1
|
Ullsperger M. Beyond peaks and troughs: Multiplexed performance monitoring signals in the EEG. Psychophysiology 2024; 61:e14553. [PMID: 38415791 DOI: 10.1111/psyp.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
With the discovery of event-related potentials elicited by errors more than 30 years ago, a new avenue of research on performance monitoring, cognitive control, and decision making emerged. Since then, the field has developed and expanded fulminantly. After a brief overview on the EEG correlates of performance monitoring, this article reviews recent advancements based on single-trial analyses using independent component analysis, multiple regression, and multivariate pattern classification. Given the close interconnection between performance monitoring and reinforcement learning, computational modeling and model-based EEG analyses have made a particularly strong impact. The reviewed findings demonstrate that error- and feedback-related EEG dynamics represent variables reflecting how performance-monitoring signals are weighted and transformed into an adaptation signal that guides future decisions and actions. The model-based single-trial analysis approach goes far beyond conventional peak-and-trough analyses of event-related potentials and enables testing mechanistic theories of performance monitoring, cognitive control, and decision making.
Collapse
Affiliation(s)
- Markus Ullsperger
- Department of Neuropsychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| |
Collapse
|
2
|
Overmeyer R, Kirschner H, Fischer AG, Endrass T. Unraveling the influence of trial-based motivational changes on performance monitoring stages in a flanker task. Sci Rep 2023; 13:19180. [PMID: 37932359 PMCID: PMC10628251 DOI: 10.1038/s41598-023-45526-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Performance monitoring (PM) is a vital component of adaptive behavior and known to be influenced by motivation. We examined effects of potential gain (PG) and loss avoidance (LA) on neural correlates of PM at different processing stages, using a task with trial-based changes in these motivational contexts. Findings suggest more attention is allocated to the PG context, with higher amplitudes for respective correlates of stimulus and feedback processing. The PG context favored rapid responses, while the LA context emphasized accurate responses. Lower response thresholds in the PG context after correct responses derived from a drift-diffusion model also indicate a more approach-oriented response style in the PG context. This cognitive shift is mirrored in neural correlates: negative feedback in the PG context elicited a higher feedback-related negativity (FRN) and higher theta power, whereas positive feedback in the LA context elicited higher P3a and P3b amplitudes, as well as higher theta power. There was no effect of motivational context on response-locked brain activity. Given the similar frequency of negative feedback in both contexts, the elevated FRN and theta power in PG trials cannot be attributed to variations in reward prediction error. The observed variations in the FRN indicate that the effect of outcome valence is modulated by motivational salience.
Collapse
Affiliation(s)
- Rebecca Overmeyer
- Chair for Addiction Research, Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Chemnitzer Straße 46a, 01187, Dresden, Germany.
| | - Hans Kirschner
- Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany
| | - Adrian G Fischer
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Tanja Endrass
- Chair for Addiction Research, Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Chemnitzer Straße 46a, 01187, Dresden, Germany
- Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Lehmann M, Plieger T, Reuter M, Ettinger U. Insights into the molecular genetic basis of individual differences in metacognition. Physiol Behav 2023; 264:114139. [PMID: 36870383 DOI: 10.1016/j.physbeh.2023.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
There is a striking lack of studies on the molecular genetic basis of metacognition, i.e., the higher-order ability to monitor mental processes. Here, an initial step toward resolving this issue was undertaken by investigating functional polymorphisms from three genes of the dopaminergic or serotonergic systems (DRD4, COMT, and 5-HTTLPR) in relation to behaviorally assessed metacognition in six paradigms across three cognitive domains. We report evidence for a task-dependent higher average confidence level (metacognitive bias) in carriers of at least one S or LG-allele in the 5-HTTLPR genotype and integrate these findings within a differential susceptibility framework.
Collapse
Affiliation(s)
- Mirko Lehmann
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany
| | - Thomas Plieger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany
| | - Martin Reuter
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany.
