1
|
Grigoryan G, Harada H, Knobloch-Bollmann HS, Kilias A, Kaufhold D, Kulik A, Eyre MD, Bartos M. Synaptic plasticity at the dentate gyrus granule cell to somatostatin-expressing interneuron synapses supports object location memory. Proc Natl Acad Sci U S A 2023; 120:e2312752120. [PMID: 38091292 PMCID: PMC10742375 DOI: 10.1073/pnas.2312752120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
Somatostatin-expressing interneurons (SOMIs) in the mouse dentate gyrus (DG) receive feedforward excitation from granule cell (GC) mossy fiber (MF) synapses and provide feedback lateral inhibition onto GC dendrites to support environment representation in the DG network. Although this microcircuitry has been implicated in memory formation, little is known about activity-dependent plastic changes at MF-SOMI synapses and their influence on behavior. Here, we report that the metabotropic glutamate receptor 1α (mGluR1α) is required for the induction of associative long-term potentiation (LTP) at MF-SOMI synapses. Pharmacological block of mGluR1α, but not mGluR5, prevented synaptic weight changes. LTP at MF-SOMI synapses was postsynaptically induced, required increased intracellular Ca2+, involved G-protein-mediated and Ca2+-dependent (extracellular signal-regulated kinase) ERK1/2 pathways, and the activation of NMDA receptors. Specific knockdown of mGluR1α in DG-SOMIs by small hairpin RNA expression prevented MF-SOMI LTP, reduced SOMI recruitment, and impaired object location memory. Thus, postsynaptic mGluR1α-mediated MF-plasticity at SOMI input synapses critically supports DG-dependent mnemonic functions.
Collapse
Affiliation(s)
- Gayane Grigoryan
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Harumi Harada
- Molecular Physiology, Institute for Physiology II, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - H. Sophie Knobloch-Bollmann
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Antje Kilias
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Dorthe Kaufhold
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Akos Kulik
- Molecular Physiology, Institute for Physiology II, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Mark D. Eyre
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| | - Marlene Bartos
- Laboratory of Systems & Cellular Neuroscience, Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg79104, Germany
| |
Collapse
|
2
|
Mercier MS, Magloire V, Cornford JH, Kullmann DM. Long-term potentiation in neurogliaform interneurons modulates excitation-inhibition balance in the temporoammonic pathway. J Physiol 2022; 600:4001-4017. [PMID: 35876215 PMCID: PMC9540908 DOI: 10.1113/jp282753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of EC afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in SLM interneurons thus alters the excitation-inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. KEY POINTS: Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed-forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta-burst activity in afferents from the entorhinal cortex (EC) induces 'Hebbian' long-term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation-inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites.
Collapse
Affiliation(s)
- Marion S. Mercier
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - Vincent Magloire
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - Jonathan H. Cornford
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - Dimitri M. Kullmann
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| |
Collapse
|
3
|
Biophysical and synaptic properties of regular spiking interneurons in hippocampal area CA3 of aged rats. Neurobiol Aging 2021; 112:27-38. [PMID: 35041997 DOI: 10.1016/j.neurobiolaging.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
Abstract
Neuronal processing from the dentate gyrus to the hippocampus is critical for storage and recovery of new memory traces. In area CA3, GABAergic interneurons form a strong barrage of inhibition that modulates pyramidal cells. A well-established feature of aging is decreased GABAergic inhibition, a phenomenon that contributes to the exacerbated excitability of aged pyramidal cells. In hippocampal slices of aged rats (22-28 months old) we examined the properties of regular spiking CA3 interneurons with patch-clamp whole-cell recordings. We found enhanced firing discharge without altering the maximal firing rate of aged regular spiking interneurons. In the mossy fibers (MF) to interneurons synapse, a switch in the AMPA receptor subunit composition was found in aged interneurons. Young regular spiking interneurons predominantly express CP AMPA receptors and MF LTD. By contrast, aged regular spiking interneurons contain a higher proportion of CI AMPA receptors and respond with MF LTP. We show for the first time that the specialized MF terminals contacting interneurons, retain synaptic capabilities and provide a novel insight of the interneuron's function during aging.
Collapse
|
4
|
Alkadhi KA. NMDA receptor-independent LTP in mammalian nervous system. Prog Neurobiol 2021; 200:101986. [PMID: 33400965 DOI: 10.1016/j.pneurobio.2020.101986] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022]
Abstract
Long-term potentiation (LTP) of synaptic transmission is a form of activity-dependent synaptic plasticity that exists at most synapses in the nervous system. In the central nervous system (CNS), LTP has been recorded at numerous synapses and is a prime candidate mechanism associating activity-dependent plasticity with learning and memory. LTP involves long-lasting increase in synaptic strength with various underlying mechanisms. In the CNS, the predominant type of LTP is believed to be dependent on activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR), which is highly calcium-permeable. However, various forms of NMDAR-independent LTP have been identified in diverse areas of the nervous system. The NMDAR-independent LTP may require activation of glutamate metabotropic receptors (mGluR) or ionotropic receptors other than NMDAR such as nicotinic acetylcholine receptor (α7-nAChR), serotonin 5-HT3 receptor or calcium-permeable AMPA receptor (CP-AMPAR). In this review, NMDAR-independent LTP of various areas of the central and peripheral nervous systems are discussed.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
5
|
Nicholson E, Kullmann DM. Nicotinic receptor activation induces NMDA receptor independent long-term potentiation of glutamatergic signalling in hippocampal oriens interneurons. J Physiol 2021; 599:667-676. [PMID: 33251594 PMCID: PMC7839446 DOI: 10.1113/jp280397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Long-term potentiation of glutamatergic transmission to hippocampal interneurons in stratum oriens does not require NMDA receptors and the induction mechanisms are incompletely understood. Extracellular stimulation, conventionally used to monitor synaptic strength and induce long-term potentiation (LTP), does not exclusively recruit glutamatergic axons. We used optogenetic stimulation of either glutamatergic or cholinergic afferents to probe the relative roles of different signalling mechanisms in LTP induction. Selective stimulation of cholinergic axons was sufficient to induce LTP, which was prevented by chelating postsynaptic Ca2+ or blocking nicotinic receptors. The present study adds nicotinic receptors to the list of sources of Ca2+ that induce NMDA receptor independent LTP in hippocampal oriens interneurons. ABSTRACT Many interneurons located in stratum oriens of the rodent hippocampus exhibit a form of long-term potentiation (LTP) of glutamatergic transmission that does not depend on NMDA receptors for its induction but, instead, requires Ca2+ -permeable AMPA receptors and group I metabotropic glutamate receptors. A role for cholinergic signalling has also been reported. However, electrical stimulation of presynaptic axons, conventionally used to evoke synaptic responses, does not allow the relative roles of glutamatergic and cholinergic synapses in the induction of LTP to be distinguished. Here, we show that repetitive optogenetic stimulation confined to cholinergic axons is sufficient to trigger a lasting potentiation of glutamatergic signalling. This phenomenon shows partial occlusion with LTP induced by electrical stimulation, and is sensitive to postsynaptic Ca2+ chelation and blockers of nicotinic receptors. ACh release from cholinergic axons is thus sufficient to trigger heterosynaptic potentiation of glutamatergic signalling to oriens interneurons in the hippocampus.
Collapse
|
6
|
Griego E, Herrera-López G, Gómez-Lira G, Barrionuevo G, Gutiérrez R, Galván EJ. Functional expression of TrkB receptors on interneurones and pyramidal cells of area CA3 of the rat hippocampus. Neuropharmacology 2020; 182:108379. [PMID: 33130041 DOI: 10.1016/j.neuropharm.2020.108379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
The dentate gyrus and hippocampal area CA3 region of the mammalian brain contains the highest levels of brain-derived neurotrophic factor (BDNF) and its canonical membrane receptor, tropomyosin-related kinase B (TrkB). Therefore, the present study examines the expression and physiological responses triggered by activation of TrkB on hippocampal area CA3 interneurones and pyramidal cells of the rat hippocampus. Triple immunolabelling for TrkB, glutamate decarboxylase 67, and the calcium-binding proteins parvalbumin, calbindin or calretinin confirms the somatic expression of TrkB in all CA3 sublayers. TrkB-positive interneurones with fast-spiking discharge are restricted to strata oriens and lucidum, whereas regular-spiking interneurones are found in the strata lucidum, radiatum and lacunosum-moleculare. Activation of TrkB receptors with 7,8-dihydroxyflavone (DHF) modulates amplitude and frequency of spontaneous synaptic currents recorded from CA3 interneurones. Furthermore, the isolated excitatory postsynaptic currents (EPSC) of CA3 interneurones evoked by the mossy fibres (MF) or commissural/associational (C/A) axons, show input-specific synaptic potentiation in response to TrkB stimulation. On CA3 pyramidal cells, stimulation with DHF potentiates the MF synaptic transmission and increases the MF-EPSP - spike coupling. The latter exhibits a dramatic increase when picrotoxin is bath perfused after DHF, indicating that local interneurones restrain the excitability mediated by activation of TrkB. Therefore, we propose that release of BDNF on area CA3 reshapes the output of this hippocampal region by simultaneous activation of TrkB on GABAergic interneurones and pyramidal cells.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, Cinvestav Sur, México City, México
| | | | | | - Germán Barrionuevo
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, United States
| | - Rafael Gutiérrez
- Departamento de Farmacobiología, Cinvestav Sur, México City, México
| | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav Sur, México City, México.
