1
|
Glærum IL, Dunville K, Moan K, Krause M, Montaldo NP, Kirikae H, Nigro MJ, Sætrom P, van Loon B, Quattrocolo G. Postnatal persistence of hippocampal Cajal-Retzius cells has a crucial role in the establishment of the hippocampal circuit. Development 2024; 151:dev202236. [PMID: 38095282 PMCID: PMC10820737 DOI: 10.1242/dev.202236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Cajal-Retzius (CR) cells are a transient neuron type that populate the postnatal hippocampus. To understand how the persistence of CR cells influences the maturation of hippocampal circuits, we combined a specific transgenic mouse line with viral vector injection to selectively ablate CR cells from the postnatal hippocampus. We observed layer-specific changes in the dendritic complexity and spine density of CA1 pyramidal cells. In addition, transcriptomic analysis highlighted significant changes in the expression of synapse-related genes across development. Finally, we were able to identify significant changes in the expression levels of latrophilin 2, a postsynaptic guidance molecule known for its role in the entorhinal-hippocampal connectivity. These findings were supported by changes in the synaptic proteomic content in CA1 stratum lacunosum-moleculare. Our results reveal a crucial role for CR cells in the establishment of the hippocampal network.
Collapse
Affiliation(s)
- Ingvild Lynneberg Glærum
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
- Mohn Research Center for the Brain, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Keagan Dunville
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Kristian Moan
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Maike Krause
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Nicola Pietro Montaldo
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Hinako Kirikae
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Maximiliano Jose Nigro
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Barbara van Loon
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Giulia Quattrocolo
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
- Mohn Research Center for the Brain, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
2
|
Elorriaga V, Pierani A, Causeret F. Cajal-retzius cells: Recent advances in identity and function. Curr Opin Neurobiol 2023; 79:102686. [PMID: 36774666 DOI: 10.1016/j.conb.2023.102686] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 02/12/2023]
Abstract
Cajal-Retzius cells (CRs) are a transient neuronal type of the developing cerebral cortex. Over the years, they have been shown or proposed to play important functions in neocortical and hippocampal morphogenesis, circuit formation, brain evolution and human pathology. Because of their short lifespan, CRs have been pictured as a purely developmental cell type, whose production and active elimination are both required for correct brain development. In this review, we present some of the findings that allow us to better appreciate the identity and diversity of this very special cell type, and propose a unified definition of what should be considered a Cajal-Retzius cell, especially when working with non-mammalian species or organoids. In addition, we highlight a flurry of recent studies pointing to the importance of CRs in the assembly of functional and dysfunctional cortical networks.
Collapse
Affiliation(s)
- Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France.
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France.
| |
Collapse
|
3
|
Riva M, Moriceau S, Morabito A, Dossi E, Sanchez-Bellot C, Azzam P, Navas-Olive A, Gal B, Dori F, Cid E, Ledonne F, David S, Trovero F, Bartolomucci M, Coppola E, Rebola N, Depaulis A, Rouach N, de la Prida LM, Oury F, Pierani A. Aberrant survival of hippocampal Cajal-Retzius cells leads to memory deficits, gamma rhythmopathies and susceptibility to seizures in adult mice. Nat Commun 2023; 14:1531. [PMID: 36934089 PMCID: PMC10024761 DOI: 10.1038/s41467-023-37249-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/08/2023] [Indexed: 03/20/2023] Open
Abstract
Cajal-Retzius cells (CRs) are transient neurons, disappearing almost completely in the postnatal neocortex by programmed cell death (PCD), with a percentage surviving up to adulthood in the hippocampus. Here, we evaluate CR's role in the establishment of adult neuronal and cognitive function using a mouse model preventing Bax-dependent PCD. CRs abnormal survival resulted in impairment of hippocampus-dependent memory, associated in vivo with attenuated theta oscillations and enhanced gamma activity in the dorsal CA1. At the cellular level, we observed transient changes in the number of NPY+ cells and altered CA1 pyramidal cell spine density. At the synaptic level, these changes translated into enhanced inhibitory currents in hippocampal pyramidal cells. Finally, adult mutants displayed an increased susceptibility to lethal tonic-clonic seizures in a kainate model of epilepsy. Our data reveal that aberrant survival of a small proportion of postnatal hippocampal CRs results in cognitive deficits and epilepsy-prone phenotypes in adulthood.