| |
Collapse
|
4
|
Engels-Domínguez N, Koops EA, Prokopiou PC, Van Egroo M, Schneider C, Riphagen JM, Singhal T, Jacobs HIL. State-of-the-art imaging of neuromodulatory subcortical systems in aging and Alzheimer's disease: Challenges and opportunities. Neurosci Biobehav Rev 2023; 144:104998. [PMID: 36526031 PMCID: PMC9805533 DOI: 10.1016/j.neubiorev.2022.104998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Primary prevention trials have shifted their focus to the earliest stages of Alzheimer's disease (AD). Autopsy data indicates that the neuromodulatory subcortical systems' (NSS) nuclei are specifically vulnerable to initial tau pathology, indicating that these nuclei hold great promise for early detection of AD in the context of the aging brain. The increasing availability of new imaging methods, ultra-high field scanners, new radioligands, and routine deep brain stimulation implants has led to a growing number of NSS neuroimaging studies on aging and neurodegeneration. Here, we review findings of current state-of-the-art imaging studies assessing the structure, function, and molecular changes of these nuclei during aging and AD. Furthermore, we identify the challenges associated with these imaging methods, important pathophysiologic gaps to fill for the AD NSS neuroimaging field, and provide future directions to improve our assessment, understanding, and clinical use of in vivo imaging of the NSS.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Elouise A Koops
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prokopis C Prokopiou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Klein-Flügge MC, Bongioanni A, Rushworth MFS. Medial and orbital frontal cortex in decision-making and flexible behavior. Neuron 2022; 110:2743-2770. [PMID: 35705077 DOI: 10.1016/j.neuron.2022.05.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
The medial frontal cortex and adjacent orbitofrontal cortex have been the focus of investigations of decision-making, behavioral flexibility, and social behavior. We review studies conducted in humans, macaques, and rodents and argue that several regions with different functional roles can be identified in the dorsal anterior cingulate cortex, perigenual anterior cingulate cortex, anterior medial frontal cortex, ventromedial prefrontal cortex, and medial and lateral parts of the orbitofrontal cortex. There is increasing evidence that the manner in which these areas represent the value of the environment and specific choices is different from subcortical brain regions and more complex than previously thought. Although activity in some regions reflects distributions of reward and opportunities across the environment, in other cases, activity reflects the structural relationships between features of the environment that animals can use to infer what decision to take even if they have not encountered identical opportunities in the past.
Collapse
Affiliation(s)
- Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Psychiatry, University of Oxford, Warneford Lane, Headington, Oxford OX3 7JX, UK.
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
6
|
Mattes A, Porth E, Stahl J. Linking neurophysiological processes of action monitoring to post-response speed-accuracy adjustments in a neuro-cognitive diffusion model. Neuroimage 2021; 247:118798. [PMID: 34896290 DOI: 10.1016/j.neuroimage.2021.118798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
The cognitive system needs to continuously monitor actions and initiate adaptive measures aimed at increasing task performance and avoiding future errors. To investigate the link between the contributing cognitive processes, we introduce the neuro-cognitive diffusion model, a statistical approach that allows a combination of computational modelling of behavioural and electrophysiological data on a single-trial level. This unique combination of methods allowed us to demonstrate across three experimental datasets that early response monitoring (error negativity; Ne/c) was related to more response caution and increased attention on task-relevant features on the subsequent trial, thereby preventing future errors, whereas later response monitoring (error positivity, Pe/c) maintained the ability of responding fast under speed pressure. Our results suggest that Pe/c-related processes might keep Ne/c-related processes in check regarding their impact on post-response adaptation to reconcile the conflicting criteria of fast and accurate responding.
Collapse
Affiliation(s)
- André Mattes
- Department of Individual Differences and Psychological Assessment, University of Cologne, Pohligstraße 1, Köln 50969, Germany.
| | - Elisa Porth
- Department of Individual Differences and Psychological Assessment, University of Cologne, Pohligstraße 1, Köln 50969, Germany
| | - Jutta Stahl
- Department of Individual Differences and Psychological Assessment, University of Cologne, Pohligstraße 1, Köln 50969, Germany
| |
Collapse
|
7
|
Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition. Neurosci Biobehav Rev 2020; 119:138-167. [PMID: 32931805 DOI: 10.1016/j.neubiorev.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans - which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.
