1
|
Norrie disease protein is essential for cochlear hair cell maturation. Proc Natl Acad Sci U S A 2021; 118:2106369118. [PMID: 34544869 DOI: 10.1073/pnas.2106369118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Mutations in the gene for Norrie disease protein (Ndp) cause syndromic deafness and blindness. We show here that cochlear function in an Ndp knockout mouse deteriorated with age: At P3-P4, hair cells (HCs) showed progressive loss of Pou4f3 and Gfi1, key transcription factors for HC maturation, and Myo7a, a specialized myosin required for normal function of HC stereocilia. Loss of expression of these genes correlated to increasing HC loss and profound hearing loss by 2 mo. We show that overexpression of the Ndp gene in neonatal supporting cells or, remarkably, up-regulation of canonical Wnt signaling in HCs rescued HCs and cochlear function. We conclude that Ndp secreted from supporting cells orchestrates a transcriptional network for the maintenance and survival of HCs and that increasing the level of β-catenin, the intracellular effector of Wnt signaling, is sufficient to replace the functional requirement for Ndp in the cochlea.
Collapse
|
2
|
Wan L, Lovett M, Warchol ME, Stone JS. Vascular endothelial growth factor is required for regeneration of auditory hair cells in the avian inner ear. Hear Res 2020; 385:107839. [PMID: 31760261 DOI: 10.1016/j.heares.2019.107839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
Hair cells in the auditory organ of the vertebrate inner ear are the sensory receptors that convert acoustic stimuli into electrical signals that are conveyed along the auditory nerve to the brainstem. Hair cells are highly susceptible to ototoxic drugs, infection, and acoustic trauma, which can cause cellular degeneration. In mammals, hair cells that are lost after damage are not replaced, leading to permanent hearing impairments. By contrast, supporting cells in birds and other non-mammalian vertebrates regenerate hair cells after damage, which restores hearing function. The cellular mechanisms that regulate hair cell regeneration are not well understood. We investigated the role of vascular endothelial growth factor (VEGF) during regeneration of auditory hair cells in chickens after ototoxic injury. Using RNA-Seq, immunolabeling, and in situ hybridization, we found that VEGFA, VEGFC, VEGFR1, VEGFR2, and VEGFR3 were expressed in the auditory epithelium, with VEGFA expressed in hair cells and VEGFR1 and VEGFR2 expressed in supporting cells. Using organotypic cultures of the chicken cochlear duct, we found that blocking VEGF receptor activity during hair cell injury reduced supporting cell proliferation as well as the numbers of regenerated hair cells. By contrast, addition of recombinant human VEGFA to organ cultures caused an increase in both supporting cell division and hair cell regeneration. VEGF's effects on supporting cells were preserved in isolated supporting cell cultures, indicating that VEGF can act directly upon supporting cells. These observations demonstrate a heretofore uncharacterized function for VEGF signaling as a critical positive regulator of hair cell regeneration in the avian inner ear.
Collapse
Affiliation(s)
- Liangcai Wan
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, 98195, United States.
| | - Michael Lovett
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, United States.
| | - Mark E Warchol
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, 63110, United States.
| | - Jennifer S Stone
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, 98195, United States.
| |
Collapse
|
3
|
Prajapati-DiNubila M, Benito-Gonzalez A, Golden EJ, Zhang S, Doetzlhofer A. A counter gradient of Activin A and follistatin instructs the timing of hair cell differentiation in the murine cochlea. eLife 2019; 8:47613. [PMID: 31187730 PMCID: PMC6561706 DOI: 10.7554/elife.47613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
The mammalian auditory sensory epithelium has one of the most stereotyped cellular patterns known in vertebrates. Mechano-sensory hair cells are arranged in precise rows, with one row of inner and three rows of outer hair cells spanning the length of the spiral-shaped sensory epithelium. Aiding such precise cellular patterning, differentiation of the auditory sensory epithelium is precisely timed and follows a steep longitudinal gradient. The molecular signals that promote auditory sensory differentiation and instruct its graded pattern are largely unknown. Here, we identify Activin A and its antagonist follistatin as key regulators of hair cell differentiation and show, using mouse genetic approaches, that a local gradient of Activin A signaling within the auditory sensory epithelium times the longitudinal gradient of hair cell differentiation. Furthermore, we provide evidence that Activin-type signaling regulates a radial gradient of terminal mitosis within the auditory sensory epithelium, which constitutes a novel mechanism for limiting the number of inner hair cells being produced.
