 2017; 6. [PMID: 29179814 PMCID: PMC5705207 DOI: 10.7554/elife.29088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/02/2017] [Indexed: 11/21/2022] Open
Abstract
Perinatal brain injuries, including hippocampal lesions, cause lasting changes in dopamine function in rodents, but it is not known if this occurs in humans. We compared adults who were born very preterm with perinatal brain injury to those born very preterm without perinatal brain injury, and age-matched controls born at full term using [18F]-DOPA PET and structural MRI. Dopamine synthesis capacity was reduced in the perinatal brain injury group relative to those without brain injury (Cohen’s d = 1.36, p=0.02) and the control group (Cohen’s d = 1.07, p=0.01). Hippocampal volume was reduced in the perinatal brain injury group relative to controls (Cohen’s d = 1.17, p=0.01) and was positively correlated with striatal dopamine synthesis capacity (r = 0.344, p=0.03). This is the first evidence in humans linking neonatal hippocampal injury to adult dopamine dysfunction, and provides a potential mechanism linking early life risk factors to adult mental illness. Thirteen million infants are born too early every year. Improved care allows many to survive, but these “preterm infants” still face an increased risk of death and many other complications. Infants born very early, before 32 weeks, are at risk of brain injury because the brain is normally still developing in the later stages of pregnancy. They also have an increased risk of developing mental health problems later in life. Early-life brain injuries in rats cause changes in the production of a chemical called dopamine. Dopamine is a chemical messenger in the brain that reinforces rewarding behaviour. People with schizophrenia and attention deficit hyperactivity disorder (ADHD) have abnormal levels of dopamine. Changes in brain dopamine levels may explain why early-life brain injury is linked to later mental illness. But first scientists must study whether similar changes occur in humans with an early-life brain injury. Now, Froudist-Walsh et al. use brain imaging to show that people born very early who suffered a brain injury have lower dopamine levels than other adults. Imaging techniques were used to scan the brains of 13 adults who were born before 32 weeks and who had a brain injury around birth, 13 adults born before 32 weeks without a brain injury, and 13 adults born at “full term” (around 39 to 40 weeks). Individuals with low dopamine levels reported difficulty concentrating and a lack of motivation and enjoyment in their lives. Both can be warning signs of mental health problems. People born prematurely without a brain injury had normal dopamine levels and did not report such symptoms. More studies may help scientists understand how early brain injuries may cause brain chemical differences later in life, and how these brain changes affect individual’s mental health. They may also help scientists develop treatments to prevent or treat mental illness in people who experienced a brain injury after a very early birth.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Friedman Brain Institute, Fishberg Department of Neuroscience, Icahn School of Medicine, New York, United States
| | - Michael Ap Bloomfield
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Division of Psychiatry, University College London, London, United Kingdom.,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Jasmin Kroll
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Vyacheslav R Karolis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Philip K McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Shitij Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
22
|
Olsen A, Dennis EL, Evensen KAI, Husby Hollund IM, Løhaugen GCC, Thompson PM, Brubakk AM, Eikenes L, Håberg AK. Preterm birth leads to hyper-reactive cognitive control processing and poor white matter organization in adulthood. Neuroimage 2017; 167:419-428. [PMID: 29191480 PMCID: PMC6625518 DOI: 10.1016/j.neuroimage.2017.11.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022] Open
Abstract
Individuals born preterm with very low birth weight (VLBW; birth weight ≤ 1500 g) are at high risk for perinatal brain injuries and deviant brain development, leading to increased chances of later cognitive, emotional, and behavioral problems. Here we investigated the neuronal underpinnings of both reactive and proactive cognitive control processes in adults with VLBW. We included 32 adults born preterm with VLBW (before 37th week of gestation) and 32 term-born controls (birth weight ≥10th percentile for gestational age) between 22 and 24 years of age that have been followed prospectively since birth. Participants performed a well-validated Not-X continuous performance test (CPT) adapted for use in a mixed block- and event-related fMRI protocol. BOLD fMRI and DTI data was acquired on a 3T scanner. Performance on the Not-X CPT was highly similar between groups. However, the VLBW group demonstrated hyper-reactive cognitive control processing and disrupted white matter organization. The hyper-reactive brain activation signature in VLBW adults was associated with lower gestational age, lower fluid intelligence score, and anxiety problems. Automated Multi-Atlas Tract Extraction (AutoMATE) analyses revealed that this disruption of normal brain function was accompanied by poorer white matter organization in the anterior thalamic radiation and the cingulum, as reflected in both reduced fractional anisotropy and increased mean diffusivity. These findings show that the preterm behavioral phenotype is associated with predominantly reactive-, rather than proactive cognitive control processing, as well as white matter abnormalities, that may underlie common difficulties that many preterm born individuals experience in everyday life.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Emily L Dennis