Collapse
Affiliation(s)
- Martina Riva
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Stéphanie Moriceau
- Platform for Neurobehavioral and metabolism, Structure Fédérative de Recherche Necker, 26 INSERM US24/CNRS UAR, 3633, Paris, France
| | - Annunziato Morabito
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hopital, 75013, Paris, France
| | - Elena Dossi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Patrick Azzam
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | | | - Beatriz Gal
- Instituto Cajal, CSIC, Madrid, Spain
- Universidad Camilo José Cela, Madrid, Spain
| | - Francesco Dori
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | - Fanny Ledonne
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Sabrina David
- Key-Obs SAS, 13 avenue Buffon, 45100, Orléans, France
| | | | - Magali Bartolomucci
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Eva Coppola
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Nelson Rebola
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hopital, 75013, Paris, France
| | - Antoine Depaulis
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Franck Oury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015, Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
4
|
López-Mengual A, Segura-Feliu M, Sunyer R, Sanz-Fraile H, Otero J, Mesquida-Veny F, Gil V, Hervera A, Ferrer I, Soriano J, Trepat X, Farré R, Navajas D, Del Río JA. Involvement of Mechanical Cues in the Migration of Cajal-Retzius Cells in the Marginal Zone During Neocortical Development. Front Cell Dev Biol 2022; 10:886110. [PMID: 35652101 PMCID: PMC9150848 DOI: 10.3389/fcell.2022.886110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the developing cortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.
Collapse
Affiliation(s)
- Ana López-Mengual
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Miriam Segura-Feliu
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Raimon Sunyer
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Sanz-Fraile
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain
| | - Francina Mesquida-Veny
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de La Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.,University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Xavier Trepat
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Institució Catalana de Recerca I Estudis Avançats, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Institut D'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Cellular and Respiratory Biomechanics, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Anstötz M, Lee SK, Maccaferri G. Glutamate released by Cajal-Retzius cells impacts specific hippocampal circuits and behaviors. Cell Rep 2022; 39:110822. [PMID: 35584670 PMCID: PMC9190441 DOI: 10.1016/j.celrep.2022.110822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/23/2022] [Accepted: 04/23/2022] [Indexed: 12/31/2022] Open
Abstract
The impact of Cajal-Retzius cells on the regulation of hippocampal circuits and related behaviors is unresolved. Here, we directly address this issue by impairing the glutamatergic output of Cajal-Retzius cells with the conditional ablation of vGluT2, which is their main vesicular glutamate transporter. Although two distinct conditional knockout lines do not reveal major alterations in hippocampal-layer organization and dendritic length of principal neurons or GABAergic cells, we find parallel deficits in specific hippocampal-dependent behaviors and in their putative underlying microcircuits. First, conditional knockout animals show increased innate anxiety and decreased feedforward GABAergic inhibition on dentate gyrus granule cells. Second, we observe impaired spatial memory processing, which is associated with decreased spine density and reduced AMPA/NMDA ratio of postsynaptic responses at the perforant- and entorhino-hippocampal pathways. We conclude that glutamate synaptically released by Cajal-Retzius cells is critical for the regulation of hippocampal microcircuits and specific types of behaviors. Anstötz et al. report that postnatal hippocampal Cajal-Retzius cells use vGluT2 as their main glutamate vesicular transporter. Conditional inactivation of vGluT2 in mice reveals both behavioral and network alterations. The observed results indicate the involvement of Cajal-Retzius cells in the regulation of innate anxiety/spatial memory and in potentially related neuronal circuits.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| | - Sun Kyong Lee
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gianmaria Maccaferri
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Kirmse K, Zhang C. Principles of GABAergic signaling in developing cortical network dynamics. Cell Rep 2022; 38:110568. [PMID: 35354036 DOI: 10.1016/j.celrep.2022.110568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
GABAergic signaling provides inhibitory stabilization and spatiotemporally coordinates the firing of recurrently connected excitatory neurons in mature cortical circuits. Inhibition thus enables self-generated neuronal activity patterns that underlie various aspects of sensation and cognition. In this review, we aim to provide a conceptual framework describing how and when GABA-releasing interneurons acquire their network functions during development. Focusing on the developing visual neocortex and hippocampus in mice and rats in vivo, we hypothesize that at the onset of patterned activity, glutamatergic neurons are stable by themselves and inhibitory stabilization is not yet functional. We review important milestones in the development of GABAergic signaling and illustrate how the cell-type-specific strengthening of synaptic inhibition toward eye opening shapes cortical network dynamics and allows the developing cortex to progressively disengage from extra-cortical synaptic drive. We translate this framework to human cortical development and discuss clinical implications for the treatment of neonatal seizures.