| |
Collapse
|
7
|
Bannon NM, Chistiakova M, Volgushev M. Synaptic Plasticity in Cortical Inhibitory Neurons: What Mechanisms May Help to Balance Synaptic Weight Changes? Front Cell Neurosci 2020; 14:204. [PMID: 33100968 PMCID: PMC7500144 DOI: 10.3389/fncel.2020.00204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/10/2020] [Indexed: 01/29/2023] Open
Abstract
Inhibitory neurons play a fundamental role in the normal operation of neuronal networks. Diverse types of inhibitory neurons serve vital functions in cortical networks, such as balancing excitation and taming excessive activity, organizing neuronal activity in spatial and temporal patterns, and shaping response selectivity. Serving these, and a multitude of other functions effectively requires fine-tuning of inhibition, mediated by synaptic plasticity. Plasticity of inhibitory systems can be mediated by changes at inhibitory synapses and/or by changes at excitatory synapses at inhibitory neurons. In this review, we consider that latter locus: plasticity at excitatory synapses to inhibitory neurons. Despite the fact that plasticity of excitatory synaptic transmission to interneurons has been studied in much less detail than in pyramids and other excitatory cells, an abundance of forms and mechanisms of plasticity have been observed in interneurons. Specific requirements and rules for induction, while exhibiting a broad diversity, could correlate with distinct sources of excitatory inputs and distinct types of inhibitory neurons. One common requirement for the induction of plasticity is the rise of intracellular calcium, which could be mediated by a variety of ligand-gated, voltage-dependent, and intrinsic mechanisms. The majority of the investigated forms of plasticity can be classified as Hebbian-type associative plasticity. Hebbian-type learning rules mediate adaptive changes of synaptic transmission. However, these rules also introduce intrinsic positive feedback on synaptic weight changes, making plastic synapses and learning networks prone to runaway dynamics. Because real inhibitory neurons do not express runaway dynamics, additional plasticity mechanisms that counteract imbalances introduced by Hebbian-type rules must exist. We argue that weight-dependent heterosynaptic plasticity has a number of characteristics that make it an ideal candidate mechanism to achieve homeostatic regulation of synaptic weight changes at excitatory synapses to inhibitory neurons.
Collapse
Affiliation(s)
- Nicholas M Bannon
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Marina Chistiakova
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Maxim Volgushev
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
8
|
Griego E, Galván EJ. Metabotropic Glutamate Receptors at the Aged Mossy Fiber - CA3 Synapse of the Hippocampus. Neuroscience 2020; 456:95-105. [PMID: 31917351 DOI: 10.1016/j.neuroscience.2019.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/28/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are a group of G-protein-coupled receptors that exert a broad array of modulatory actions at excitatory synapses of the central nervous system. In the hippocampus, the selective activation of the different mGluRs modulates the intrinsic excitability, the strength of synaptic transmission, and induces multiple forms of long-term plasticity. Despite the relevance of mGluRs in the normal function of the hippocampus, we know very little about the changes that mGluRs functionality undergoes during the non-pathological aging. Here, we review data concerning the physiological actions of mGluRs, with particular emphasis on hippocampal area CA3. Later, we examine changes in the expression and functionality of mGluRs during the aging process. We complement this review with original data showing an array of electrophysiological modifications observed in the synaptic transmission and intrinsic excitability of aged CA3 pyramidal cells in response to the pharmacological stimulation of the different mGluRs.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico.
| |
Collapse
|
9
|
Gharami K, Biswas SC. Glutamate treatment mimics LTP- and LTD-like biochemical activity in viable synaptosome preparation. Neurochem Int 2020; 134:104655. [PMID: 31899196 DOI: 10.1016/j.neuint.2019.104655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/05/2019] [Accepted: 12/29/2019] [Indexed: 01/28/2023]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are considered to be the cellular mechanisms behind the increase or decrease of synaptic strength respectively. Electrophysiologically induced LTP/LTD is associated with the activation of glutamate receptors in the synaptic terminals resulting in the initiation of biochemical processes in the postsynaptic terminals and thus propagation of synaptic activity. Isolated nerve endings i.e. synaptosome preparation was used to study here, the biochemical phenotypes of LTP and LTD, and glutamate treatment in varying concentration for different time was used to induce those biochemical phenomena. Treatment with 200 μM glutamate showed increased GluA1 phosphorylation at serine 831 and activation of CaMKIIα by phosphorylation at threonine 286 like LTP, whereas 100 μM glutamate treatment showed decrease in GluA1 phosphorylation level at both pGluA1(S831) and pGluA1(S845), and activation of GSK3β by de-phosphorylating pGSK3β at serine 9 like LTD. The 200 μM glutamate treatment was associated with an increase in the local translation of Arc, BDNF, CaMKIIα and Homer1, whereas 100 μM glutamate treatments resulted in decrease in the level of the said synaptic proteins and the effect was blocked by the proteasomal inhibitor, Lactasystin. Both, the local translation and local degradation was sensitive to the Ca2+ chellator, Bapta-AM, indicating that both the phenomena were dependent on the rise in intra-synaptosomal Ca2+, like LTP and LTD. Overall the results of the present study suggest that synaptosomal preparations can be a viable alternative to study mechanisms underlying the biochemical activities of LTP/LTD in short term.
Collapse
Affiliation(s)
- Kusumika Gharami
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Subhas C Biswas
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
10
|
Abstract
Synaptic plasticity is a fundamental property of neurons referring to the activity-dependent changes in the strength and efficacy of synaptic transmission at preexisting synapses. Such changes can last from milliseconds to hours, days, or even longer and are involved in learning and memory as well as in development and response of the brain to injuries. Several types of synaptic plasticity have been described across neuronal types, brain regions, and species, but all of them share in one way or another capital importance of Ca2+-mediated processes. In this chapter, we will focus on the Ca2+-dependent events necessary for the induction and expression of multiple forms of synaptic plasticity.
Collapse
|
11
|
Laukkanen V, Kärkkäinen O, Kautiainen H, Tiihonen J, Storvik M. Increased [³H]quisqualic acid binding density in the dorsal striatum and anterior insula of alcoholics: A post-mortem whole-hemisphere autoradiography study. Psychiatry Res Neuroimaging 2019; 287:63-69. [PMID: 30991250 DOI: 10.1016/j.pscychresns.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023]
Abstract
The function of group I metabotropic glutamate receptors mGluR1 and mGluR5 is involved in the hyperglutamatergic state caused by chronic alcohol. Preclinical studies suggest that group I mGluR modulation could serve as a novel treatment of alcoholism. Considering the wide role of glutamatergic neurochemistry in addiction, group I mGluR binding was studied in brain areas involved in decision-making, learning and memory. Post-mortem whole hemisphere autoradiography was used to study the binding density of [³H]quisqualic acid, a potent group I mGluR agonist, in 9 Cloninger type 1 alcoholics, 8 Cloninger type 2 alcoholics and 10 controls. Binding was studied in the dorsal striatum, hippocampus and cortex. Alcoholics displayed a trend towards increased [³H]quisqualic acid binding in all brain areas. The most robust findings were in the putamen (p = 0.006) and anterior insula (p = 0.005), where both alcoholic subtypes displayed increased binding compared to the controls. These findings suggest altered group I mGluR function in alcoholic subjects in the dorsal striatum, which is involved in habitual learning, and in the anterior insula, which has a pivotal role in the perception of bodily sensations. Increased [³H]quisqualic acid binding might suggest a beneficial impact of mGluR1/5 modulators in the treatment of alcoholism.
Collapse
Affiliation(s)
- Virpi Laukkanen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240 Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland.
| | - Olli Kärkkäinen
- Department of Pharmacology and Toxicology, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hannu Kautiainen
- Unit of Primary Health Care, Helsinki University Central Hospital, P.O. Box 705, FI-00029 HUS, Helsinki, Finland; Department of General Practice, Helsinki University, P.O. Box 20, FI-00014 Helsinki, Finland
| | - Jari Tiihonen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240 Kuopio, Finland; Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Hospital, 17176 Stockholm, Sweden
| | - Markus Storvik
- Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| |
Collapse
|
12
|
von der Ahe D, Huehnchen P, Balkaya M, Peruzzaro S, Endres M, Boehmerle W. Suramin-Induced Neurotoxicity: Preclinical Models and Neuroprotective Strategies. Molecules 2018; 23:molecules23020346. [PMID: 29414872 PMCID: PMC6017835 DOI: 10.3390/molecules23020346] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/23/2018] [Accepted: 02/03/2018] [Indexed: 11/16/2022] Open
Abstract
Suramin is a trypan blue analogon originally developed to treat protozoan infections, which was found to have diverse antitumor effects. One of the most severe side effects in clinical trials was the development of a peripheral sensory-motor polyneuropathy. In this study, we aimed to investigate suramin-induced neuropathy with a focus on calcium (Ca2+) homeostasis as a potential pathomechanism. Adult C57Bl/6 mice treated with a single injection of 250 mg/kg bodyweight suramin developed locomotor and sensory deficits, which were confirmed by electrophysiological measurements showing a predominantly sensory axonal-demyelinating polyneuropathy. In a next step, we used cultured dorsal root ganglia neurons (DRGN) as an in vitro cell model to further investigate underlying pathomechanisms. Cell viability of DRGN was significantly decreased after 24-hour suramin treatment with a calculated IC50 of 283 µM. We detected a suramin-induced Ca2+ influx into DRGN from the extracellular space, which could be reduced with the voltage-gated calcium channel (VGCC) inhibitor nimodipine. Co-incubation of suramin and nimodipine partially improved cell viability of DRGN after suramin exposure. In summary, we describe suramin-induced neurotoxic effects on DRGN as well as potentially neuroprotective agents targeting intracellular Ca2+ dyshomeostasis.
