1
|
Radivojevic M, Franke F, Altermatt M, Müller J, Hierlemann A, Bakkum DJ. Tracking individual action potentials throughout mammalian axonal arbors. eLife 2017; 6. [PMID: 28990925 PMCID: PMC5633342 DOI: 10.7554/elife.30198] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022] Open
Abstract
Axons are neuronal processes specialized for conduction of action potentials (APs). The timing and temporal precision of APs when they reach each of the synapses are fundamentally important for information processing in the brain. Due to small diameters of axons, direct recording of single AP transmission is challenging. Consequently, most knowledge about axonal conductance derives from modeling studies or indirect measurements. We demonstrate a method to noninvasively and directly record individual APs propagating along millimeter-length axonal arbors in cortical cultures with hundreds of microelectrodes at microsecond temporal resolution. We find that cortical axons conduct single APs with high temporal precision (~100 µs arrival time jitter per mm length) and reliability: in more than 8,000,000 recorded APs, we did not observe any conduction or branch-point failures. Upon high-frequency stimulation at 100 Hz, successive became slower, and their arrival time precision decreased by 20% and 12% for the 100th AP, respectively.
Collapse
Affiliation(s)
- Milos Radivojevic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Felix Franke
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Michael Altermatt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jan Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Douglas J Bakkum
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
2
|
Tanese D, Weng JY, Zampini V, De Sars V, Canepari M, Rozsa B, Emiliani V, Zecevic D. Imaging membrane potential changes from dendritic spines using computer-generated holography. NEUROPHOTONICS 2017; 4:031211. [PMID: 28523281 PMCID: PMC5428833 DOI: 10.1117/1.nph.4.3.031211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/24/2017] [Indexed: 05/08/2023]
Abstract
Electrical properties of neuronal processes are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor electrical subthreshold events as they travel from synapses on distal dendrites and summate at particular locations to initiate action potentials. It is now possible to carry out these measurements at the scale of individual dendritic spines using voltage imaging. In these measurements, the voltage-sensitive probes can be thought of as transmembrane voltmeters with a linear scale, which directly monitor electrical signals. Grinvald et al. were important early contributors to the methodology of voltage imaging, and they pioneered some of its significant results. We combined voltage imaging and glutamate uncaging using computer-generated holography. The results demonstrated that patterned illumination, by reducing the surface area of illuminated membrane, reduces photodynamic damage. Additionally, region-specific illumination practically eliminated the contamination of optical signals from individual spines by the scattered light from the parent dendrite. Finally, patterned illumination allowed one-photon uncaging of glutamate on multiple spines to be carried out in parallel with voltage imaging from the parent dendrite and neighboring spines.
Collapse
Affiliation(s)
- Dimitrii Tanese
- Paris Descartes University, Neurophotonics Laboratory, CNRS UMR8250, Paris, France
| | - Ju-Yun Weng
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, New Haven, Connecticut, United States
| | - Valeria Zampini
- Paris Descartes University, Neurophotonics Laboratory, CNRS UMR8250, Paris, France
| | - Vincent De Sars
- Paris Descartes University, Neurophotonics Laboratory, CNRS UMR8250, Paris, France
| | - Marco Canepari
- Université Grenoble Alpes and CNRS, Laboratory for Interdisciplinary Physics, UMR 5588, Saint Martin d’Hères, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, France
- Institut National de la Santé et Recherche Médicale, Grenoble, France
| | - Balazs Rozsa
- Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Valentina Emiliani
- Paris Descartes University, Neurophotonics Laboratory, CNRS UMR8250, Paris, France
| | - Dejan Zecevic
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, New Haven, Connecticut, United States
- Address all correspondence to: Dejan Zecevic, E-mail:
| |
Collapse
|
3
|
Uytingco CR, Puche AC, Munger SD. Using Intrinsic Flavoprotein and NAD(P)H Imaging to Map Functional Circuitry in the Main Olfactory Bulb. PLoS One 2016; 11:e0165342. [PMID: 27902689 PMCID: PMC5130181 DOI: 10.1371/journal.pone.0165342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/10/2016] [Indexed: 12/02/2022] Open
Abstract
Neurons exhibit strong coupling of electrochemical and metabolic activity. Increases in intrinsic fluorescence from either oxidized flavoproteins or reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] in the mitochondria have been used as an indicator of neuronal activity for the functional mapping of neural circuits. However, this technique has not been used to investigate the flow of olfactory information within the circuitry of the main olfactory bulb (MOB). We found that intrinsic flavoprotein fluorescence signals induced by electrical stimulation of single glomeruli displayed biphasic responses within both the glomerular (GL) and external plexiform layers (EPL) of the MOB. Pharmacological blockers of mitochondrial activity, voltage-gated Na+ channels, or ionotropic glutamate receptors abolished stimulus-dependent flavoprotein responses. Blockade of GABAA receptors enhanced the amplitude and spatiotemporal spread of the flavoprotein signals, indicating an important role for inhibitory neurotransmission in shaping the spread of neural activity in the MOB. Stimulus-dependent spread of fluorescence across the GL and EPL displayed a spatial distribution consistent with that of individual glomerular microcircuits mapped by neuroanatomic tract tracing. These findings demonstrated the feasibility of intrinsic fluorescence imaging in the olfactory systems and provided a new tool to examine the functional circuitry of the MOB.