Collapse
|
8
|
Silveira VP, Frydman I, Fontenelle LF, Mattos P, de Oliveira-Souza R, Moll J, Hoexter MQ, Miguel EC, McLaughlin NC, Shephard E, Batistuzzo MC. Exploring response inhibition and error monitoring in obsessive-compulsive disorder. J Psychiatr Res 2020; 126:26-33. [PMID: 32413597 PMCID: PMC7313630 DOI: 10.1016/j.jpsychires.2020.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
Behavioral evidence of impaired response inhibition (RI) and hyperactive error monitoring (EM) in obsessive-compulsive disorder (OCD) is inconsistent. Recent neuroimaging work suggests that EM plays a role in RI impairments in OCD, but this has rarely been investigated using behavioral measures. The aims of this study were to (1) compare RI and EM performance between adults with OCD and non-psychiatric controls (NPC) while investigating possible moderators, and (2) assess whether excessive EM influences RI in OCD. We compared RI and EM performance on the Stop-Signal Task (SST) between 92 adults with OCD and 65 NPC from two Brazilian sites. We used linear regression to investigate which variables (group, age, medication use, clinical symptomatology) influenced performance, as well as to examine possible associations between RI and EM. OCD and NPC did not differ in RI and EM. However, age moderated RI performance in OCD with a medium effect size, reflecting differential effects of age on RI between groups: age was positively associated with RI in OCD but not NPC. Further, OCD severity predicted EM with a medium to large effect size, suggesting that more symptomatic patients showed greater monitoring of their mistakes. Finally, group moderated the relationship between RI and EM with a small effect size. Our findings suggest that demographic factors may influence RI, whereas clinical factors may influence EM. Further, we found preliminary behavioral evidence to indicate that impaired RI and excessive EM are related in OCD.
Collapse
Affiliation(s)
- Vitor Portella Silveira
- Departmento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR. R. Dr. Ovídio Pires de Campos, 785 - Cerqueira César, São Paulo, SP, 05403-903, Brazil.
| | - Ilana Frydman
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. Av. Venceslau Brás, 71 - Botafogo, Rio de Janeiro - RJ, 22290-140, Brazil
| | - Leonardo F. Fontenelle
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. Av. Venceslau Brás, 71 - Botafogo, Rio de Janeiro - RJ, 22290-140, Brazil,Turner Institute for Brain and Mental Health, Monash University, Wellington Rd, Clayton VIC 3800, Australia,D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil. Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro - RJ, 22281-100, Brazil
| | - Paulo Mattos
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil. Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro - RJ, 22281-100, Brazil
| | - Ricardo de Oliveira-Souza
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil. Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro - RJ, 22281-100, Brazil
| | - Jorge Moll
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil. Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro - RJ, 22281-100, Brazil
| | - Marcelo Queiroz Hoexter
- Department of Psychiatry, Medical School, University of São Paulo, São Paulo, SP, Brazil. R. Dr. Ovídio Pires de Campos, 785 - Cerqueira César, São Paulo - SP, 05403-903, Brazil
| | - Eurípedes Constantino Miguel
- Department of Psychiatry, Medical School, University of São Paulo, São Paulo, SP, Brazil. R. Dr. Ovídio Pires de Campos, 785 - Cerqueira César, São Paulo - SP, 05403-903, Brazil
| | - Nicole C.R. McLaughlin
- Butler Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, USA. 345 Blackstone Blvd, Providence, RI 02906, USA
| | - Elizabeth Shephard
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK. 16 De Crespigny Park, Camberwell, London SE5 8AF, UK
| | - Marcelo Camargo Batistuzzo
- Psychology Department, Health Sciences School, Pontifical Catholic University of São Paulo, São Paulo, SP, Brazil. Rua Monte Alegre 984 - Perdizes, São Paulo - SP, 05014-001, Brazil
| |
Collapse
|
9
|
Modulation of feedback processing by social context in social anxiety disorder (SAD)-an event-related potentials (ERPs) study. Sci Rep 2019; 9:4795. [PMID: 30886233 PMCID: PMC6423138 DOI: 10.1038/s41598-019-41268-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 02/27/2019] [Indexed: 01/08/2023] Open
Abstract
The ability to learn from feedback, especially under social scrutiny, is an essential prerequisite for successful interaction with the environment. Patients suffering from social anxiety disorder (SAD) have been proposed to show altered processing of and learning from feedback, especially depending on social context. However, the neural basis and behavioral consequences of altered reinforcement learning in SAD are not clear yet. In the present event-related potentials (ERPs) study, 34 SAD patients and 30 healthy control subjects (HC) performed an adapted version of a probabilistic feedback learning task in two distinct social conditions. In the observation condition, participants were observed by a confederate; in the control condition, they performed the task without being observed. Patients as compared to healthy controls experienced more subjective discomfort under social observation. Moreover, they showed better learning from negative feedback in the control condition, but reduced learning from negative feedback in the observation condition. This effect correlated with reduced differentiation of positive and negative feedback in the time range of the feedback-related negativity (FRN) under high action-feedback contingency. In addition, SAD patients demonstrated increased FRN amplitudes in the first half of the observation condition, in particular to positive feedback. The present results demonstrate that processing of and learning from feedback are altered in SAD, especially under social scrutiny. In particular, it appears that SAD patients do not process positive information adequately on the neural level, which may impair their ability to differentiate between negative and positive outcomes.