Collapse
Affiliation(s)
- David von der Ahe
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Chariteplatz 1, 10117 Berlin, Germany.
| | - Petra Huehnchen
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Chariteplatz 1, 10117 Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Cluster of Excellence NeuroCure, 10117 Berlin, Germany.
- Berlin Institute of Health, Anna-Louisa-Karsch 2, 10178 Berlin, Germany.
| | - Mustafa Balkaya
- Burke-Cornell Medical Research Institute, White Plains, NY 10605, USA.
| | - Sarah Peruzzaro
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
| | - Matthias Endres
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Chariteplatz 1, 10117 Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Cluster of Excellence NeuroCure, 10117 Berlin, Germany.
- Berlin Institute of Health, Anna-Louisa-Karsch 2, 10178 Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Resarch Berlin, 10117 Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany.
| | - Wolfgang Boehmerle
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Chariteplatz 1, 10117 Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Cluster of Excellence NeuroCure, 10117 Berlin, Germany.
- Berlin Institute of Health, Anna-Louisa-Karsch 2, 10178 Berlin, Germany.
| |
Collapse
|
13
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 PMCID: PMC6151493 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 569] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
14
|
Target-Dependent Compartmentalization of the Corelease of Glutamate and GABA from the Mossy Fibers. J Neurosci 2017; 37:701-714. [PMID: 28100750 DOI: 10.1523/jneurosci.1915-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/01/2016] [Accepted: 12/04/2016] [Indexed: 01/27/2023] Open
Abstract
The mossy fibers (MFs) corelease glutamate and GABA onto pyramidal cells of CA3 during development, until the end of the third postnatal week. However, the major target cells of the MF are the interneurons of CA3. Therefore, it has been shown that the interneurons of the hilus and stratum lucidum receive this dual monosynaptic input on MF stimulation. Because the plasticity of glutamatergic transmission from the different terminals of the MF is target specific, we here asked whether the corelease of glutamate and GABA was also subjected to a target-dependent compartmentalization. We analyzed the occurrence and plasticity of MF simultaneous glutamatergic-GABAergic signaling onto interneurons of the different strata of CA3 in rats during the third postnatal week. We show the coexistence of time-locked, glutamate receptor and GABA receptor-mediated mono synaptic responses evoked by MF stimulation in interneurons from stratum lucidum and stratum radiatum, but not in interneurons from stratum lacunosum-moleculare. As expected from the transmission of MF origin, MF GABAergic responses were depressed by the activation of metabotropic glutamate receptors. Strikingly, while MF glutamatergic responses underwent LTD, the simultaneous MF GABAergic responses of stratum lucidum interneurons, but not of stratum radiatum interneurons, displayed a Hebbian form of LTP that was mimicked by PKC activation. PKA activation potentiated MF glutamatergic responses of stratum radiatum interneurons, whereas in stratum lucidum interneurons only GABAergic responses were potentiated. We here disclose that the corelease of glutamate and GABA, as well as their plasticity are compartmentalized in a target-dependent manner, showing counterbalanced compensatory plasticity of two neurotransmitters released by different terminals of the same pathway. SIGNIFICANCE STATEMENT The mossy fibers transiently corelease glutamate and GABA onto pyramidal cells of CA3. We here describe that they can also corelease these amino acids onto interneurons, in a target-dependent manner. Many interneurons in stratum lucidum and stratum radiatum receive both signals, while those in stratum lacunosum-moleculare exclusively receive a glutamatergic signal. It is noteworthy that glutamatergic LTD, which is known to exist on stratum lucidum interneurons, coexists in the same pathway with a presynaptic form of GABAergic LTP, while interneurons of stratum radiatum, despite receiving this dual signaling, do not display such plasticity. The GABAergic LTP is mimicked with PKA or PKC activation. We disclose compartmentalized corelease of glutamate and GABA and its differential plasticity from a single pathway onto different interneuron sets.
Collapse
|
15
|
GluA2-Lacking AMPA Receptors and Nitric Oxide Signaling Gate Spike-Timing-Dependent Potentiation of Glutamate Synapses in the Dorsal Raphe Nucleus. eNeuro 2017; 4:eN-NWR-0116-17. [PMID: 28580416 PMCID: PMC5454404 DOI: 10.1523/eneuro.0116-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
The dorsal raphe nucleus (DRn) receives glutamatergic inputs from numerous brain areas that control the function of DRn serotonin (5-HT) neurons. By integrating these synaptic inputs, 5-HT neurons modulate a plethora of behaviors and physiological functions. However, it remains unknown whether the excitatory inputs onto DRn 5-HT neurons can undergo activity-dependent change of strength, as well as the mechanisms that control their plasticity. Here, we describe a novel form of spike-timing–dependent long-term potentiation (tLTP) of glutamate synapses onto rat DRn 5-HT neurons. This form of synaptic plasticity is initiated by an increase in postsynaptic intracellular calcium but is maintained by a persistent increase in the probability of glutamate release. The tLTP of glutamate synapses onto DRn 5-HT is independent of NMDA receptors but requires the activation of calcium-permeable AMPA receptors and voltage-dependent calcium channels. The presynaptic expression of the tLTP is mediated by the retrograde messenger nitric oxide (NO) and activation of cGMP/PKG pathways. Collectively, these results indicate that glutamate synapses in the DRn undergo activity-dependent synaptic plasticity gated by NO signaling and unravel a previously unsuspected role of NO in controlling synaptic function and plasticity in the DRn.
Collapse
|
16
|
Nicholson E, Kullmann DM. T-type calcium channels contribute to NMDA receptor independent synaptic plasticity in hippocampal regular-spiking oriens-alveus interneurons. J Physiol 2017; 595:3449-3458. [PMID: 28134447 PMCID: PMC5451714 DOI: 10.1113/jp273695] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/06/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Regular-spiking interneurons in the hippocampal stratum oriens exhibit a form of long-term potentiation of excitatory transmission that is independent of NMDA receptors but requires co-activation of Ca2+ -permeable AMPA receptors and group I metabotropic glutamate receptors. We show that T-type Ca2+ channels are present in such interneurons. Blockade of T-type currents prevents the induction of long-term potentiation, and also interferes with long-lasting potentiation induced either by postsynaptic trains of action potentials or by pairing postsynaptic hyperpolarization with activation of group I metabotropic receptors. Several Ca2+ sources thus converge on the induction of NMDA receptor independent synaptic plasticity. ABSTRACT NMDA receptor independent long-term potentiation (LTP) in hippocampal stratum oriens-alveus (O/A) interneurons requires co-activation of postsynaptic group I metabotropic glutamate receptors (mGluRs) and Ca2+ -permeable AMPA receptors. The rectification properties of such AMPA receptors contribute to the preferential induction of LTP at hyperpolarized potentials. A persistent increase in excitatory transmission can also be triggered by exogenous activation of group I mGluRs at the same time as the interneuron is hyperpolarized, or by postsynaptic trains of action potentials in the absence of presynaptic stimulation. In the present study, we identify low-threshold transient (T-type) channels as a further source of Ca2+ that contributes to synaptic plasticity. T-type Ca2+ currents were detected in mouse regular-spiking O/A interneurons. Blocking T-type currents pharmacologically prevented LTP induced by high-frequency stimulation of glutamatergic axons, or by application of the group I mGluR agonist dihydroxyphenylglycine, paired with postsynaptic hyperpolarization. T-type current blockade also prevented synaptic potentiation induced by postsynaptic action potential trains. Several sources of Ca2+ thus converge on NMDA receptor independent LTP induction in O/A interneurons.