Collapse
Affiliation(s)
- Cedric R Uytingco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Adam C Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven D Munger
- Center for Smell and Taste, University of Florida, Gainesville, Florida, United States of America.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
4
|
McDougal RA, Shepherd GM. 3D-printer visualization of neuron models. Front Neuroinform 2015; 9:18. [PMID: 26175684 PMCID: PMC4485057 DOI: 10.3389/fninf.2015.00018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/15/2015] [Indexed: 01/05/2023] Open
Abstract
Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.
Collapse
|
5
|
Gilra A, Bhalla US. Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 2015; 10:e0098045. [PMID: 25942312 PMCID: PMC4420273 DOI: 10.1371/journal.pone.0098045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023] Open
Abstract
Stimulus encoding by primary sensory brain areas provides a data-rich context for understanding their circuit mechanisms. The vertebrate olfactory bulb is an input area having unusual two-layer dendro-dendritic connections whose roles in odor coding are unclear. To clarify these roles, we built a detailed compartmental model of the rat olfactory bulb that synthesizes a much wider range of experimental observations on bulbar physiology and response dynamics than has hitherto been modeled. We predict that superficial-layer inhibitory interneurons (periglomerular cells) linearize the input-output transformation of the principal neurons (mitral cells), unlike previous models of contrast enhancement. The linearization is required to replicate observed linear summation of mitral odor responses. Further, in our model, action-potentials back-propagate along lateral dendrites of mitral cells and activate deep-layer inhibitory interneurons (granule cells). Using this, we propose sparse, long-range inhibition between mitral cells, mediated by granule cells, to explain how the respiratory phases of odor responses of sister mitral cells can be sometimes decorrelated as observed, despite receiving similar receptor input. We also rule out some alternative mechanisms. In our mechanism, we predict that a few distant mitral cells receiving input from different receptors, inhibit sister mitral cells differentially, by activating disjoint subsets of granule cells. This differential inhibition is strong enough to decorrelate their firing rate phases, and not merely modulate their spike timing. Thus our well-constrained model suggests novel computational roles for the two most numerous classes of interneurons in the bulb.
Collapse
Affiliation(s)
- Aditya Gilra
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
| | - Upinder S. Bhalla
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
- * E-mail:
| |
Collapse
|
6
|
Akemann W, Song C, Mutoh H, Knöpfel T. Route to genetically targeted optical electrophysiology: development and applications of voltage-sensitive fluorescent proteins. NEUROPHOTONICS 2015; 2:021008. [PMID: 26082930 PMCID: PMC4465821 DOI: 10.1117/1.nph.2.2.021008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
The invention of membrane voltage protein indicators widens the reach of optical voltage imaging in cell physiology, most notably neurophysiology, by enabling membrane voltage recordings from genetically defined cell types in chronic and life-long preparations. While the last years have seen a dramatic improvement in the technical performance of these indicators, concomitant innovations in optogenetics, optical axon tracing, and high-speed digital microscopy are beginning to fulfill the age-old vision of an all-optical analysis of neuronal circuits, reaching beyond the limits of traditional electrode-based recordings. We will present our personal account of the development of protein voltage indicators from the pioneering days to the present state, including their applications in neurophysiology that has inspired our own work for more than a decade.