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Kari Anne I Evensen
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Physiotherapy, Trondheim Municipality, Trondheim, Norway
| | - Ingrid Marie Husby Hollund
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ann-Mari Brubakk
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asta K Håberg
- Department of Neuromedicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Medical Imaging, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
23
|
Karolis VR, Froudist-Walsh S, Kroll J, Brittain PJ, Tseng CEJ, Nam KW, Reinders AATS, Murray RM, Williams SCR, Thompson PM, Nosarti C. Volumetric grey matter alterations in adolescents and adults born very preterm suggest accelerated brain maturation. Neuroimage 2017; 163:379-389. [PMID: 28942062 PMCID: PMC5725310 DOI: 10.1016/j.neuroimage.2017.09.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022] Open
Abstract
Previous research investigating structural neurodevelopmental alterations in individuals who were born very preterm demonstrated a complex pattern of grey matter changes that defy straightforward summary. Here we addressed this problem by characterising volumetric brain alterations in individuals who were born very preterm from adolescence to adulthood at three hierarchically related levels - global, modular and regional. We demarcated structural components that were either particularly resilient or vulnerable to the impact of very preterm birth. We showed that individuals who were born very preterm had smaller global grey matter volume compared to controls, with subcortical and medial temporal regions being particularly affected. Conversely, frontal and lateral parieto-temporal cortices were relatively resilient to the effects of very preterm birth, possibly indicating compensatory mechanisms. Exploratory analyses supported this hypothesis by showing a stronger association between lateral parieto-temporal volume and IQ in the very preterm group compared to controls. We then related these alterations to brain maturation processes. Very preterm individuals exhibited a higher maturation index compared to controls, indicating accelerated brain maturation and this was specifically associated with younger gestational age. We discuss how the findings of accelerated maturation might be reconciled with evidence of delayed maturation at earlier stages of development. Hierarchically related structural brain alterations in very preterm individuals span adolescence and adulthood. Structural volumetric components that showed resiliency in very preterm individuals were associated with higher IQ. Very preterm individuals showed accelerated brain maturation compared to a large dataset of term-born controls.
Collapse
Affiliation(s)
- Vyacheslav R Karolis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Sean Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jasmin Kroll
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip J Brittain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Chieh-En Jane Tseng
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kie-Woo Nam
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Antje A T S Reinders
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Steven C R Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
24
|
Froudist-Walsh S, López-Barroso D, José Torres-Prioris M, Croxson PL, Berthier ML. Plasticity in the Working Memory System: Life Span Changes and Response to Injury. Neuroscientist 2017; 24:261-276. [PMID: 28691573 DOI: 10.1177/1073858417717210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Working memory acts as a key bridge between perception, long-term memory, and action. The brain regions, connections, and neurotransmitters that underlie working memory undergo dramatic plastic changes during the life span, and in response to injury. Early life reliance on deep gray matter structures fades during adolescence as increasing reliance on prefrontal and parietal cortex accompanies the development of executive aspects of working memory. The rise and fall of working memory capacity and executive functions parallels the development and loss of neurotransmitter function in frontal cortical areas. Of the affected neurotransmitters, dopamine and acetylcholine modulate excitatory-inhibitory circuits that underlie working memory, are important for plasticity in the system, and are affected following preterm birth and adult brain injury. Pharmacological interventions to promote recovery of working memory abilities have had limited success, but hold promise if used in combination with behavioral training and brain stimulation. The intense study of working memory in a range of species, ages and following injuries has led to better understanding of the intrinsic plasticity mechanisms in the working memory system. The challenge now is to guide these mechanisms to better improve or restore working memory function.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana López-Barroso
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Paula L Croxson
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,4 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcelo L Berthier
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain
| |
Collapse
|
25
|
Abstract