Collapse
|
17
|
Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci 2017; 18:208-220. [DOI: 10.1038/nrn.2017.10] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Senter RK, Ghoshal A, Walker AG, Xiang Z, Niswender CM, Conn PJ. The Role of mGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies. Curr Neuropharmacol 2017; 14:455-73. [PMID: 27296640 PMCID: PMC4983746 DOI: 10.2174/1570159x13666150421003225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SCCA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - P Jeffrey Conn
- Department of Pharmacology, Faculty of Vanderbilt University Medical Center, 1205 Light Hall, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Szegedi V, Paizs M, Csakvari E, Molnar G, Barzo P, Tamas G, Lamsa K. Plasticity in Single Axon Glutamatergic Connection to GABAergic Interneurons Regulates Complex Events in the Human Neocortex. PLoS Biol 2016; 14:e2000237. [PMID: 27828957 PMCID: PMC5102409 DOI: 10.1371/journal.pbio.2000237] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/12/2016] [Indexed: 11/18/2022] Open
Abstract
In the human neocortex, single excitatory pyramidal cells can elicit very large glutamatergic EPSPs (VLEs) in inhibitory GABAergic interneurons capable of triggering their firing with short (3–5 ms) delay. Similar strong excitatory connections between two individual neurons have not been found in nonhuman cortices, suggesting that these synapses are specific to human interneurons. The VLEs are crucial for generating neocortical complex events, observed as single pyramidal cell spike-evoked discharge of cell assemblies in the frontal and temporal cortices. However, long-term plasticity of the VLE connections and how the plasticity modulates neocortical complex events has not been studied. Using triple and dual whole-cell recordings from synaptically connected human neocortical layers 2–3 neurons, we show that VLEs in fast-spiking GABAergic interneurons exhibit robust activity-induced long-term depression (LTD). The LTD by single pyramidal cell 40 Hz spike bursts is specific to connections with VLEs, requires group I metabotropic glutamate receptors, and has a presynaptic mechanism. The LTD of VLE connections alters suprathreshold activation of interneurons in the complex events suppressing the discharge of fast-spiking GABAergic cells. The VLEs triggering the complex events may contribute to cognitive processes in the human neocortex, and their long-term plasticity can alter the discharging cortical cell assemblies by learning. Many microscale features in the human neocortex—a part of the brain involved in higher functions such as sensory perception, generation of motor commands, spatial reasoning, and language—are closely similar to those reported in experimental animals commonly used in neuroscience, like mice. However, the human neocortical neurons also exhibit specializations only reported in our species. One such feature is the capacity of excitatory principal cells to elicit firing in local inhibitory interneurons with a single action potential via very strong excitatory synapses. It has been suggested that this feature has specifically evolved to enhance coordinated firing of neuronal ensembles in higher brain functions. However, it is unknown how these circuits are modified by learning. Therefore, we investigated how these very strong excitatory synapses are changed, and if their impact on the firing of local inhibitory neurons is altered by repetitive action potentials mimicking learning-related activity. By recording in human neocortical slices, we report that the strong excitatory synapses on interneurons exhibit robust activity-dependent long-term plasticity. The plasticity also regulates the discharge of local interneurons driven by these synapses. Although these specialized synapses have only been reported in the human neocortex, their plasticity mechanism is evolutionarily conserved. We suggest that the strong synapses with robust plasticity have evolved to enhance complex brain functions and learning.
Collapse
Affiliation(s)
- Viktor Szegedi
- MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Melinda Paizs
- MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Eszter Csakvari
- MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gabor Molnar
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Gabor Tamas
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Karri Lamsa
- MTA-NAP Research Group for Inhibitory Interneurons and Plasticity, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
- Department of Pharmacology, Oxford University, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Lau PYP, Katona L, Saghy P, Newton K, Somogyi P, Lamsa KP. Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo. Brain Struct Funct 2016; 222:1809-1827. [PMID: 27783219 PMCID: PMC5406446 DOI: 10.1007/s00429-016-1309-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022]
Abstract
Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.
Collapse
Affiliation(s)
| | - Linda Katona
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK
| | - Peter Saghy
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK
| | - Kathryn Newton
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.,MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK
| | - Peter Somogyi
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK.
| | - Karri P Lamsa
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK. .,Department of Anatomy, Physiology and Neuroscience, University of Szeged, Közép fasor, Szeged, 6720, Hungary.
| |
Collapse
|
21
|
Villanueva-Castillo C, Tecuatl C, Herrera-López G, Galván EJ. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells. Neurobiol Aging 2016; 49:119-137. [PMID: 27794263 DOI: 10.1016/j.neurobiolaging.2016.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 11/16/2022]
Abstract
The network interaction between the dentate gyrus and area CA3 of the hippocampus is responsible for pattern separation, a process that underlies the formation of new memories, and which is naturally diminished in the aged brain. At the cellular level, aging is accompanied by a progression of biochemical modifications that ultimately affects its ability to generate and consolidate long-term potentiation. Although the synapse between dentate gyrus via the mossy fibers (MFs) onto CA3 neurons has been subject of extensive studies, the question of how aging affects the MF-CA3 synapse is still unsolved. Extracellular and whole-cell recordings from acute hippocampal slices of aged Wistar rats (34 ± 2 months old) show that aging is accompanied by a reduction in the interneuron-mediated inhibitory mechanisms of area CA3. Several MF-mediated forms of short-term plasticity, MF long-term potentiation and at least one of the critical signaling cascades necessary for potentiation are also compromised in the aged brain. An analysis of the spontaneous glutamatergic and gamma-aminobutyric acid-mediated currents on CA3 cells reveal a dramatic alteration in amplitude and frequency of the nonevoked events. CA3 cells also exhibited increased intrinsic excitability. Together, these results demonstrate that aging is accompanied by a decrease in the GABAergic inhibition, reduced expression of short- and long-term forms of synaptic plasticity, and increased intrinsic excitability.
Collapse
Affiliation(s)
| | - Carolina Tecuatl
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, México
| | | | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, México.
| |
Collapse
|
22
|
Galván EJ, Pérez-Rosello T, Gómez-Lira G, Lara E, Gutiérrez R, Barrionuevo G. Synapse-specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons. Neuroscience 2015; 290:332-45. [PMID: 25637803 DOI: 10.1016/j.neuroscience.2015.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/28/2022]
Abstract
Inhibitory interneurons with somata in strata radiatum and lacunosum-molecular (SR/L-M) of hippocampal area CA3 receive excitatory input from pyramidal cells via the recurrent collaterals (RCs), and the dentate gyrus granule cells via the mossy fibers (MFs). Here we demonstrate that Hebbian long-term potentiation (LTP) at RC synapses on SR/L-M interneurons requires the concomitant activation of calcium-impermeable AMPARs (CI-AMPARs) and N-methyl-d-aspartate receptors (NMDARs). RC LTP was prevented by voltage clamping the postsynaptic cell during high-frequency stimulation (HFS; 3 trains of 100 pulses delivered at 100 Hz every 10s), with intracellular injections of the Ca(2+) chelator BAPTA (20mM), and with the NMDAR antagonist D-AP5. In separate experiments, RC and MF inputs converging onto the same interneuron were sequentially activated. We found that RC LTP induction was blocked by inhibitors of the calcium/calmodulin-dependent protein kinase II (CaMKII; KN-62, 10 μM or KN-93, 10 μM) but MF LTP was CaMKII independent. Conversely, the application of the protein kinase A (PKA) activators forskolin/IBMX (50 μM/25 μM) potentiated MF EPSPs but not RC EPSPs. Together these data indicate that the aspiny dendrites of SR/L-M interneurons compartmentalize synapse-specific Ca(2+) signaling required for LTP induction at RC and MF synapses. We also show that the two signal transduction cascades converge to activate a common effector, protein kinase C (PKC). Specifically, LTP at RC and MF synapses on the same SR/LM interneuron was blocked by postsynaptic injections of chelerythrine (10 μM). These data indicate that both forms of LTP share a common mechanism involving PKC-dependent signaling modulation.
Collapse
Affiliation(s)
- E J Galván
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico.
| | - T Pérez-Rosello
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - G Gómez-Lira
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico
| | - E Lara
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico
| | - R Gutiérrez
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico
| | - G Barrionuevo
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Joint CP-AMPA and group I mGlu receptor activation is required for synaptic plasticity in dentate gyrus fast-spiking interneurons. Proc Natl Acad Sci U S A 2014; 111:13211-6. [PMID: 25161282 DOI: 10.1073/pnas.1409394111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hippocampal principal cell (PC) assemblies provide the brain with a mnemonic representation of space. It is assumed that the formation of cell assemblies is supported by long-lasting modification of glutamatergic synapses onto perisomatic inhibitory interneurons (PIIs), which provide powerful feedback inhibition to neuronal networks. Repetitive activation of dentate gyrus PIIs by excitatory mossy fiber (MF) inputs induces Hebbian long-term potentiation (LTP). In contrast, long-term depression (LTD) emerges in the absence of PII activity. However, little is known about the molecular mechanisms underlying synaptic plasticity in PIIs. Here, we examined the role of group I metabotropic glutamate receptors 1 and 5 (mGluRs1/5) in inducing plastic changes at MF-PII synapses. We found that mGluRs1/5 are located perisynaptically and that pharmacological block of mGluR1 or mGluR5 abolished MF-LTP. In contrast, their exogenous activation was insufficient to induce MF-LTP but cleared MF-LTD. No LTP could be elicited in PIIs loaded with blockers of G protein signaling and Ca(2+)-dependent PKC. Two-photon imaging revealed that the intracellular Ca(2+) rise necessary for MF-LTP was largely mediated by Ca(2+)-permeable AMPA receptors (CP-AMPARs), but less by NMDA receptors or mGluRs1/5. Thus, our data indicate that fast Ca(2+) signaling via CP-AMPARs and slow G protein-mediated signaling via mGluRs1/5 converge to a PKC-dependent molecular pathway to induce Hebbian MF-LTP. We further propose that Hebbian activation of mGluRs1/5 gates PIIs into a "readiness mode" to promote MF-LTP, which, in turn, will support timed PII recruitment, thereby assisting in PC assembly formation.