Collapse
Affiliation(s)
- Walther Akemann
- Imperial College London, Department of Medicine, London W12 ONN, United Kingdom
- Institute of Biology, CNRS UMR 8197, École Normale Supérieure, 46 rue d’Ulm, 75005 Paris, France
| | - Chenchen Song
- Imperial College London, Department of Medicine, London W12 ONN, United Kingdom
| | - Hiroki Mutoh
- Hamamatsu University School of Medicine, Department of Neurophysiology, Shizuoka 431-3192, Japan
| | - Thomas Knöpfel
- Imperial College London, Department of Medicine, London W12 ONN, United Kingdom
| |
Collapse
|
7
|
Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:57-101. [PMID: 26238049 PMCID: PMC5671121 DOI: 10.1007/978-3-319-17641-3_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A central question in neuronal network analysis is how the interaction between individual neurons produces behavior and behavioral modifications. This task depends critically on how exactly signals are integrated by individual nerve cells functioning as complex operational units. Regional electrical properties of branching neuronal processes which determine the input-output function of any neuron are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin (synaptic contacts on distal dendrites) and summate at particular locations to influence action potential initiation. It became possible recently to carry out this type of measurement using high-resolution multisite recording of membrane potential changes with intracellular voltage-sensitive dyes. This chapter reviews the development and foundation of the method of voltage-sensitive dye recording from individual neurons. Presently, this approach allows monitoring membrane potential transients from all parts of the dendritic tree as well as from axon collaterals and individual dendritic spines.
Collapse
|
8
|
Fast state-space methods for inferring dendritic synaptic connectivity. J Comput Neurosci 2013; 36:415-43. [DOI: 10.1007/s10827-013-0478-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/22/2013] [Accepted: 08/14/2013] [Indexed: 02/06/2023]
|
9
|
DiMattina C, Zhang K. Adaptive stimulus optimization for sensory systems neuroscience. Front Neural Circuits 2013; 7:101. [PMID: 23761737 PMCID: PMC3674314 DOI: 10.3389/fncir.2013.00101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 05/08/2013] [Indexed: 11/24/2022] Open
Abstract
In this paper, we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical optimal stimulus paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the iso-response paradigm which finds sets of stimuli giving rise to constant responses, and the system identification paradigm where the experimental goal is to estimate and possibly compare sensory processing models. We discuss various theoretical and practical aspects of adaptive firing rate optimization, including optimization with stimulus space constraints, firing rate adaptation, and possible network constraints on the optimal stimulus. We consider the problem of system identification, and show how accurate estimation of non-linear models can be highly dependent on the stimulus set used to probe the network. We suggest that optimizing stimuli for accurate model estimation may make it possible to successfully identify non-linear models which are otherwise intractable, and summarize several recent studies of this type. Finally, we present a two-stage stimulus design procedure which combines the dual goals of model estimation and model comparison and may be especially useful for system identification experiments where the appropriate model is unknown beforehand. We propose that fast, on-line stimulus optimization enabled by increasing computer power can make it practical to move sensory neuroscience away from a descriptive paradigm and toward a new paradigm of real-time model estimation and comparison.
Collapse
Affiliation(s)
| | - Kechen Zhang
- Department of Biomedical Engineering, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
10
|
Arruda D, Publio R, Roque AC. The periglomerular cell of the olfactory bulb and its role in controlling mitral cell spiking: a computational model. PLoS One 2013; 8:e56148. [PMID: 23405261 PMCID: PMC3566063 DOI: 10.1371/journal.pone.0056148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/07/2013] [Indexed: 01/14/2023] Open
Abstract
Interneurons in the olfactory bulb are key elements of odor processing but their roles have not yet being fully understood. Two types of inhibitory interneurons, periglomerular and granule cells, act at two different levels within the olfactory bulb and may have different roles in coordinating the spiking of mitral cells, which are the principal output neurons of the olfactory bulb. In this work we introduce a reduced compartmental model of the periglomerular cell and use it to investigate its role on mitral cell spiking in a model of an elementary cell triad composed of these two cell types plus a granule cell. Our simulation results show that the periglomerular cell is more effective in inhibiting the mitral cell than the granule cell. Based on our results we predict that periglomerular and granule cells have different roles in the control of mitral cell spiking. The periglomerular cell would be the only one capable of completely inhibiting the mitral cell, and the activity decrease of the mitral cell through this inhibitory action would occur in a stepwise fashion depending on parameters of the periglomerular and granule cells as well as on the relative times of arrival of external stimuli to the three cells. The major role of the granule cell would be to facilitate the inhibitory action of the periglomerular cell by enlarging the range of parameters of the periglomerular cell which correspond to complete inhibition of the mitral cell. The combined action of the two interneurons would thus provide an efficient way of controling the instantaneous value of the firing rate of the mitral cell.