Collapse
Affiliation(s)
- Meenakshi Prajapati-DiNubila
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ana Benito-Gonzalez
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Erin Jennifer Golden
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Shuran Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
4
|
Kelley MW, Stone JS. Development and Regeneration of Sensory Hair Cells. AUDITORY DEVELOPMENT AND PLASTICITY 2017. [DOI: 10.1007/978-3-319-21530-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Wang S, Huang G, Hu Q, Zou Q. A network-based method for the identification of putative genes related to infertility. Biochim Biophys Acta Gen Subj 2016; 1860:2716-24. [PMID: 27102279 DOI: 10.1016/j.bbagen.2016.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Infertility has become one of the major health problems worldwide, with its incidence having risen markedly in recent decades. There is an urgent need to investigate the pathological mechanisms behind infertility and to design effective treatments. However, this is made difficult by the fact that various biological factors have been identified to be related to infertility, including genetic factors. METHODS A network-based method was established to identify new genes potentially related to infertility. A network constructed using human protein-protein interactions based on previously validated infertility-related genes enabled the identification of some novel candidate genes. These genes were then filtered by a permutation test and their functional and structural associations with infertility-related genes. RESULTS Our method identified 23 novel genes, which have strong functional and structural associations with previously validated infertility-related genes. CONCLUSIONS Substantial evidence indicates that the identified genes are strongly related to dysfunction of the four main biological processes of fertility: reproductive development and physiology, gametogenesis, meiosis and recombination, and hormone regulation. GENERAL SIGNIFICANCE The newly discovered genes may provide new directions for investigating infertility. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- ShaoPeng Wang
- College of Life Science, Shanghai University, Shanghai 200444, China.
| | - GuoHua Huang
- College of Life Science, Shanghai University, Shanghai 200444, China.
| | - Qinghua Hu
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of System Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Horvath L, Bodmer D, Radojevic V, Monge Naldi A. Activin Signaling Disruption in the Cochlea Does Not Influence Hearing in Adult Mice. Audiol Neurootol 2014; 20:51-61. [DOI: 10.1159/000366152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022] Open
Abstract
Activin, a member of the TGF-F superfamily, was found to play an important role in the development, repair and apoptosis of different tissues and organs. Accordingly, activin signaling is involved in the development of the cochlea. Activin binds to its receptor ActRII, then dimerizes with ActRI and induces a signaling pathway resulting in gene expression. A study reported a case of fibrodysplasia ossificans progressiva with an unusual mutation in the ActRI gene leading to sensorineural hearing loss. This draws attention to the role of activin and its receptors in the developed cochlea. To date, only the expression of ActRII is known in the adult mammalian cochlea. In this study, we present for the first time the presence of activin A and ActRIB in the adult cochlea. Transgenic mice with postnatal dominant-negative ActRIB expression causing disruption of activin signaling in vivo were used for assessing cochlear morphology and hearing ability through the auditory brainstem response (ABR) threshold. Nonfunctioning ActRIB did not affect the ABR thresholds and did not alter the microscopic anatomy of the cochlea. We conclude, therefore, that activin signaling is not necessary for hearing in adult mice under physiological conditions but may be important during and after damaging events in the inner ear. i 2014 S. Karger AG, Basel
Collapse
|
7
|
Liu Q, Wang G, Chen Y, Li G, Yang D, Kang J. A miR-590/Acvr2a/Rad51b axis regulates DNA damage repair during mESC proliferation. Stem Cell Reports 2014; 3:1103-17. [PMID: 25458897 PMCID: PMC4264031 DOI: 10.1016/j.stemcr.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 11/23/2022] Open
Abstract
Embryonic stem cells (ESCs) enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF), which maintains the self-renewal capability of mouse ESCs (mESCs), significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB) and double-strand break (DSB) damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a) to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR) gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal. miR-590 promotes DNA damage repair and slows proliferation by targeting Acvr2a miR-590/Acvr2a/Rad51b axis balances SSB and DSB damage repair in mESCs
Collapse
Affiliation(s)
- Qidong Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yafang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Dandan Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China.