Collapse
|
10
|
Fischer AG, Nigbur R, Klein TA, Danielmeier C, Ullsperger M. Cortical beta power reflects decision dynamics and uncovers multiple facets of post-error adaptation. Nat Commun 2018; 9:5038. [PMID: 30487572 PMCID: PMC6261941 DOI: 10.1038/s41467-018-07456-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/29/2018] [Indexed: 11/29/2022] Open
Abstract
Adapting to errors quickly is essential for survival. Reaction slowing after errors is commonly observed but whether this slowing is adaptive or maladaptive is unclear. Here, we analyse a large dataset from a flanker task using two complementary approaches: a multistage drift-diffusion model, and the lateralisation of EEG beta power as a time-resolved index of choice formation. Fitted model parameters and their independently measured neuronal proxies in beta power convergently show a complex interplay of multiple mechanisms initiated after mistakes. Suppression of distracting evidence, response threshold increase, and reduction of evidence accumulation cause slow and accurate post-error responses. This data provides evidence for both adaptive control and maladaptive orienting after errors yielding an adaptive net effect – a decreased likelihood to repeat mistakes. Generally, lateralised beta power provides a non-invasive readout of action selection for the study of speeded cognitive control processes. People slow down reactions after errors, yet it is debated whether the mechanisms behind this slowing are beneficial for future performance. Here, the authors show that EEG measures converge with model predictions supporting a complex but overall beneficial mechanism of post-error slowing.
Collapse
Affiliation(s)
- Adrian G Fischer
- Institute of Psychology, Otto-von-Guericke University, D-39106, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, D-39106, Magdeburg, Germany. .,Department of Education and Psychology, Freie Universität Berlin, D-14195, Berlin, Germany.
| | - Roland Nigbur
- Institute of Psychology, Otto-von-Guericke University, D-39106, Magdeburg, Germany
| | - Tilmann A Klein
- Institute of Psychology, Otto-von-Guericke University, D-39106, Magdeburg, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103, Leipzig, Germany
| | | | - Markus Ullsperger
- Institute of Psychology, Otto-von-Guericke University, D-39106, Magdeburg, Germany.,Department of Education and Psychology, Freie Universität Berlin, D-14195, Berlin, Germany
| |
Collapse
|
11
|
Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:161-179. [PMID: 28690203 PMCID: PMC5756532 DOI: 10.1016/j.pnpbp.2017.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022]
Abstract
Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Samantha M Adler
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Sarah E Bulin
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Elizabeth A Fucich
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
van der Meer D, Hartman CA, Pruim RHR, Mennes M, Heslenfeld D, Oosterlaan J, Faraone SV, Franke B, Buitelaar JK, Hoekstra PJ. The interaction between 5-HTTLPR and stress exposure influences connectivity of the executive control and default mode brain networks. Brain Imaging Behav 2018; 11:1486-1496. [PMID: 27738993 PMCID: PMC5653701 DOI: 10.1007/s11682-016-9633-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recently reported that the serotonin transporter polymorphism 5-HTTLPR moderates the relation between stress exposure and attention-deficit/hyperactivity disorder (ADHD) severity. This gene-environment interaction (GxE) has been previously tied to the processing of emotional stimuli, which is increasingly recognized to be a key factor in ADHD-related impairment. The executive control and default mode brain networks play an important role in the regulation of emotion processing, and altered connectivity of these networks has also been associated with ADHD. We therefore investigated whether resting-state connectivity of either of these networks mediates the relation of 5-HTTLPR and stress exposure with ADHD severity. Resting-state functional magnetic resonance imaging, genetic, and stress exposure questionnaire data was available for 425 adolescents and young adults (average age 17.2 years). We found that 5-HTTLPR S-allele carriers showed a more negative relation between stress exposure and connectivity of the executive control network than L-allele homozygotes, specifically in the pre/postcentral gyrus, striatum, and frontal pole. In the default mode network, we found a positive association between the GxE and supramarginal gyrus connectivity. Connectivity of either network did not significantly mediate the effect of this GxE on ADHD. Opposite effects of stress exposure on connectivity in the executive and default mode networks may contribute to findings that stress exposure is associated with lowered cognitive control and heightened levels of rumination and worrying, for S-allele carriers but not L-allele homozygotes. When combined, these effects on connectivity of both networks may relate to the emotional problems seen in individuals with ADHD.