Collapse
Affiliation(s)
- Knut Kirmse
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.
| | - Chuanqiang Zhang
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
7
|
Causeret F, Moreau MX, Pierani A, Blanquie O. The multiple facets of Cajal-Retzius neurons. Development 2021; 148:268379. [PMID: 34047341 DOI: 10.1242/dev.199409] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cajal-Retzius neurons (CRs) are among the first-born neurons in the developing cortex of reptiles, birds and mammals, including humans. The peculiarity of CRs lies in the fact they are initially embedded into the immature neuronal network before being almost completely eliminated by cell death at the end of cortical development. CRs are best known for controlling the migration of glutamatergic neurons and the formation of cortical layers through the secretion of the glycoprotein reelin. However, they have been shown to play numerous additional key roles at many steps of cortical development, spanning from patterning and sizing functional areas to synaptogenesis. The use of genetic lineage tracing has allowed the discovery of their multiple ontogenetic origins, migratory routes, expression of molecular markers and death dynamics. Nowadays, single-cell technologies enable us to appreciate the molecular heterogeneity of CRs with an unprecedented resolution. In this Review, we discuss the morphological, electrophysiological, molecular and genetic criteria allowing the identification of CRs. We further expose the various sources, migration trajectories, developmental functions and death dynamics of CRs. Finally, we demonstrate how the analysis of public transcriptomic datasets allows extraction of the molecular signature of CRs throughout their transient life and consider their heterogeneity within and across species.
Collapse
Affiliation(s)
- Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Alessandra Pierani
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France.,Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, F-75014 Paris, France
| | - Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| |
Collapse
|
8
|
Abstract
Cortical interneurons display striking differences in shape, physiology, and other attributes, challenging us to appropriately classify them. We previously suggested that interneuron types should be defined by their role in cortical processing. Here, we revisit the question of how to codify their diversity based upon their division of labor and function as controllers of cortical information flow. We suggest that developmental trajectories provide a guide for appreciating interneuron diversity and argue that subtype identity is generated using a configurational (rather than combinatorial) code of transcription factors that produce attractor states in the underlying gene regulatory network. We present our updated three-stage model for interneuron specification: an initial cardinal step, allocating interneurons into a few major classes, followed by definitive refinement, creating subclasses upon settling within the cortex, and lastly, state determination, reflecting the incorporation of interneurons into functional circuit ensembles. We close by discussing findings indicating that major interneuron classes are both evolutionarily ancient and conserved. We propose that the complexity of cortical circuits is generated by phylogenetically old interneuron types, complemented by an evolutionary increase in principal neuron diversity. This suggests that a natural neurobiological definition of interneuron types might be derived from a match between their developmental origin and computational function.
Collapse
Affiliation(s)
- Gord Fishell
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02142, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Adam Kepecs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
| |
Collapse
|
9
|
Flossmann T, Kaas T, Rahmati V, Kiebel SJ, Witte OW, Holthoff K, Kirmse K. Somatostatin Interneurons Promote Neuronal Synchrony in the Neonatal Hippocampus. Cell Rep 2020; 26:3173-3182.e5. [PMID: 30893591 DOI: 10.1016/j.celrep.2019.02.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/18/2018] [Accepted: 02/13/2019] [Indexed: 01/31/2023] Open
Abstract
Synchronized activity is a universal characteristic of immature neural circuits that is essential for their developmental refinement and strongly depends on GABAergic neurotransmission. A major subpopulation of GABA-releasing interneurons (INs) expresses somatostatin (SOM) and proved critical for rhythm generation in adulthood. Here, we report a mechanism whereby SOM INs promote neuronal synchrony in the neonatal CA1 region. Combining imaging and electrophysiological approaches, we demonstrate that SOM INs and pyramidal cells (PCs) coactivate during spontaneous activity. Bidirectional optogenetic manipulations reveal excitatory GABAergic outputs to PCs that evoke correlated network events in an NKCC1-dependent manner and contribute to spontaneous synchrony. Using a dynamic systems modeling approach, we show that SOM INs affect network dynamics through a modulation of network instability and amplification threshold. Our study identifies a network function of SOM INs with implications for the activity-dependent construction of developing brain circuits.