| |
Collapse
|
8
|
Kaiser O, Paasche G, Stöver T, Ernst S, Lenarz T, Kral A, Warnecke A. TGF-beta superfamily member activin A acts with BDNF and erythropoietin to improve survival of spiral ganglion neurons in vitro. Neuropharmacology 2013; 75:416-25. [PMID: 23973291 DOI: 10.1016/j.neuropharm.2013.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/03/2013] [Accepted: 08/08/2013] [Indexed: 01/15/2023]
Abstract
Activins are regulators of embryogenesis, osteogenesis, hormones and neuronal survival. Even though activin receptor type II has been detected in spiral ganglion neurons (SGN), little is known about the role of activins in the inner ear. An activin-mediated neuroprotection is of considerable clinical interest since SGN are targets of electrical stimulation with cochlear implants in hearing impaired patients. Thus, the presence of activin type-I and type-II receptors was demonstrated immunocytochemically and the individual and combined effects of activin A, erythropoietin (EPO) and brain-derived neurotrophic factor (BDNF) on SGN were examined in vitro. SGN isolated from neonatal rats (P 3-5) were cultured in serum-free medium supplemented with activin A, BDNF and EPO. Compared to the negative control, survival rates of SGN were significantly improved when cultivated individually with activin A (p<0.001) and in combination with BDNF (p<0.001). Neither neurite outgrowth nor neuronal survival was influenced by the addition of EPO to activin A-treated neurons. However, when all three factors were added, a significantly (p<0.001) improved neuronal survival was observed (61.2±3.6%) compared to activin A (25.4±2.1%), BDNF (22.8±3.3%) and BDNF+EPO (19.2±1.5%). Under the influence of the EPO-inhibitors, this increase in neuronal survival was blocked. Acting with BDNF and EPO to promote neuronal survival in vitro, activin A presents an interesting factor for pharmacological intervention in the inner ear. The present study demonstrates a synergetic effect of a combined therapy with several trophic factors.
Collapse
Affiliation(s)
- Odett Kaiser
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Gerrit Paasche
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Timo Stöver
- Department of Otolaryngology, University Hospital, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stefanie Ernst
- Institute for Biometry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrej Kral
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
9
|
Qi Y, Ge JY, Wang YN, Liu HY, Li YM, Liu ZH, Cui XL. Co-expression of activin receptor-interacting protein 1 and 2 in mouse nerve cells. Neurosci Lett 2013; 542:53-8. [DOI: 10.1016/j.neulet.2013.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
|
10
|
Oesterle EC. Changes in the adult vertebrate auditory sensory epithelium after trauma. Hear Res 2013; 297:91-8. [PMID: 23178236 PMCID: PMC3637947 DOI: 10.1016/j.heares.2012.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/30/2012] [Accepted: 11/06/2012] [Indexed: 01/12/2023]
Abstract
Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes.
Collapse
Affiliation(s)
- Elizabeth C Oesterle
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, CHDD CD176, Box 357923, Univ. of Washington, Seattle, WA 98195-7923, USA.
| |
Collapse
|
11
|
Liu HY, Wang YN, Ge JY, Li N, Cui XL, Liu ZH. Localisation and role of activin receptor-interacting protein 1 in mouse brain. J Neuroendocrinol 2013; 25:87-95. [PMID: 22849377 DOI: 10.1111/j.1365-2826.2012.02371.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/27/2012] [Accepted: 07/27/2012] [Indexed: 12/27/2022]
Abstract
Activin A, a stimulator of follicle-stimulating hormone secretion from the pituitary, acts as a neurotrophic and neuroprotective factor in the central nervous system. Activin receptor-interacting protein 1 (ARIP1) has been identified as a cytoplasmic protein that interacts with the type II receptor of activin (ActRII). However, the distribution pattern and function of ARIP1 are not well characterised in the brain. In the present study, we confirmed the existence of mRNA and protein of ARIP1 in the mouse brain, and found that ARIP1 was mainly localised at the hippocampus and hypothalamus in the cerebrum, granular layers in the cerebellum (especially in Purkinje cells of the cerebellum) and choroid epithelial cells by immunohistochemical staining. Furthermore, in contrast to the significant increase of activin A mRNA, ARIP1 mRNA and protein expression decreased in the mechanically lesioned brain of the mouse. Using neuroblastoma-derived Neuro-2a cells to investigate the function of ARIP1, we found that overexpression of ARIP1 down-regulated the activin A-induced signal transduction and significantly decreased the voltage-gated Na(+) current (I(Na) ). These data indicate that ARIP1 is a key molecule for the regulation of the action of activin in neurones, and also that decreased ARIP1 expression in the lesioned brain may be beneficial to the neurotrophic and neuroprotective roles of activin A in recovery after brain injury.