Collapse
Affiliation(s)
- Dennis van der Meer
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| | - Catharina A Hartman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Raimon H R Pruim
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands.,Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Maarten Mennes
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands.,Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Dirk Heslenfeld
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Jaap Oosterlaan
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, USA.,K.G. Jebsen Centre for Psychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands.,Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands.,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Pieter J Hoekstra
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
13
|
de Bruijn ERA, Ruissen MI, Radke S. Electrophysiological correlates of oxytocin-induced enhancement of social performance monitoring. Soc Cogn Affect Neurosci 2018; 12:1668-1677. [PMID: 28985434 PMCID: PMC5647804 DOI: 10.1093/scan/nsx094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
Altered performance monitoring has been demonstrated after administration of different pharmacological compounds and in various clinical populations, such as excessive neurophysiological responses to mistakes in anxiety disorders. Here, a novel social pharmacological approach was applied to investigate whether oxytocin administration (24 IU) enhances performance monitoring for errors that have negative consequences for another individual, so-called social mistakes. Healthy male volunteers (N = 24) participated in a placebo-controlled crossover design. EEG measures were obtained while pairs of participants performed a speeded choice reaction-time task in an individual and social context. Following oxytocin administration, error-related negativity amplitudes were increased for social compared with individual mistakes. This increase was not found in the placebo condition. No effects of oxytocin were present in the individual context. The current study shows that oxytocin enhances performance monitoring specifically for social mistakes. This outcome is in line with a presumed role for oxytocin in salience attribution to social cues and underlines its context-dependency. Combining these processes may thus open up new research avenues and advance our understanding of individual differences in performance monitoring and oxytocin responses from a social neurocognitive, pharmacological and clinical perspective.
Collapse
Affiliation(s)
- Ellen R A de Bruijn
- Department of Clinical Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| | - Margit I Ruissen
- Department of Clinical Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| | - Sina Radke
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Germany
- Jülich Aachen Research Alliance (JARA)-BRAIN Institute I, Germany
| |
Collapse
|
14
|
Voegler R, Peterburs J, Lemke H, Ocklenburg S, Liepelt R, Straube T. Electrophysiological correlates of performance monitoring under social observation in patients with social anxiety disorder and healthy controls. Biol Psychol 2018; 132:71-80. [DOI: 10.1016/j.biopsycho.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022]
|
15
|
Fischer AG, Ullsperger M. An Update on the Role of Serotonin and its Interplay with Dopamine for Reward. Front Hum Neurosci 2017; 11:484. [PMID: 29075184 PMCID: PMC5641585 DOI: 10.3389/fnhum.2017.00484] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 01/02/2023] Open
Abstract
The specific role of serotonin and its interplay with dopamine (DA) in adaptive, reward guided behavior as well as drug dependance, still remains elusive. Recently, novel methods allowed cell type specific anatomical, functional and interventional analyses of serotonergic and dopaminergic circuits, promising significant advancement in understanding their functional roles. Furthermore, it is increasingly recognized that co-release of neurotransmitters is functionally relevant, understanding of which is required in order to interpret results of pharmacological studies and their relationship to neural recordings. Here, we review recent animal studies employing such techniques with the aim to connect their results to effects observed in human pharmacological studies and subjective effects of drugs. It appears that the additive effect of serotonin and DA conveys significant reward related information and is subjectively highly euphorizing. Neither DA nor serotonin alone have such an effect. This coincides with optogenetically targeted recordings in mice, where the dopaminergic system codes reward prediction errors (PE), and the serotonergic system mainly unsigned PE. Overall, this pattern of results indicates that joint activity between both systems carries essential reward information and invites parallel investigation of both neurotransmitter systems.
Collapse
Affiliation(s)
- Adrian G Fischer
- Department of Neuropsychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Markus Ullsperger
- Department of Neuropsychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
16
|
Becker MPI, Simon D, Miltner WHR, Straube T. Altered activation of the ventral striatum under performance-related observation in social anxiety disorder. Psychol Med 2017; 47:2502-2512. [PMID: 28464974 DOI: 10.1017/s0033291717001076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Social anxiety disorder (SAD) is characterized by fear of social and performance situations. The consequence of scrutiny by others for the neural processing of performance feedback in SAD is unknown. METHODS We used event-related functional magnetic resonance imaging to investigate brain activation to positive, negative, and uninformative performance feedback in patients diagnosed with SAD and age-, gender-, and education-matched healthy control subjects who performed a time estimation task during a social observation condition and a non-social control condition: while either being monitored or unmonitored by a body camera, subjects received performance feedback after performing a time estimation that they could not fully evaluate without external feedback. RESULTS We found that brain activation in ventral striatum (VS) and midcingulate cortex was modulated by an interaction of social context and feedback type. SAD patients showed a lack of social-context-dependent variation of feedback processing, while control participants showed an enhancement of brain responses specifically to positive feedback in VS during observation. CONCLUSIONS The present findings emphasize the importance of social-context processing in SAD by showing that scrutiny prevents appropriate reward-processing-related signatures in response to positive performances in SAD.