OBJECTIVES Children and adolescents who were born very preterm (≤32 weeks' gestation) are vulnerable to experiencing cognitive problems, including in executive function. However, it remains to be established whether cognitive deficits are evident in adulthood and whether these exert a significant effect on an individual's real-lifeachievement. METHODS Using a cross-sectional design, we tested a range of neurocognitive abilities, with a focus on executive function, in a sample of 122 very preterm individuals and 89 term-born controls born between 1979 and 1984. Associations between executive function and a range of achievement measures, indicative of a successful transition to adulthood, were examined. RESULTS Very preterm adults performed worse compared to controls on measures of intellectual ability and executive function with moderate to large effect sizes. They also demonstrated significantly lower achievement levels in terms of years spent in education, employment status, and on a measure of functioning in work and social domains. Results of regression analysis indicated a stronger positive association between executive function and real-life achievement in the very preterm group compared to controls. CONCLUSIONS Very preterm born adults demonstrate executive function impairments compared to full-term controls, and these are associated with lower achievement in several real-life domains. (JINS, 2017, 23, 381-389).
Collapse
|
26
|
Menegaux A, Meng C, Neitzel J, Bäuml JG, Müller HJ, Bartmann P, Wolke D, Wohlschläger AM, Finke K, Sorg C. Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults. Neuroimage 2017; 150:68-76. [DOI: 10.1016/j.neuroimage.2017.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 11/28/2022] Open
|
27
|
White matter alterations to cingulum and fornix following very preterm birth and their relationship with cognitive functions. Neuroimage 2017; 150:373-382. [PMID: 28216430 PMCID: PMC5405171 DOI: 10.1016/j.neuroimage.2017.02.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 11/12/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
Very preterm birth (VPT; <32 weeks of gestation) has been associated with impairments in memory abilities and functional neuroanatomical brain alterations in medial temporal and fronto-parietal areas. Here we investigated the relationship between structural connectivity in memory-related tracts and various aspects of memory in VPT adults (mean age 19) who sustained differing degrees of perinatal brain injury (PBI), as assessed by neonatal cerebral ultrasound. We showed that the neurodevelopmental consequences of VPT birth persist into young adulthood and are associated with neonatal cranial ultrasound classification. At a cognitive level, VPT young adults showed impairments specific to effective organization of verbal information and visuospatial memory, whereas at an anatomical level they displayed reduced volume of memory-related tracts, the cingulum and the fornix, with greater alterations in those individuals who experienced high-grade PBI. When investigating the association between these tracts and memory scores, perseveration errors were associated with the volume of the fornix and dorsal cingulum (connecting medial frontal and parietal lobes). Visuospatial memory scores were associated with the volume of the ventral cingulum (connecting medial parietal and temporal lobes). These results suggest that structural connectivity alterations could underlie memory difficulties in preterm born individuals. Very preterm born adults exhibit memory and learning impairments. White matter tracts implicated in memory are altered following perinatal brain injury. Structural alterations to memory tracts may underlie specific memory impairments.
Collapse
|
28
|
Howes OD, McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry 2017; 7:e1024. [PMID: 28170004 PMCID: PMC5438023 DOI: 10.1038/tp.2016.278] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/27/2016] [Indexed: 12/12/2022] Open
Abstract
An interaction between external stressors and intrinsic vulnerability is one of the longest standing pathoaetiological explanations for schizophrenia. However, novel lines of evidence from genetics, preclinical studies, epidemiology and imaging have shed new light on the mechanisms that may underlie this, implicating microglia as a key potential mediator. Microglia are the primary immune cells of the central nervous system. They have a central role in the inflammatory response, and are also involved in synaptic pruning and neuronal remodeling. In addition to immune and traumatic stimuli, microglial activation occurs in response to psychosocial stress. Activation of microglia perinatally may make them vulnerable to subsequent overactivation by stressors experienced in later life. Recent advances in genetics have shown that variations in the complement system are associated with schizophrenia, and this system has been shown to regulate microglial synaptic pruning. This suggests a mechanism via which genetic and environmental influences may act synergistically and lead to pathological microglial activation. Microglial overactivation may lead to excessive synaptic pruning and loss of cortical gray matter. Microglial mediated damage to stress-sensitive regions such as the prefrontal cortex and hippocampus may lead directly to cognitive and negative symptoms, and account for a number of the structural brain changes associated with the disorder. Loss of cortical control may also lead to disinhibition of subcortical dopamine-thereby leading to positive psychotic symptoms. We review the preclinical and in vivo evidence for this model and consider the implications this has for treatment, and future directions.