Collapse
Affiliation(s)
- H Y Liu
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | | | | | | | | | | |
Collapse
|
12
|
Fang L, Wang YN, Cui XL, Fang SY, Ge JY, Sun Y, Liu ZH. The role and mechanism of action of activin A in neurite outgrowth of chicken embryonic dorsal root ganglia. J Cell Sci 2012; 125:1500-7. [PMID: 22275431 DOI: 10.1242/jcs.094151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activin A, a member of the transforming growth factor β (TGFβ) superfamily, plays an essential role in neuron survival as a neurotrophic and neuroprotective factor in the central nervous system. However, the effects and mechanisms of action of activin A on the neurite outgrowth of dorsal root ganglia (DRG) remain unclear. In the present study, we found that activin A is expressed in DRG collected from chicken embryos on embryonic day 8 (E8). Moreover, activin A induced neurite outgrowth of the primary cultured DRG and maintained the survival of monolayer-cultured DRG neurons throughout the observation period of ten days. Follistatin (FS), an activin-binding protein, significantly inhibited activin A-induced neurite outgrowth of DRG, but failed to influence the effect of nerve growth factor (NGF) on DRG neurite outgrowth. Furthermore, the results showed that activin A significantly upregulated mRNA expression of activin receptor type IIA (ActRIIA) and calcitonin gene-related peptide (CGRP) in DRG, and stimulated serotonin (5-HT) production from DRG, indicating that activin A might induce DRG neurite outgrowth by promoting CGRP expression and stimulating 5-HT release. These data suggest that activin A plays an important role in the development of DRG in an autocrine or paracrine manner.
Collapse
Affiliation(s)
- Lin Fang
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | | | | | | | | | | | | |
Collapse
|
13
|
White PM, Stone JS, Groves AK, Segil N. EGFR signaling is required for regenerative proliferation in the cochlea: conservation in birds and mammals. Dev Biol 2012; 363:191-200. [PMID: 22230616 DOI: 10.1016/j.ydbio.2011.12.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 11/27/2022]
Abstract
Proliferation and transdifferentiaton of supporting cells in the damaged auditory organ of birds lead to robust regeneration of sensory hair cells. In contrast, regeneration of lost auditory hair cells does not occur in deafened mammals, resulting in permanent hearing loss. In spite of this failure of regeneration in mammals, we have previously shown that the perinatal mouse supporting cells harbor a latent potential for cell division. Here we show that in a subset of supporting cells marked by p75, EGFR signaling is required for proliferation, and this requirement is conserved between birds and mammals. Purified p75+ mouse supporting cells express receptors and ligands for the EGF signaling pathway, and their proliferation in culture can be blocked with the EGFR inhibitor AG1478. Similarly, in cultured chicken basilar papillae, supporting cell proliferation in response to hair cell ablation requires EGFR signaling. In addition, we show that EGFR signaling in p75+ mouse supporting cells is required for the down-regulation of the cell cycle inhibitor p27(Kip1) (CDKN1b) to enable cell cycle re-entry. Taken together, our data suggest that a conserved mechanism involving EGFR signaling governs proliferation of auditory supporting cells in birds and mammals and may represent a target for future hair cell regeneration strategies.
Collapse
Affiliation(s)
- Patricia M White
- Division of Cell Biology and Genetics, House Research Institute, 2100 W 3rd St., Los Angeles, CA 90057, USA
| | | | | | | |
Collapse
|
14
|
Sun H, Lin CH, Smith ME. Growth hormone promotes hair cell regeneration in the zebrafish (Danio rerio) inner ear following acoustic trauma. PLoS One 2011; 6:e28372. [PMID: 22140580 PMCID: PMC3227666 DOI: 10.1371/journal.pone.0028372] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/07/2011] [Indexed: 01/13/2023] Open
Abstract
Background Previous microarray analysis showed that growth hormone (GH) was significantly upregulated following acoustic trauma in the zebrafish (Danio rerio) ear suggesting that GH may play an important role in the process of auditory hair cell regeneration. Our objective was to examine the effects of exogenous and endogenous GH on zebrafish inner ear epithelia following acoustic trauma. Methodology/Principal Findings We induced auditory hair cell damage by exposing zebrafish to acoustic overstimulation. Fish were then injected intraperitoneally with either carp GH or buffer, and placed in a recovery tank for either one or two days. Phalloidin-, bromodeoxyuridine (BrdU)-, and TUNEL-labeling were used to examine hair cell densities, cell proliferation, and apoptosis, respectively. Two days post-trauma, saccular hair cell densities in GH-treated fish were similar to that of baseline controls, whereas buffer-injected fish showed significantly reduced densities of hair cell bundles. Cell proliferation was greater and apoptosis reduced in the saccules, lagenae, and utricles of GH-treated fish one day following trauma compared to controls. Fluorescent in situ hybridization (FISH) was used to examine the localization of GH mRNA in the zebrafish ear. At one day post-trauma, GH mRNA expression appeared to be localized perinuclearly around erythrocytes in the blood vessels of the inner ear epithelia. In order to examine the effects of endogenous GH on the process of cell proliferation in the ear, a GH antagonist was injected into zebrafish immediately following acoustic trauma, resulting in significantly decreased cell proliferation one day post-trauma in all three zebrafish inner ear end organs. Conclusions/Significance Our results show that exogenous GH promotes post-trauma auditory hair cell regeneration in the zebrafish ear through stimulating proliferation and suppressing apoptosis, and that endogenous GH signals are present in the zebrafish ear during the process of auditory hair cell regeneration.