Collapse
Affiliation(s)
- M P I Becker
- Department of Biological and Clinical Psychology,Friedrich Schiller University,D-07743 Jena,Germany
| | - D Simon
- Department of Biological and Clinical Psychology,Friedrich Schiller University,D-07743 Jena,Germany
| | - W H R Miltner
- Department of Biological and Clinical Psychology,Friedrich Schiller University,D-07743 Jena,Germany
| | - T Straube
- Department of Biological and Clinical Psychology,Friedrich Schiller University,D-07743 Jena,Germany
| |
Collapse
|
17
|
Batalla A, Homberg JR, Lipina TV, Sescousse G, Luijten M, Ivanova SA, Schellekens AFA, Loonen AJM. The role of the habenula in the transition from reward to misery in substance use and mood disorders. Neurosci Biobehav Rev 2017; 80:276-285. [PMID: 28576510 DOI: 10.1016/j.neubiorev.2017.03.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/14/2017] [Indexed: 12/18/2022]
Abstract
The habenula (Hb) is an evolutionary well-conserved structure located in the epithalamus. The Hb receives inputs from the septum, basal ganglia, hypothalamus, anterior cingulate and medial prefrontal cortex, and projects to several midbrain centers, most importantly the inhibitory rostromedial tegmental nucleus (RMTg) and the excitatory interpeduncular nucleus (IPN), which regulate the activity of midbrain monoaminergic nuclei. The Hb is postulated to play a key role in reward and aversion processing across species, including humans, and to be implicated in the different stages of transition from recreational drug intake to addiction and co-morbid mood disorders. The Hb is divided into two anatomically and functionally distinct nuclei, the lateral (LHb) and the medial (MHb), which are primarily involved in reward-seeking (LHb) and misery-fleeing (MHb) behavior by controlling the RMTg and IPN, respectively. This review provides a neuroanatomical description of the Hb, discusses preclinical and human findings regarding its role in the development of addiction and co-morbid mood disorders, and addresses future directions in this area.
Collapse
Affiliation(s)
- Albert Batalla
- Radboud University Medical Center, Department of Psychiatry, Reinier Postlaan 10, 6500 HB, Nijmegen, The Netherlands; Radboud University, Nijmegen Institute for Scientist-Practitioners in Addiction, Toernooiveld 5, 6525 ED, Nijmegen, The Netherlands.
| | - Judith R Homberg
- Radboud University Medical Center, Department of Cognitive Neuroscience, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Tatiana V Lipina
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Timakova 4, 630117, Novosibirsk, Russia; Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia.
| | - Guillaume Sescousse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University, Montessorilaan 3, 6525 HR, Nijmegen, The Netherlands.
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya street 4, 634014, Tomsk, Russian Federation; National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation.
| | - Arnt F A Schellekens
- Radboud University Medical Center, Department of Psychiatry, Reinier Postlaan 10, 6500 HB, Nijmegen, The Netherlands; Radboud University, Nijmegen Institute for Scientist-Practitioners in Addiction, Toernooiveld 5, 6525 ED, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| | - Anton J M Loonen
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands; GGZ Westelijk Noord-Brabant, Hoofdlaan 8, 4661AA, Halsteren, The Netherlands.
| |
Collapse
|
18
|
Fischer AG, Klein TA, Ullsperger M. Comparing the error-related negativity across groups: The impact of error- and trial-number differences. Psychophysiology 2017; 54:998-1009. [PMID: 28369880 DOI: 10.1111/psyp.12863] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/07/2017] [Accepted: 02/19/2017] [Indexed: 11/26/2022]
Abstract
The error-related negativity (ERN or Ne) is increasingly being investigated as a marker discriminating interindividual factors and moves toward a surrogate marker for disorders or interventions. Although reproducibility and validity of neuroscientific and psychological research has been criticized, clear data on how different quantification methods of the ERN and their relation to available trial numbers affect within- and across-participant studies is sparse. Within a large sample of 863 healthy human participants, we demonstrate that, across participants, the number of errors correlates with the amplitude of the ERN independently of the number of errors included in ERN quantification per participant, constituting a possible confound when such variance is unaccounted for. Additionally, we find that ERN amplitudes reach high consistency within participants at lower trial numbers, yet when comparisons between groups of participants are desired, increasing error-trial numbers lead to higher statistical power. We derive concrete suggestions for specific types of analyses, which may help researchers to more effectively design studies and analyze error-related EEG data with the most appropriate measurement technique for the question at hand and trial number available.