Collapse
|
24
|
Paula-Lima AC, Adasme T, Hidalgo C. Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation. Antioxid Redox Signal 2014; 21:892-914. [PMID: 24410659 DOI: 10.1089/ars.2013.5796] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Memory is an essential human cognitive function. Consequently, to unravel the cellular and molecular mechanisms responsible for the synaptic plasticity events underlying memory formation, storage and loss represents a major challenge of present-day neuroscience. RECENT ADVANCES This review article first describes the wide-ranging functions played by intracellular Ca2+ signals in the activity-dependent synaptic plasticity processes underlying hippocampal spatial memory, and next, it focuses on how the endoplasmic reticulum Ca2+ release channels, the ryanodine receptors, and the inositol 1,4,5-trisphosphate receptors contribute to these processes. We present a detailed examination of recent evidence supporting the key role played by Ca2+ release channels in synaptic plasticity, including structural plasticity, and the formation/consolidation of spatial memory in the hippocampus. CRITICAL ISSUES Changes in cellular oxidative state particularly affect the function of Ca2+ release channels and alter hippocampal synaptic plasticity and the associated memory processes. Emphasis is placed in this review on how defective Ca2+ release, presumably due to increased levels of reactive oxygen species, may cause the hippocampal functional defects that are associated to aging and Alzheimer's disease (AD). FUTURE DIRECTIONS Additional studies should examine the precise molecular mechanisms by which Ca2+ release channels contribute to hippocampal synaptic plasticity and spatial memory formation/consolidation. Future studies should test whether redox-modified Ca2+ release channels contribute toward generating the intracellular Ca2+ signals required for sustained synaptic plasticity and hippocampal spatial memory, and whether loss of redox balance and oxidative stress, by altering Ca2+ release channel function, presumably contribute to the abnormal memory processes that occur during aging and AD.
Collapse
Affiliation(s)
- Andrea C Paula-Lima
- 1 Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile , Santiago, Chile
| | | | | |
Collapse
|
25
|
Evstratova A, Tóth K. Information processing and synaptic plasticity at hippocampal mossy fiber terminals. Front Cell Neurosci 2014; 8:28. [PMID: 24550783 PMCID: PMC3912358 DOI: 10.3389/fncel.2014.00028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/20/2014] [Indexed: 11/13/2022] Open
Abstract
Granule cells of the dentate gyrus receive cortical information and they transform and transmit this code to the CA3 area via their axons, the mossy fibers (MFs). Structural and functional complexity of this network has been extensively studied at various organizational levels. This review is focused on the anatomical and physiological properties of the MF system. We will discuss the mechanism by which dentate granule cells process signals from single action potentials (APs), short bursts and longer stimuli. Various parameters of synaptic interactions at different target cells such as quantal transmission, short- and long-term plasticity (LTP) will be summarized. Different types of synaptic contacts formed by MFs have unique sets of rules for information processing during different rates of granule cell activity. We will investigate the complex interactions between key determinants of information transfer between the dentate gyrus and the CA3 area of the hippocampus.
Collapse
Affiliation(s)
- Alesya Evstratova
- Faculty of Medicine, Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval Quebec City, QC, Canada
| | - Katalin Tóth
- Faculty of Medicine, Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval Quebec City, QC, Canada
| |
Collapse
|
26
|
Moreau AW, Kullmann DM. NMDA receptor-dependent function and plasticity in inhibitory circuits. Neuropharmacology 2013; 74:23-31. [DOI: 10.1016/j.neuropharm.2013.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/20/2013] [Accepted: 03/01/2013] [Indexed: 01/22/2023]
|
27
|
Delvendahl I, Weyhersmüller A, Ritzau-Jost A, Hallermann S. Hippocampal and cerebellar mossy fibre boutons - same name, different function. J Physiol 2013; 591:3179-88. [PMID: 23297303 DOI: 10.1113/jphysiol.2012.248294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Over a century ago, the Spanish anatomist Ramón y Cajal described 'mossy fibres' in the hippocampus and the cerebellum, which contain several presynaptic boutons. Technical improvements in recent decades have allowed direct patch-clamp recordings from both hippocampal and cerebellar mossy fibre boutons (hMFBs and cMFBs, respectively), making them ideal models to study fundamental properties of synaptic transmission. hMFBs and cMFBs have similar size and shape, but each hMFB contacts one postsynaptic hippocampal CA3 pyramidal neuron, while each cMFB contacts ∼50 cerebellar granule cells. Furthermore, hMFBs and cMFBs differ in terms of their functional specialization. At hMFBs, a large number of release-ready vesicles and low release probability (<0.1) contribute to marked synaptic facilitation. At cMFBs, a small number of release-ready vesicles, high release probability (∼0.5) and rapid vesicle reloading result in moderate frequency-dependent synaptic depression. These presynaptic mechanisms, in combination with faster postsynaptic currents of cerebellar granule cells compared with hippocampal CA3 pyramidal neurons, enable much higher transmission frequencies at cMFB compared with hMFB synapses. Analysing the underling mechanisms of synaptic transmission and information processing represents a fascinating challenge and may reveal insights into the structure-function relationship of the human brain.
Collapse
Affiliation(s)
- Igor Delvendahl
- Carl-Ludwig Institute for Physiology, University of Leipzig, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
28
|
|
29
|
Camiré O, Lacaille JC, Topolnik L. Dendritic Signaling in Inhibitory Interneurons: Local Tuning via Group I Metabotropic Glutamate Receptors. Front Physiol 2012; 3:259. [PMID: 22934015 PMCID: PMC3429035 DOI: 10.3389/fphys.2012.00259] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 06/21/2012] [Indexed: 11/18/2022] Open
Abstract
Communication between neurons is achieved by rapid signal transduction via highly specialized structural elements known as synaptic contacts. In addition, numerous extrasynaptic mechanisms provide a flexible platform for the local regulation of synaptic signals. For example, peri- and extra-synaptic signaling through the group I metabotropic glutamate receptors (mGluRs) can be involved in the highly compartmentalized regulation of dendritic ion conductances, the induction of input-specific synaptic plasticity, and the local release of retrograde messengers. Therefore, extrasynaptic mechanisms appear to play a key role in the local tuning of dendritic computations. Here, we review recent findings on the role of group I mGluRs in the dendritic signaling of inhibitory interneurons. We propose that group I mGluRs provide a dual-mode signaling device that integrates different patterns of neural activity. By implementing distinct forms of intrinsic and synaptic regulation, group I mGluRs may be responsible for the local fine-tuning of dendritic function.
Collapse
Affiliation(s)
- Olivier Camiré
- Department of Biochemistry, Microbiology and Bioinformatics, Axis of Cellular and Molecular Neuroscience, CRIUSMQ, Université Laval Québec, PQ, Canada
| | | | | |
Collapse
|
30
|
Harney SC, Anwyl R. Plasticity of NMDA receptor-mediated excitatory postsynaptic currents at perforant path inputs to dendrite-targeting interneurons. J Physiol 2012; 590:3771-86. [PMID: 22615437 DOI: 10.1113/jphysiol.2012.234740] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synaptic plasticity of NMDA receptors (NMDARs) has been recently described in a number of brain regions and we have previously characterised LTP and LTD of glutamatergic NMDA receptor-mediated EPSCs (NMDAR-EPSCs) in granule cells of dentate gyrus. The functional significance of NMDAR plasticity at perforant path synapses on hippocampal network activity depends on whether this is a common feature of perforant path synapses on all postsynaptic target cells or if this plasticity occurs only at synapses on principal cells. We recorded NMDAR-EPSCs at medial perforant path synapses on interneurons in dentate gyrus which had significantly slower decay kinetics compared to those recorded in granule cells. NMDAR pharmacology in interneurons was consistent with expression of both GluN2B- and GluN2D-containing receptors. In contrast to previously described high frequency stimulation-induced bidirectional plasticity of NMDAR-EPSCs in granule cells, only LTD of NMDAR-EPSCs was induced in interneurons in our standard experimental conditions. In interneurons, LTD of NMDAR-EPSCs was associated with a loss of sensitivity to a GluN2D-selective antagonist and was inhibited by the actin stabilising agent, jasplakinolide. While LTP of NMDAR-EPSCs can be readily induced in granule cells, this form of plasticity was only observed in interneurons when extracellular calcium was increased above physiological concentrations during HFS or when PKC was directly activated by phorbol ester, suggesting that opposing forms of plasticity at inputs to interneurons and principal cells may act to regulate granule cell dendritic integration and processing.