Collapse
Affiliation(s)
- O D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK,PET Imaging Group, MRC Clinical Sciences Centre, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK. E-mail:
| | - R McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
29
|
Putbrese B, Kennedy A. Findings and differential diagnosis of fetal intracranial haemorrhage and fetal ischaemic brain injury: what is the role of fetal MRI? Br J Radiol 2016; 90:20160253. [PMID: 27734711 DOI: 10.1259/bjr.20160253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ventriculomegaly (VM) is a non-specific finding on fetal imaging. Identification of the specific aetiology is important, as it affects prognosis and may even change the course of current or future pregnancies. In this review, we will focus on the application of fetal MRI to demonstrate intracranial haemorrhage and ischaemic brain injury as opposed to other causes of VM. MRI is able to identify the specific aetiology of VM with much more sensitivity and specificity than ultrasound and should be considered whenever VM is identified on obstetric ultrasound. Advances in both fetal and neonatal MRI have the potential to shed further light on mechanisms of brain injury and the impact of chronic hypoxia; such information may guide future interventions.
Collapse
Affiliation(s)
- Bryn Putbrese
- Department of Radiology and Imaging Sciences, University of Utah Health Care, Salt Lake City, UT, USA
| | - Anne Kennedy
- Department of Radiology and Imaging Sciences, University of Utah Health Care, Salt Lake City, UT, USA
| |
Collapse
|
30
|
Tseng CEJ, Froudist-Walsh S, Brittain PJ, Karolis V, Caldinelli C, Kroll J, Counsell SJ, Williams SCR, Murray RM, Nosarti C. A multimodal imaging study of recognition memory in very preterm born adults. Hum Brain Mapp 2016; 38:644-655. [PMID: 27647705 PMCID: PMC5244672 DOI: 10.1002/hbm.23405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 11/11/2022] Open
Abstract
Very preterm (<32 weeks of gestation) birth is associated with structural brain alterations and memory impairments throughout childhood and adolescence. Here, we used functional MRI (fMRI) to study the neuroanatomy of recognition memory in 49 very preterm‐born adults and 50 controls (mean age: 30 years) during completion of a task involving visual encoding and recognition of abstract pictures. T1‐weighted and diffusion‐weighted images were also collected. Bilateral hippocampal volumes were calculated and tractography of the fornix and cingulum was performed and assessed in terms of volume and hindrance modulated orientational anisotropy (HMOA). Online recognition memory task performance, assessed with A scores, was poorer in the very preterm compared with the control group. Analysis of fMRI data focused on differences in neural activity between the recognition and encoding trials. Very preterm born adults showed decreased activation in the right middle frontal gyrus and posterior cingulate cortex/precuneus and increased activation in the left inferior frontal gyrus and bilateral lateral occipital cortex (LOC) compared with controls. Hippocampi, fornix and cingulum volume was significantly smaller and fornix HMOA was lower in very preterm adults. Among all the structural and functional brain metrics that showed statistically significant group differences, LOC activation was the best predictor of online task performance (P = 0.020). In terms of association between brain function and structure, LOC activation was predicted by fornix HMOA in the preterm group only (P = 0.020). These results suggest that neuroanatomical alterations in very preterm born individuals may be underlying their poorer recognition memory performance. Hum Brain Mapp 38:644–655, 2017. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chieh-En Jane Tseng
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Seán Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Philip J Brittain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Vyacheslav Karolis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Chiara Caldinelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Jasmin Kroll
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom
| | - Steven C R Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|