Collapse
Affiliation(s)
- Denise Arruda
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | | | | |
Collapse
|
11
|
Popovic MA, Gao X, Carnevale NT, Zecevic D. Cortical dendritic spine heads are not electrically isolated by the spine neck from membrane potential signals in parent dendrites. Cereb Cortex 2012; 24:385-95. [PMID: 23054810 DOI: 10.1093/cercor/bhs320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evidence for an important hypothesis that cortical spine morphology might participate in modifying synaptic efficacy that underlies plasticity and possibly learning and memory mechanisms is inconclusive. Both theory and experiments suggest that the transfer of excitatory postsynaptic potential signals from spines to parent dendrites depends on the spine neck morphology and resistance. Furthermore, modeling of signal transfer in the opposite direction predicts that synapses on spine heads are not electrically isolated from voltages in the parent dendrite. In sharp contrast to this theoretical prediction, one of a very few measurements of electrical signals from spines reported that slow hyperpolarizing membrane potential changes are attenuated considerably by the spine neck as they spread from dendrites to synapses on spine heads. This result challenges our understanding of the electrical behavior of spines at a fundamental level. To re-examine the specific question of the transfer of dendritic signals to synapses of spines, we took advantage of a high-sensitivity Vm-imaging technique and carried out optical measurements of electrical signals from 4 groups of spines with different neck length and simultaneously from parent dendrites. The results show that spine neck does not filter membrane potential signals as they spread from the dendrites into the spine heads.
Collapse
|
12
|
Abstract
Within the olfactory system, information flow from the periphery onto output mitral cells (MCs) of the olfactory bulb (OB) has been thought to be mediated by direct synaptic inputs from olfactory sensory neurons (OSNs). Here, we performed patch-clamp measurements in rat and mouse OB slices to investigate mechanisms of OSN signaling onto MCs, including the assumption of a direct path, using electrical and optogenetic stimulation methods that selectively activated OSNs. We found that MCs are in fact not typically activated by direct OSN inputs and instead require a multistep, diffuse mechanism involving another glutamatergic cell type, the tufted cells. The preference for a multistep mechanism reflects the fact that signals arising from direct OSN inputs are drastically shunted by connexin 36-mediated gap junctions on MCs, but not tufted cells. An OB circuit with tufted cells intermediate between OSNs and MCs suggests that considerable processing of olfactory information occurs before its reaching MCs.
Collapse
|
13
|
Optimal experimental design for sampling voltage on dendritic trees in the low-SNR regime. J Comput Neurosci 2011; 32:347-66. [PMID: 21861199 DOI: 10.1007/s10827-011-0357-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 07/08/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
Due to the limitations of current voltage sensing techniques, optimal filtering of noisy, undersampled voltage signals on dendritic trees is a key problem in computational cellular neuroscience. These limitations lead to voltage data that is incomplete (in the sense of only capturing a small portion of the full spatiotemporal signal) and often highly noisy. In this paper we use a Kalman filtering framework to develop optimal experimental design methods for voltage sampling. Our approach is to use a simple greedy algorithm with lazy evaluation to minimize the expected square error of the estimated spatiotemporal voltage signal. We take advantage of some particular features of the dendritic filtering problem to efficiently calculate the Kalman estimator's covariance. We test our framework with simulations of real dendritic branching structures and compare the quality of both time-invariant and time-varying sampling schemes. While the benefit of using the experimental design methods was modest in the time-invariant case, improvements of 25-100% over more naïve methods were found when the observation locations were allowed to change with time. We also present a heuristic approximation to the greedy algorithm that is an order of magnitude faster while still providing comparable results.