Collapse
Affiliation(s)
- Sarah C Harney
- Department of Physiology, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
31
|
Topolnik L. Dendritic calcium mechanisms and long-term potentiation in cortical inhibitory interneurons. Eur J Neurosci 2012; 35:496-506. [PMID: 22304664 DOI: 10.1111/j.1460-9568.2011.07988.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium (Ca(2+) ) is a major second messenger in the regulation of different forms of synaptic and intrinsic plasticity. Tightly organized in space and time, postsynaptic Ca(2+) transients trigger the activation of many distinct Ca(2+) signaling cascades, providing a means for a highly specific signal transduction and plasticity induction. High-resolution two-photon microscopy combined with highly sensitive synthetic Ca(2+) indicators in brain slices allowed for the quantification and analysis of postsynaptic Ca(2+) dynamics in great detail. Much of our current knowledge about postsynaptic Ca(2+) mechanisms is derived from studying Ca(2+) transients in the dendrites and spines of pyramidal neurons. However, postsynaptic Ca(2+) dynamics differ considerably among different cell types. In particular, distinct rules of postsynaptic Ca(2+) signaling and, accordingly, of Ca(2+) -dependent plasticity operate in GABAergic interneurons. Here, I review recent progress in understanding the complex organization of postsynaptic Ca(2+) signaling and its relevance to several forms of long-term potentiation at excitatory synapses in cortical GABAergic interneurons.
Collapse
Affiliation(s)
- Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-Informatics, Université Laval, Axis of Cellular and Molecular Neurosciences, 2601 Ch. De La Canardière, CRIUSMQ, Québec city, QC, PQ, G1J 2G3, Canada.
| |
Collapse
|
32
|
Castillo PE. Presynaptic LTP and LTD of excitatory and inhibitory synapses. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005728. [PMID: 22147943 DOI: 10.1101/cshperspect.a005728] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ubiquitous forms of long-term potentiation (LTP) and depression (LTD) are caused by enduring increases or decreases in neurotransmitter release. Such forms or presynaptic plasticity are equally observed at excitatory and inhibitory synapses and the list of locations expressing presynaptic LTP and LTD continues to grow. In addition to the mechanistically distinct forms of postsynaptic plasticity, presynaptic plasticity offers a powerful means to modify neural circuits. A wide range of induction mechanisms has been identified, some of which occur entirely in the presynaptic terminal, whereas others require retrograde signaling from the postsynaptic to presynaptic terminals. In spite of this diversity of induction mechanisms, some common induction rules can be identified across synapses. Although the precise molecular mechanism underlying long-term changes in transmitter release in most cases remains unclear, increasing evidence indicates that presynaptic LTP and LTD can occur in vivo and likely mediate some forms of learning.
Collapse
Affiliation(s)
- Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
33
|
A novel form of low-frequency hippocampal mossy fiber plasticity induced by bimodal mGlu1 receptor signaling. J Neurosci 2012; 31:16897-906. [PMID: 22114260 DOI: 10.1523/jneurosci.1264-11.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mossy fiber synapses act as the critical mediators of highly dynamic communication between hippocampal granule cells in the dentate gyrus and CA3 pyramidal neurons. Excitatory synaptic strength at mossy fiber to CA3 pyramidal cell synapses is potentiated rapidly and reversibly by brief trains of low-frequency stimulation of mossy fiber axons. We show that slight modifications to the pattern of stimulation convert this short-term potentiation into prolonged synaptic strengthening lasting tens of minutes in rodent hippocampal slices. This low-frequency potentiation of mossy fiber EPSCs requires postsynaptic mGlu1 receptors for induction but is expressed presynaptically as an increased release probability and therefore impacts both AMPA and NMDA components of the mossy fiber EPSC. A nonconventional signaling pathway initiated by mGlu1 receptors contributes to induction of plasticity, because EPSC potentiation was prevented by a tyrosine kinase inhibitor and only partially reduced by guanosine 5'-O-(2-thiodiphosphate). A slowly reversible state of enhanced synaptic efficacy could serve as a mechanism for altering the integrative properties of this synapse within a relatively broad temporal window.
Collapse
|
34
|
Sperow M, Berry RB, Bayazitov IT, Zhu G, Baker SJ, Zakharenko SS. Phosphatase and tensin homologue (PTEN) regulates synaptic plasticity independently of its effect on neuronal morphology and migration. J Physiol 2011; 590:777-92. [PMID: 22147265 DOI: 10.1113/jphysiol.2011.220236] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The tumour suppressor PTEN is the central negative regulator of the phosphatidylinositol 3-kinase (PI3K) signalling pathway, which mediates diverse processes in various tissues. In the nervous system, the PI3K pathway modulates proliferation, migration, cellular size, synaptic transmission and plasticity. In humans, neurological abnormalities such as autism, seizures and ataxia are associated with inherited PTEN mutations. In rodents, Pten loss during early development is associated with extensive deficits in neuronal migration and substantial hypertrophy of neurons and synaptic densities; however, whether its effect on synaptic transmission and plasticity is direct or mediated by structural abnormalities remains unknown. Here we analysed neuronal and synaptic structures and function in Pten-conditional knockout mice in which the gene was deleted from excitatory neurons postnatally. Using two-photon imaging, Golgi staining, immunohistochemistry, electron microscopy, and electrophysiological tools, we determined that Pten loss does not affect hippocampus development, neuronal or synaptic structures, or basal excitatory synaptic transmission. However, it does cause deficits in both major forms of synaptic plasticity, long-term potentiation and long-term depression, of excitatory synaptic transmission. These deficits coincided with impaired spatial memory, as measured in water maze tasks. Deletion of Pdk1, which encodes a positive downstream regulator of the PI3K pathway, rescued Pten-mediated deficits in synaptic plasticity but not in spatial memory. These results suggest that PTEN independently modulates functional and structural properties of hippocampal neurons and is directly involved in mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Margaret Sperow
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
35
|
Interneuron networks in the hippocampus. Curr Opin Neurobiol 2011; 21:709-16. [DOI: 10.1016/j.conb.2011.05.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
36
|
Nisticò R, Dargan SL, Amici M, Collingridge GL, Bortolotto ZA. Synergistic interactions between kainate and mGlu receptors regulate bouton Ca signalling and mossy fibre LTP. Sci Rep 2011; 1:103. [PMID: 22355621 PMCID: PMC3216588 DOI: 10.1038/srep00103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/07/2011] [Indexed: 12/04/2022] Open
Abstract
It is currently unknown why glutamatergic presynaptic terminals express multiple types of glutamate receptors. We have addressed this question by studying both acute and long-term regulation of mossy fibre function in the hippocampus. We find that inhibition of both mGlu1 and mGlu5 receptors together can block the induction of mossy fibre LTP. Furthermore, mossy fibre LTP can be induced by the pharmacological activation of either mGlu1 or mGlu5 receptors, provided that kainate receptors are also stimulated. Like conventional mossy fibre LTP, chemically-induced mossy fibre LTP (chem-LTPm) depends on Ca2+ release from intracellular stores and the activation of PKA. Similar synergistic interactions between mGlu receptors and kainate receptors were observed at the level of Ca2+ signalling in individual giant mossy fibre boutons. Thus three distinct glutamate receptors interact, in both an AND and OR gate fashion, to regulate both immediate and long-term presynaptic function in the brain.
Collapse
Affiliation(s)
- Robert Nisticò
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Anderson WD, Galván EJ, Mauna JC, Thiels E, Barrionuevo G. Properties and functional implications of I (h) in hippocampal area CA3 interneurons. Pflugers Arch 2011; 462:895-912. [PMID: 21938402 DOI: 10.1007/s00424-011-1025-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/24/2011] [Accepted: 08/29/2011] [Indexed: 12/26/2022]
Abstract
The present study examines the biophysical properties and functional implications of I (h) in hippocampal area CA3 interneurons with somata in strata radiatum and lacunosum-moleculare. Characterization studies showed a small maximum h-conductance (2.6 ± 0.3 nS, n = 11), shallow voltage dependence with a hyperpolarized half-maximal activation (V (1/2) = -91 mV), and kinetics characterized by double-exponential functions. The functional consequences of I (h) were examined with regard to temporal summation and impedance measurements. For temporal summation experiments, 5-pulse mossy fiber input trains were activated. Blocking I (h) with 50 μM ZD7288 resulted in an increase in temporal summation, suggesting that I (h) supports sensitivity of response amplitude to relative input timing. Impedance was assessed by applying sinusoidal current commands. From impedance measurements, we found that I (h) did not confer theta-band resonance, but flattened the impedance-frequency relations instead. Double immunolabeling for hyperpolarization-activated cyclic nucleotide-gated proteins and glutamate decarboxylase 67 suggests that all four subunits are present in GABAergic interneurons from the strata considered for electrophysiological studies. Finally, a model of I (h) was employed in computational analyses to confirm and elaborate upon the contributions of I (h) to impedance and temporal summation.