Collapse
Affiliation(s)
- Adrian G Fischer
- Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Tilmann A Klein
- Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Day Clinic for Cognitive Neurology, University Clinic Leipzig, Leipzig, Germany
| | - Markus Ullsperger
- Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
19
|
Beyond negative valence: 2-week administration of a serotonergic antidepressant enhances both reward and effort learning signals. PLoS Biol 2017; 15:e2000756. [PMID: 28207733 PMCID: PMC5331946 DOI: 10.1371/journal.pbio.2000756] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022] Open
Abstract
To make good decisions, humans need to learn about and integrate different sources of appetitive and aversive information. While serotonin has been linked to value-based decision-making, its role in learning is less clear, with acute manipulations often producing inconsistent results. Here, we show that when the effects of a selective serotonin reuptake inhibitor (SSRI, citalopram) are studied over longer timescales, learning is robustly improved. We measured brain activity with functional magnetic resonance imaging (fMRI) in volunteers as they performed a concurrent appetitive (money) and aversive (effort) learning task. We found that 2 weeks of citalopram enhanced reward and effort learning signals in a widespread network of brain regions, including ventromedial prefrontal and anterior cingulate cortex. At a behavioral level, this was accompanied by more robust reward learning. This suggests that serotonin can modulate the ability to learn via a mechanism that is independent of stimulus valence. Such effects may partly underlie SSRIs’ impact in treating psychological illnesses. Our results highlight both a specific function in learning for serotonin and the importance of studying its role across longer timescales. Drugs acting on the neurotransmitter serotonin in the brain are commonly prescribed to treat depression, but we still lack a complete understanding of their effects on the brain and behavior. We do, however, know that patients who suffer from depression learn about the links between their choices and pleasant and unpleasant outcomes in a different manner than healthy controls. Neural markers of learning are also weakened in depressed people. Here, we looked at the effects of a short-term course (2 weeks) of a serotonergic antidepressant on brain and behavior in healthy volunteers while they learnt to predict what consequences their choices had in a simple computer task. We found that the antidepressant increased how strongly brain areas concerned with predictions of pleasant and unpleasant consequences became active during learning of the task. At the same time, participants who had taken the antidepressant also performed better on the task. Our results suggest that serotonergic drugs might exert their beneficial clinical effects by changing how the brain learns.
Collapse
|
20
|
A Potential Role of the 5-HTTLPR Polymorphism in Self-Reported Executive Functioning. SPANISH JOURNAL OF PSYCHOLOGY 2017; 20:E13. [PMID: 28190415 DOI: 10.1017/sjp.2017.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intense effort is directed toward searching for associations between genes and neuropsychological measures of executive functions. In contrast, the impact of genetic polymorphisms on self-rating of everyday executive functioning has not been investigated so far. This study was designed to test associations of self-reported executive functioning, measured with the Behavior Rating Inventory of Executive Function (BRIEF-A), with dopaminergic and serotoninergic genes in non-clinical population and to assess impact of neuropsychological and personality characteristics on these associations. One hundred healthy adults completed the BRIEF-A, personality inventories SPQ-74, STAI, MMPI, and neuropsychological tests for executive functions. Polymorphisms in the DRD4, COMT, DRD2, HTR2A, and SLC6A4 genes were genotyped. We revealed a significant main effect of the SLC6A4's 5-HTTLPR polymorphism on BRIEF-A scores (F = 2.21, P = .018, η2 = .24). Among the BRIEF-A measures, the genotype effect was significant for the Plan/Organize (F = 7.34, P = .008, η2 = .07) and Task Monitor scales (F = 4.33, P = .04, η2 = .04), and the Metacognition index (F = 4.21, P = .043, η2 = .04). Carriers of the short allele reported fewer problems than homozygotes for the long allele. Correlations of the BRIEF-A measures with neuropsychological variables were weak, while those with personality characteristics were strong, with trait anxiety being the most powerful predictor of the BRIEF-A scores. However, the relationship between the 5-HTTLPR and BRIEF-A scores remained significant when trait anxiety was controlled for. The results suggest a potential role of the 5-HTTLPR in self-reported everyday task planning and monitoring.