Collapse
|
14
|
Popovic MA, Foust AJ, McCormick DA, Zecevic D. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study. J Physiol 2011; 589:4167-87. [PMID: 21669974 DOI: 10.1113/jphysiol.2011.209015] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The spatial pattern of Na(+) channel clustering in the axon initial segment (AIS) plays a critical role in tuning neuronal computations, and changes in Na(+) channel distribution have been shown to mediate novel forms of neuronal plasticity in the axon. However, immunocytochemical data on channel distribution may not directly predict spatio-temporal characteristics of action potential initiation, and prior electrophysiological measures are either indirect (extracellular) or lack sufficient spatial resolution (intracellular) to directly characterize the spike trigger zone (TZ). We took advantage of a critical methodological improvement in the high sensitivity membrane potential imaging (V(m) imaging) technique to directly determine the location and length of the spike TZ as defined in functional terms. The results show that in mature axons of mouse cortical layer 5 pyramidal cells, action potentials initiate in a region ∼20 μm in length centred between 20 and 40 μm from the soma. From this region, the AP depolarizing wave invades initial nodes of Ranvier within a fraction of a millisecond and propagates in a saltatory fashion into axonal collaterals without failure at all physiologically relevant frequencies. We further demonstrate that, in contrast to the saltatory conduction in mature axons, AP propagation is non-saltatory (monotonic) in immature axons prior to myelination.
Collapse
Affiliation(s)
- Marko A Popovic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, Department C/M Physiology, 333 Cedar Street, New Haven, CT, USA
| | | | | | | |
Collapse
|
15
|
Paninski L, Ahmadian Y, Ferreira DG, Koyama S, Rahnama Rad K, Vidne M, Vogelstein J, Wu W. A new look at state-space models for neural data. J Comput Neurosci 2010; 29:107-126. [PMID: 19649698 PMCID: PMC3712521 DOI: 10.1007/s10827-009-0179-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 07/06/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
State space methods have proven indispensable in neural data analysis. However, common methods for performing inference in state-space models with non-Gaussian observations rely on certain approximations which are not always accurate. Here we review direct optimization methods that avoid these approximations, but that nonetheless retain the computational efficiency of the approximate methods. We discuss a variety of examples, applying these direct optimization techniques to problems in spike train smoothing, stimulus decoding, parameter estimation, and inference of synaptic properties. Along the way, we point out connections to some related standard statistical methods, including spline smoothing and isotonic regression. Finally, we note that the computational methods reviewed here do not in fact depend on the state-space setting at all; instead, the key property we are exploiting involves the bandedness of certain matrices. We close by discussing some applications of this more general point of view, including Markov chain Monte Carlo methods for neural decoding and efficient estimation of spatially-varying firing rates.
Collapse
Affiliation(s)
- Liam Paninski
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY, USA.
| | - Yashar Ahmadian
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Daniel Gil Ferreira
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Shinsuke Koyama
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kamiar Rahnama Rad
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Michael Vidne
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Joshua Vogelstein
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Wei Wu
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
16
|
Stein W, Andras P. Light-induced effects of a fluorescent voltage-sensitive dye on neuronal activity in the crab stomatogastric ganglion. J Neurosci Methods 2010; 188:290-4. [PMID: 20226813 DOI: 10.1016/j.jneumeth.2010.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/01/2010] [Accepted: 03/05/2010] [Indexed: 11/28/2022]
Abstract
Optical imaging being one of the cutting-edge methods for the investigation of neural activity, it is very important to understand the mechanisms of how dye molecules work and the range of side effects that they may induce. In particular, it is very important to reveal potential toxic effects and effects impairing the functioning of the investigated neural system. Here, we investigate the effects of illumination in the presence of the commonly used di-4-ANEPPS voltage-sensitive dye on the rhythmic motor pattern generated by the pyloric central pattern generator in the crab stomatogastric nervous system, a model system for motor pattern generation. We report that the dye allows long recording sessions with little bleaching and no obvious damage to the pyloric rhythm. Yet, exciting illumination induced a temporary and reversible change in the phase relationship of the pyloric motor neurons and a concomitant speed-up of the rhythm. The effect was specific to the excitation wavelength of di-4-ANEPPS and only obtained when the neuropile and cell bodies were illuminated. Thus, di-4-ANEPPS acts as a photo-switch that causes a quick and reversible change in the phase relationship of the motor neurons, but no permanent impairment of neuronal function. It may thus also be used as a means to study the maintenance of phase relationships in rhythmic motor patterns.