Collapse
Affiliation(s)
- Warren D Anderson
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
38
|
Striatum–hippocampus balance: From physiological behavior to interneuronal pathology. Prog Neurobiol 2011; 94:102-14. [DOI: 10.1016/j.pneurobio.2011.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/28/2011] [Accepted: 04/06/2011] [Indexed: 11/20/2022]
|
39
|
Abstract
Several subtypes of interneurons in the feedback circuit in stratum oriens of the hippocampus exhibit NMDA receptor-independent long-term potentiation (LTP) at glutamatergic synapses made by local pyramidal neurons. LTP has been reported with both "Hebbian" and "anti-Hebbian" induction protocols, where high-frequency presynaptic stimulation is paired with either postsynaptic depolarization or hyperpolarization. Do these phenomena represent distinct forms of plasticity, dependent on group I metabotropic receptors (mGluRs) and rectifying Ca2+ -permeable AMPA receptors, respectively? Blockade of either mGluR1 or mGluR5 prevented anti-Hebbian LTP induction in stratum oriens interneurons in rat hippocampal slices. Exogenous activation of group I mGluRs by the selective agonist (S)-3,5-dihydroxyphenylglycine (DHPG) was unable to induce LTP on its own, and instead depressed excitatory transmission. However, when paired with postsynaptic hyperpolarization, DHPG or the group I metabotropic receptor (mGluR5)-selective agonist (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) elicited a delayed long-lasting potentiation, which was accompanied by a decrease in paired-pulse facilitation. Anti-Hebbian LTP occluded the effect of DHPG paired with hyperpolarization, implying that the induction cascades triggered by both conjunctions of stimuli converge on common expression mechanisms.
Collapse
|
40
|
Cosgrove KE, Galván EJ, Meriney SD, Barrionuevo G. Area CA3 interneurons receive two spatially segregated mossy fiber inputs. Hippocampus 2011; 20:1003-9. [PMID: 19830814 DOI: 10.1002/hipo.20713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Area CA3 receives two extrinsic excitatory inputs, the mossy fibers (MF), and the perforant path (PP). Interneurons with somata in str. lacunosum moleculare (L-M) of CA3 modulate the influence of the MF and PP on pyramidal cell activity by providing strong feed-forward inhibitory influence to pyramidal cells. Here we report that L-M interneurons receive two separate MF inputs, one to the dorsal dendrites from the suprapyramidal blade of the dentate gyrus (MF(SDG)), and a second to ventral dendrites from the str. lucidum (MF(SL)). Responses elicited from MF(SDG) and MF(SL) stimulation sites have strong paired-pulse facilitation, similar DCG-IV sensitivity, amplitude, and decay kinetics but target spatially segregated domains on the interneuron dendrites. These data demonstrate that certain interneuron subtypes are entrained by two convergent MF inputs to spatially separated regions of the dendritic tree. This anatomical arrangement could make these interneurons considerably more responsive to the excitatory drive from dentate granule cells. Furthermore, temporal summation is linear or slightly sublinear between PP and MF(SL) but supralinear between PP and MF(SDG). This specific boosting of the excitatory drive to interneurons from the SDG location may indicate that L-M interneurons could be specifically involved in the processing of the associational component of the recognition memory.
Collapse
Affiliation(s)
- Kathleen E Cosgrove
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
41
|
Cosgrove KE, Galván EJ, Barrionuevo G, Meriney SD. mGluRs modulate strength and timing of excitatory transmission in hippocampal area CA3. Mol Neurobiol 2011; 44:93-101. [PMID: 21559753 DOI: 10.1007/s12035-011-8187-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/28/2011] [Indexed: 01/25/2023]
Abstract
Excitatory transmission within hippocampal area CA3 stems from three major glutamatergic pathways: the perforant path formed by axons of layer II stellate cells in the entorhinal cortex, the mossy fiber axons originating from the dentate gyrus granule cells, and the recurrent axon collaterals of CA3 pyramidal cells. The synaptic communication of each of these pathways is modulated by metabotropic glutamate receptors that fine-tune the signal by affecting both the timing and strength of the connection. Within area CA3 of the hippocampus, group I mGluRs (mGluR1 and mGluR5) are expressed postsynaptically, whereas group II (mGluR2 and mGluR3) and III mGluRs (mGluR4, mGluR7, and mGluR8) are expressed presynaptically. Receptors from each group have been demonstrated to be required for different forms of pre- and postsynaptic long-term plasticity and also have been implicated in regulating short-term plasticity. A recent observation has demonstrated that a presynaptically expressed mGluR can affect the timing of action potentials elicited in the postsynaptic target. Interestingly, mGluRs can be distributed in a target-specific manner, such that synaptic input from one presynaptic neuron can be modulated by different receptors at each of its postsynaptic targets. Consequently, mGluRs provide a mechanism for synaptic specialization of glutamatergic transmission in the hippocampus. This review will highlight the variability in mGluR modulation of excitatory transmission within area CA3 with an emphasis on how these receptors contribute to the strength and timing of network activity within pyramidal cells and interneurons.
Collapse
Affiliation(s)
- Kathleen E Cosgrove
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
42
|
Miranda MI, González-Cedillo FJ, Díaz-Muñoz M. Intracellular calcium chelation and pharmacological SERCA inhibition of Ca2+ pump in the insular cortex differentially affect taste aversive memory formation and retrieval. Neurobiol Learn Mem 2011; 96:192-8. [PMID: 21524709 DOI: 10.1016/j.nlm.2011.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/12/2011] [Accepted: 04/11/2011] [Indexed: 12/23/2022]
Abstract
Variation in intracellular calcium concentration regulates the induction of long-term synaptic plasticity and is associated with a variety of memory/retrieval and learning paradigms. Accordingly, impaired calcium mobilization from internal deposits affects synaptic plasticity and cognition in the aged brain. During taste memory formation several proteins are modulated directly or indirectly by calcium, and recent evidence suggests the importance of calcium buffering and the role of intracellular calcium deposits during cognitive processes. Thus, the main goal of this research was to study the consequence of hampering changes in cytoplasmic calcium and inhibiting SERCA activity by BAPTA-AM and thapsigargin treatments, respectively, in the insular cortex during different stages of taste memory formation. Using conditioned taste aversion (CTA), we found differential effects of BAPTA-AM and thapsigargin infusions before and after gustatory stimulation, as well as during taste aversive memory consolidation; BAPTA-AM, but not thapsigargin, attenuates acquisition and/or consolidation of CTA, but neither compound affects taste aversive memory retrieval. These results point to the importance of intracellular calcium dynamics in the insular cortex during different stages of taste aversive memory formation.
Collapse
Affiliation(s)
- María Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 96230, México.
| | | | | |
Collapse
|
43
|
Kullmann DM, Lamsa KP. LTP and LTD in cortical GABAergic interneurons: Emerging rules and roles. Neuropharmacology 2011; 60:712-9. [DOI: 10.1016/j.neuropharm.2010.12.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 12/02/2010] [Accepted: 12/15/2010] [Indexed: 11/27/2022]
|
44
|
Bartos M, Alle H, Vida I. Role of microcircuit structure and input integration in hippocampal interneuron recruitment and plasticity. Neuropharmacology 2010; 60:730-9. [PMID: 21195097 DOI: 10.1016/j.neuropharm.2010.12.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/10/2010] [Accepted: 12/15/2010] [Indexed: 11/25/2022]
Abstract
The proper operation of cortical neuronal networks depends on the temporally precise recruitment of GABAergic inhibitory interneurons. Inhibitory cells receive convergent excitatory inputs from afferent pathways, as well as local collaterals of principal cells, and provide feedforward or feedback inhibition within the circuitry. Accumulating evidence indicates that recruitment of GABAergic cells is highly diverse among interneuron types. Differences in the properties of input synapses, dendritic architecture and membrane properties, as well as the rich repertoire of plasticity mechanisms contribute to this diversity. Efficient and precise recruitment of interneurons is thought to depend on the coincident occurrence of rapid synaptic responses and their faithful propagation to the action potential initiation site. However, slow inputs can also play important roles by facilitating the activation of interneurons by rapid synaptic inputs and supporting associative synaptic plasticity. Here we review how the diversity in the synaptic and integrative properties as well as dendritic geometry of hippocampal inhibitory cells impact on their activation. We further discuss how the various modes of interneuron recruitment can support the versatile cell type- and input-specific computational functions which appear to be adapted to the structure and the function of the network they are embedded in. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
- Marlene Bartos
- Institute of Physiology 1, University of Freiburg, Engesser Strasse 4, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
45
|
Laezza F, Dingledine R. Induction and expression rules of synaptic plasticity in hippocampal interneurons. Neuropharmacology 2010; 60:720-9. [PMID: 21195098 DOI: 10.1016/j.neuropharm.2010.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/30/2010] [Accepted: 12/15/2010] [Indexed: 12/13/2022]
Abstract
The knowledge that excitatory synapses on aspiny hippocampal interneurons can develop genuine forms of activity-dependent remodeling, independently from the surrounding network of principal cells, is a relatively new concept. Cumulative evidence has now unequivocally demonstrated that, despite the absence of specialized postsynaptic spines that serve as compartmentalized structure for intracellular signaling in principal cell plasticity, excitatory inputs onto interneurons can undergo forms of synaptic plasticity that are induced and expressed autonomously from principal cells. Yet, the rules for induction and expression of interneuron plasticity are much more heterogeneous than in principal neurons. Long-term plasticity in interneurons is not necessarily dependent upon postsynaptic activation of NMDA receptors nor relies on the same postsynaptic membrane potential requirements as principal cells. Plasticity in interneurons rather requires activation of Ca(2+)-permeable AMPA receptors and/or metabotropic glutamate receptors and is triggered by postsynaptic hyperpolarization. In this review we will outline these distinct features of interneuron plasticity and identify potential critical candidate molecules that might be important for sustaining long-lasting changes in synaptic strength at excitatory inputs onto interneurons. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
- Fernanda Laezza
- University Texas Medical Branch, Department of Pharmacology & Toxicology, 301 University Boulevard, Galveston, TX 77555, USA.