Collapse
|
21
|
Endrass T, Schuermann B, Roepke S, Kessler-Scheil S, Kathmann N. Reduced risk avoidance and altered neural correlates of feedback processing in patients with borderline personality disorder. Psychiatry Res 2016; 243:14-22. [PMID: 27344588 DOI: 10.1016/j.psychres.2016.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 12/22/2022]
Abstract
Patients with borderline personality disorder (BPD) show deficits in reward-guided decision making and learning. The present study examined risk-taking behavior in combination with feedback processing. Eighteen BPD patients and 18 healthy controls performed a probabilistic two-choice gambling task, while an electroencephalogram was recorded. Options differed in risk, but were identical in expected value and outcome probability. The feedback-related negativity (FRN) and the feedback-related P300 were analyzed. Healthy controls preferred low-risk over high-risk options, whereas BPD patients chose both option with equal probability. FRN amplitudes were reduced in BPD, but effects of feedback valence and risk did not differ between groups. This suggests attenuated outcome processing in the anterior cingulate cortex, but intact reward prediction error signaling. Furthermore, the modulation of the feedback-related P300 with feedback valence and risk was smaller in BPD patients, and decreased P300 amplitudes were associated with increased behavioral risk-taking behavior. These findings could relate to the reduced ability of BPD patients to learn and adequately adjust their behavior based on feedback information, possibly due to reduced significance of negative feedback.
Collapse
Affiliation(s)
- Tanja Endrass
- Department of Psychology, Humboldt-Universität zu Berlin, Germany; Institute of Psychology, Otto-von-Guericke Universität, Magdeburg, Germany.
| | - Beate Schuermann
- Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Stefan Roepke
- Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
22
|
Sensory processing sensitivity and serotonin gene variance: Insights into mechanisms shaping environmental sensitivity. Neurosci Biobehav Rev 2016; 71:472-483. [PMID: 27697602 DOI: 10.1016/j.neubiorev.2016.09.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/23/2022]
Abstract
Current research supports the notion that the apparently innate trait Sensory Processing Sensitivity (SPS) may act as a modulator of development as function of the environment. Interestingly, the common serotonin transporter linked polymorphic region (5-HTTLPR) does the same. While neural mechanisms underlying SPS are largely unknown, those associated with the 5-HTTLPR have been extensively investigated. We perform a comparative analysis of research findings on sensory processing facets associated with the trait and polymorphism to: 1. detect shared phenotypes and frame a hypothesis towards neural mechanisms underlying SPS; 2. increase the understanding of 5-HTTLPR-associated behavioral patterns. Trait and polymorphism are both associated with differential susceptibility to environmental stimuli; additionally, both involve 1. having stronger emotional reactions, 2. processing of sensory information more deeply, 3. being more aware of environmental subtleties, and 4. being easily overstimulated. We discuss neural mechanisms and environmental conditions that may underlie these four facets. Besides urging the actual assessment of the link between the two, the conclusions of our analyses may guide and focus future research strategies.
Collapse
|
23
|
Gender Influences on Brain Responses to Errors and Post-Error Adjustments. Sci Rep 2016; 6:24435. [PMID: 27075509 PMCID: PMC4831004 DOI: 10.1038/srep24435] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/30/2016] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphisms have been observed in many species, including humans, and extend to the prevalence and presentation of important mental disorders associated with performance monitoring malfunctions. However, precisely which underlying differences between genders contribute to the alterations observed in psychiatric diseases is unknown. Here, we compare behavioural and neural correlates of cognitive control functions in 438 female and 436 male participants performing a flanker task while EEG was recorded. We found that males showed stronger performance-monitoring-related EEG amplitude modulations which were employed to predict subjects’ genders with ~72% accuracy. Females showed more post-error slowing, but both samples did not differ in regard to response-conflict processing and coupling between the error-related negativity (ERN) and consecutive behavioural slowing. Furthermore, we found that the ERN predicted consecutive behavioural slowing within subjects, whereas its overall amplitude did not correlate with post-error slowing across participants. These findings elucidate specific gender differences in essential neurocognitive functions with implications for clinical studies. They highlight that within- and between-subject associations for brain potentials cannot be interpreted in the same way. Specifically, despite higher general amplitudes in males, it appears that the dynamics of coupling between ERN and post-error slowing between men and women is comparable.
Collapse
|