Collapse
Affiliation(s)
- Huifang Sun
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Chia-Hui Lin
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Michael E. Smith
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
15
|
Soldà G, Robusto M, Primignani P, Castorina P, Benzoni E, Cesarani A, Ambrosetti U, Asselta R, Duga S. A novel mutation within the MIR96 gene causes non-syndromic inherited hearing loss in an Italian family by altering pre-miRNA processing. Hum Mol Genet 2011; 21:577-85. [PMID: 22038834 PMCID: PMC3259013 DOI: 10.1093/hmg/ddr493] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The miR-96, miR-182 and miR-183 microRNA (miRNA) family is essential for differentiation and function of the vertebrate inner ear. Recently, point mutations within the seed region of miR-96 were reported in two Spanish families with autosomal dominant non-syndromic sensorineural hearing loss (NSHL) and in a mouse model of NSHL. We screened 882 NSHL patients and 836 normal-hearing Italian controls and identified one putative novel mutation within the miR-96 gene in a family with autosomal dominant NSHL. Although located outside the mature miR-96 sequence, the detected variant replaces a highly conserved nucleotide within the companion miR-96*, and is predicted to reduce the stability of the pre-miRNA hairpin. To evaluate the effect of the detected mutation on miR-96/mir-96* biogenesis, we investigated the maturation of miR-96 by transient expression in mammalian cells, followed by real-time reverse-transcription polymerase chain reaction (PCR). We found that both miR-96 and miR-96* levels were significantly reduced in the mutant, whereas the precursor levels were unaffected. Moreover, miR-96 and miR-96* expression levels could be restored by a compensatory mutation that reconstitutes the secondary structure of the pre-miR-96 hairpin, demonstrating that the mutation hinders precursor processing, probably interfering with Dicer cleavage. Finally, even though the mature miR-96 sequence is not altered, we demonstrated that the identified mutation significantly impacts on miR-96 regulation of selected targets. In conclusion, we provide further evidence of the involvement of miR-96 mutations in human deafness and demonstrate that a quantitative defect of this miRNA may contribute to NSHL.
Collapse
Affiliation(s)
- Giulia Soldà
- Dipartimento di Biologia e Genetica per Scienze Mediche, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
TAK1 expression in the cochlea: a specific marker for adult supporting cells. J Assoc Res Otolaryngol 2011; 12:471-83. [PMID: 21472480 DOI: 10.1007/s10162-011-0265-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 03/08/2011] [Indexed: 10/18/2022] Open
Abstract
Transforming growth factor-β-activated kinase-1 (TAK1) is a mitogen activated protein kinase kinase kinase that is involved in diverse biological roles across species. Functioning downstream of TGF-β and BMP signaling, TAK1 mediates the activation of the c-Jun N-terminal kinase signaling pathway, serves as the target of pro-inflammatory cytokines, such as TNF-α, mediates NF-κβ activation, and plays a role in Wnt/Fz signaling in mesenchymal stem cells. Expression of TAK1 in the cochlea has not been defined. Data mining of previously published murine cochlear gene expression databases indicated that TAK1, along with TAK1 interacting proteins 1 (TAB1), and 2 (TAB2), is expressed in the developing and adult cochlea. The expression of TAK1 in the developing cochlea was confirmed using RT-PCR and immunohistochemistry. Immunolabeling of TAK1 in embryonic, neonatal, and mature cochleas via DAB chromogenic and fluorescent immunohistochemistry indicated that TAK1 is broadly expressed in both the developing otocyst and periotic mesenchyme at E12.5 but becomes more restricted to specific types of supporting cells as the organ of Corti matures. By P1, TAK1 immunolabeling is found in cells of the stria vascularis, hair cells, supporting cells, and Kölliker's organ. By P16, TAK1 labeling is limited to cochlear supporting cells. In the adult cochlea, TAK1 immunostaining is only present in the cytoplasm of Deiters' cells, pillar cells, inner phalangeal cells, and inner border cells, with no expression in any other cochlear cell types. While the role of TAK1 in the inner ear is unclear, TAK1 expression may be used as a novel marker for specific sub-populations of supporting cells.
Collapse
|