| | | |
Collapse
|
46
|
Le Duigou C, Holden T, Kullmann DM. Short- and long-term depression at glutamatergic synapses on hippocampal interneurons by group I mGluR activation. Neuropharmacology 2010; 60:748-56. [PMID: 21185314 DOI: 10.1016/j.neuropharm.2010.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/10/2010] [Accepted: 12/15/2010] [Indexed: 01/16/2023]
Abstract
Group I metabotropic glutamate receptors (mGluRs) are expressed by many interneurons of the hippocampus. Although they have been implicated in short- and long-term synaptic plasticity of glutamatergic transmission, their roles in modulating transmission to interneurons are incompletely understood. The selective group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) acutely depressed transmission at synapses in the feed-forward inhibitory pathway made by Schaffer collaterals on interneurons in the rat hippocampal CA1 sub-field. DHPG elicited a qualitatively similar depression at synapses made by pyramidal neuron axon collaterals on interneurons in the feedback circuit in stratum oriens. Selective blockers revealed a link from mGluR1 to reversible, and mGluR5 to long-lasting, depression. The acute DHPG-induced depression was consistently accompanied by an elevation in paired-pulse ratio, implying a presynaptic decrease in release probability. However, it was also attenuated by blocking G-protein and Ca(2+) signalling within the postsynaptic neuron, arguing for a retrograde signalling cascade. The DHPG-evoked depression was unaffected by antagonists of CB1 and GABA(B) receptors but was occluded when presynaptic P/Q-type Ca(2+) channels were blocked. Finally, high-frequency stimulation delivered to an independent conditioning pathway evoked a heterosynaptic reversible depression, which was sensitive to group I mGluR antagonists. Group I mGluRs thus powerfully modulate synaptic excitation of hippocampal interneurons and mediate inter-synaptic cross-talk. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
- Caroline Le Duigou
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|
47
|
Galván EJ, Cosgrove KE, Barrionuevo G. Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses on interneurons. Neuropharmacology 2010; 60:740-7. [PMID: 21093459 DOI: 10.1016/j.neuropharm.2010.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/29/2010] [Accepted: 11/10/2010] [Indexed: 11/24/2022]
Abstract
The hippocampal mossy fiber (MF) pathway originates from the dentate gyrus granule cells and provides a powerful excitatory synaptic drive to neurons in the dentate gyrus hilus and area CA3. Much of the early work on the MF pathway focused on its electrophysiological properties, and ability to drive CA3 pyramidal cell activity. Over the last ten years, however, a new focus on the synaptic interaction between granule cells and inhibitory interneurons has emerged. These data have revealed an immense heterogeneity of long-term plasticity at MF synapses on various interneuron targets. Interestingly, these studies also indicate that the mechanisms of MF long-term plasticity in some interneuron subtypes may be more similar to pyramidal cells than previously appreciated. In this review, we first define the synapse types at each of the interneuron targets based on the receptors present. We then describe the different forms of long-term plasticity observed, and the mechanisms underlying each form as they are currently understood. Finally we highlight various open questions surrounding MF long-term plasticity in interneurons, focusing specifically on the induction and maintenance of LTP, and what the functional impact of persistent changes in efficacy at MF-interneuron synapses might be on the emergent properties of the inhibitory network dynamics in area CA3. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
- Emilio J Galván
- Dept. of Pharmacobiology, CINVESTAV-Sur, Mexico City, Mexico.
| | | | | |
Collapse
|
48
|
Associative plasticity at excitatory synapses facilitates recruitment of fast-spiking interneurons in the dentate gyrus. J Neurosci 2010; 30:11826-37. [PMID: 20810902 DOI: 10.1523/jneurosci.2012-10.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fast-spiking perisomatic-inhibitory interneurons (PIIs) receive convergent excitation and mediate both feedforward and feedback inhibition in cortical microcircuits. However, it remains poorly understood how convergent excitatory inputs recruit PIIs to produce precisely timed inhibition. Here, we analyzed the interaction of inputs from the entorhinal cortex [perforant path (PP)] and from local granule cells [mossy fibers (MFs)] onto PIIs in the rat dentate gyrus (DG). PP stimulation alone activates PIIs with low temporal precision. Interestingly, when PP and MFs are coactivated with a 10 ms delay, PIIs discharge with precise timing. Moreover, repeated coactivation of the two inputs induces associative long-term potentiation (LTP) at MF synapses. Under these conditions, a single potentiated MF input is sufficient to recruit PIIs in a reliable and highly precise manner to provide feedback inhibition. MF-LTP depends on the discharge of PIIs, indicating Hebbian plasticity. However, MF-LTP is preserved when NMDA receptors are blocked but depends on transmission through Ca(2+)-permeable AMPA receptors (AMPARs). PP-PII synapses, in contrast, lack Ca(2+)-permeable AMPARs and do not show plasticity on associative activation. Thus, precise recruitment of PIIs requires excitation through MF-PII synapses during feedforward activation. We propose that associative plasticity at these synapses is a central mechanism that adjusts inhibition levels to maintain sparse activity and to improve signal-to-noise ratio in the DG network.
Collapse
|
49
|
Cosgrove KE, Meriney SD, Barrionuevo G. High affinity group III mGluRs regulate mossy fiber input to CA3 interneurons. Hippocampus 2010; 21:1302-17. [PMID: 20824730 DOI: 10.1002/hipo.20842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2010] [Indexed: 11/10/2022]
Abstract
Stratum lacunosum-moleculare interneurons (L-Mi) in hippocampal area CA3 target the apical dendrite of pyramidal cells providing feedforward inhibition. Here we report that selective activation of group III metabotropic glutamate receptors (mGluRs) 4/8 with L(+)-2-amino-4-phosphnobytyric acid (L-AP4; 10 μM) decreased the probability of glutamate release from the mossy fiber (MF) terminals synapsing onto L-Mi. Consistent with this interpretation, application of L-AP4 in the presence of 3 mM strontium decreased the frequency of asynchronous MF EPSCs in L-Mi. Furthermore, the dose response curve showed that L-AP4 at 400 μM produced no further decrease in MF EPSC amplitude compared with 20 μM L-AP4, indicating the lack of mGluRs 7 at these MF terminals. We also found that one mechanism of mGluRs 4/8-mediated inhibition of release is linked to N-type voltage gated calcium channels at MF terminals. Application of the group III mGluR antagonist MSOP (100 μM) demonstrated that mGluRs 4/8 are neither tonically active nor activated by low and moderate frequencies of activity. However, trains of stimuli to the MF at 20 and 40 Hz delivered during the application of MSOP revealed a relief of inhibition of transmitter release and an increase in the overall probability of action potential firing in the postsynaptic L-Mi. Interestingly, the time to first action potential was significantly shorter in the presence of MSOP, indicating that mGluR 4/8 activation delays L-Mi firing in response to MF activity. Taken together, our data demonstrate that the timing and probability of action potentials in L-Mi evoked by MF synaptic input is regulated by the activation of presynaptic high affinity group III mGluRs.
Collapse
Affiliation(s)
- Kathleen E Cosgrove
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
50
|
Cell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor. J Neurosci 2010; 30:1337-47. [PMID: 20107060 DOI: 10.1523/jneurosci.3481-09.2010] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different GABAergic interneuron types have specific roles in hippocampal function, and anatomical as well as physiological features vary greatly between interneuron classes. Long-term plasticity of interneurons has mostly been studied in unidentified GABAergic cells and is known to be very heterogeneous. Here we tested whether cell type-specific plasticity properties in distinct GABAergic interneuron types might underlie this heterogeneity. We show that long-term potentiation (LTP) and depression (LTD), two common forms of synaptic plasticity, are expressed in a highly cell type-specific manner at glutamatergic synapses onto hippocampal GABAergic neurons. Both LTP and LTD are generated in interneurons expressing parvalbumin (PV+), whereas interneurons with similar axon distributions but expressing cannabinoid receptor-1 show no lasting plasticity in response to the same protocol. In addition, LTP or LTD occurs in PV+ interneurons with different efferent target domains. Perisomatic-targeting PV+ basket and axo-axonic interneurons express LTP, whereas glutamatergic synapses onto PV+ bistratified cells display LTD. Both LTP and LTD are pathway specific, independent of NMDA receptors, and occur at synapses with calcium-permeable (CP) AMPA receptors. Plasticity in interneurons with CP-AMPA receptors strongly modulates disynaptic GABAergic transmission onto CA1 pyramidal cells. We propose that long-term plasticity adjusts the synaptic strength between pyramidal cells and interneurons in a cell type-specific manner and, in the defined CA1 interneurons, shifts the spatial pattern of inhibitory weight from pyramidal cell dendrites to the perisomatic region.
Collapse
|