Collapse
Affiliation(s)
- Wolfgang Stein
- Institute of Neurobiology, Ulm University, Ulm D-89069, Germany.
| | | |
Collapse
|
17
|
Paninski L. Fast Kalman filtering on quasilinear dendritic trees. J Comput Neurosci 2009; 28:211-28. [DOI: 10.1007/s10827-009-0200-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/03/2009] [Accepted: 11/13/2009] [Indexed: 02/06/2023]
|
18
|
Homma R, Baker BJ, Jin L, Garaschuk O, Konnerth A, Cohen LB, Zecevic D. Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes. Philos Trans R Soc Lond B Biol Sci 2009; 364:2453-67. [PMID: 19651647 DOI: 10.1098/rstb.2009.0084] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review presents three examples of using voltage- or calcium-sensitive dyes to image the activity of the brain. Our aim is to discuss the advantages and disadvantages of each method with particular reference to its application to the study of the brainstem. Two of the examples use wide-field (one-photon) imaging; the third uses two-photon scanning microscopy. Because the measurements have limited signal-to-noise ratio, the paper also discusses the methodological aspects that are critical for optimizing the signal. The three examples are the following. (i) An intracellularly injected voltage-sensitive dye was used to monitor membrane potential in the dendrites of neurons in in vitro preparations. These experiments were directed at understanding how individual neurons convert complex synaptic inputs into the output spike train. (ii) An extracellular, bath application of a voltage-sensitive dye was used to monitor population signals from different parts of the dorsal brainstem. We describe recordings made during respiratory activity. The population signals indicated four different regions with distinct activity correlated with inspiration. (iii) Calcium-sensitive dyes can be used to label many individual cells in the mammalian brain. This approach, combined with two-photon microscopy, made it possible to follow the spike activity in an in vitro brainstem preparation during fictive respiratory rhythms. The organic voltage- and ion-sensitive dyes used today indiscriminatively stain all of the cell types in the preparation. A major effort is underway to develop fluorescent protein sensors of activity for selectively staining individual cell types.
Collapse
Affiliation(s)
- Ryota Homma
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Erlichman JS, Boyer AC, Reagan P, Putnam RW, Ritucci NA, Leiter JC. Chemosensory responses to CO2 in multiple brain stem nuclei determined using a voltage-sensitive dye in brain slices from rats. J Neurophysiol 2009; 102:1577-90. [PMID: 19553484 DOI: 10.1152/jn.00381.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used epifluorescence microscopy and a voltage-sensitive dye, di-8-ANEPPS, to study changes in membrane potential during hypercapnia with or without synaptic blockade in chemosensory brain stem nuclei: the locus coeruleus (LC), the nucleus of the solitary tract, lateral paragigantocellularis nucleus, raphé pallidus, and raphé obscurus and, in putative nonchemosensitive nuclei, the gigantocellularis reticular nucleus and the spinotrigeminal nucleus. We studied the response to hypercapnia in LC cells to evaluate the performance characteristics of the voltage-sensitive dye. Hypercapnia depolarized many LC cells and the voltage responses to hypercapnia were diminished, but not eradicated, by synaptic blockade (there were intrinsically CO2-sensitive cells in the LC). The voltage response to hypercapnia was substantially diminished after inhibiting fast Na+ channels with tetrodotoxin. Thus action potential-related activity was responsible for most of the optical signal that we detected. We systematically examined CO2 sensitivity among cells in brain stem nuclei to test the hypothesis that CO2 sensitivity is a ubiquitous phenomenon, not restricted to nominally CO2 chemosensory nuclei. We found intrinsically CO2 sensitive neurons in all the nuclei that we examined; even the nonchemosensory nuclei had small numbers of intrinsically CO2 sensitive neurons. However, synaptic blockade significantly altered the distribution of CO2-sensitive cells in all of the nuclei so that the cellular response to CO2 in more intact preparations may be difficult to predict based on studies of intrinsic neuronal activity. Thus CO2-sensitive neurons are widely distributed in chemosensory and nonchemosensory nuclei and CO2 sensitivity is dependent on inhibitory and excitatory synaptic activity even within brain slices. Neuronal CO2 sensitivity important for the behavioral response to CO2 in intact animals will thus be determined as much by synaptic mechanisms and patterns of connectivity throughout the brain as by intrinsic CO2 sensitivity.
Collapse
|