Collapse
Affiliation(s)
- Tom Flossmann
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Thomas Kaas
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Vahid Rahmati
- Department of Psychology, Technische Universität Dresden, 01187 Dresden, Germany
| | - Stefan J Kiebel
- Department of Psychology, Technische Universität Dresden, 01187 Dresden, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Knut Kirmse
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
10
|
A Toolbox of Criteria for Distinguishing Cajal-Retzius Cells from Other Neuronal Types in the Postnatal Mouse Hippocampus. eNeuro 2020; 7:ENEURO.0516-19.2019. [PMID: 31907212 PMCID: PMC7004485 DOI: 10.1523/eneuro.0516-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023] Open
Abstract
The study of brain circuits depends on a clear understanding of the role played by different neuronal populations. Therefore, the unambiguous identification of different cell types is essential for the correct interpretation of experimental data. Here, we emphasize to the broader neuroscience community the importance of recognizing the persistent presence of Cajal-Retzius cells in the molecular layers of the postnatal hippocampus, and then we suggest a variety of criteria for distinguishing Cajal-Retzius cells from other neurons of the hippocampal molecular layers, such as GABAergic interneurons and semilunar granule cells. The toolbox of criteria that we have investigated (in male and female mice) can be useful both for anatomical and functional experiments, and relies on the quantitative study of neuronal somatic/nuclear morphology, location and developmental profile, expression of specific molecular markers (GAD67, reelin, COUP-TFII, calretinin, and p73), single cell anatomy, and electrophysiological properties. We conclude that Cajal-Retzius cells are small, non-GABAergic neurons that are tightly associated with the hippocampal fissure (HF), and that, within this area of interest, selectively express the proteins p73 and calretinin. We highlight the dangers of using markers such as reelin or COUP-TFII to identify Cajal-Retzius cells or GABAergic interneurons because of their poor specificity. Lastly, we examine neurons of the postnatal hippocampal molecular layers and show cell type-specific differences in their dendritic/axonal morphologies and density distributions, as well as in their membrane properties and spontaneous synaptic inputs. These parameters can be used to distinguish biocytin-filled and/or electrophysiologically recorded neurons and should be considered to avoid interpretational mistakes.
Collapse
|
11
|
Anstötz M, Lee SK, Neblett TI, Rune GM, Maccaferri G. Experience-Dependent Regulation of Cajal-Retzius Cell Networks in the Developing and Adult Mouse Hippocampus. ACTA ACUST UNITED AC 2019. [PMID: 28637318 DOI: 10.1093/cercor/bhx153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In contrast to their near-disappearance in the adult neocortex, Cajal-Retzius cells have been suggested to persist longer in the hippocampus. A distinctive feature of the mature hippocampus, not maintained by other cortical areas, is its ability to sustain adult neurogenesis. Here, we have investigated whether environmental manipulations affecting hippocampal postnatal neurogenesis have a parallel impact on Cajal-Retzius cells. We used multiple mouse reporter lines to unequivocally identify Cajal-Retzius cells and quantify their densities during postnatal development. We found that exposure to an enriched environment increased the persistence of Cajal-Retzius cells in the hippocampus, but not in adjacent cortical regions. We did not observe a similar effect for parvalbumin-expressing interneurons, which suggested the occurrence of a cell type-specific process. In addition, we did not detect obvious changes either in Cajal-Retzius cell electrophysiological or morphological features, when compared with what previously reported in animals not exposed to enriched conditions. However, optogenetically triggered synaptic output of Cajal-Retzius cells onto local interneurons was enhanced, consistent with our observation of higher Cajal-Retzius cell densities. In conclusion, our data reveal a novel form of hippocampal, cell type-specific, experience-dependent network plasticity. We propose that this phenomenon may be involved in the regulation of enrichment-dependent enhanced hippocampal postnatal neurogenesis.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008, USA.,Institute for Neuroanatomy, University/University Hospital Hamburg, 20246 Hamburg, Germany
| | - Sun Kyong Lee
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008, USA
| | - Tamra I Neblett
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008, USA
| | - Gabriele M Rune
- Institute for Neuroanatomy, University/University Hospital Hamburg, 20246 Hamburg, Germany
| | - Gianmaria Maccaferri
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611-3008, USA
| |
Collapse
|
12
|
Anstötz M, Karsak M, Rune GM. Integrity of Cajal-Retzius cells in the reeler-mouse hippocampus. Hippocampus 2018; 29:550-565. [PMID: 30394609 DOI: 10.1002/hipo.23049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Cajal-Retzius (CR) cells are early-born glutamatergic neurons that are primarily known as the early main source of the signal protein Reelin. In the reeler mutant, the absence of Reelin causes severe defects in the radial migration of neurons, resulting in abnormal cortical layering. To date, the exact morphological properties of CR-cells independent of Reelin are unknown. With this in view, we studied the ontogenesis, density, and distribution of CR-cells in reeler mice that were cross-bred with a CXCR4-EGFP reporter mouse line, thus enabling us to clearly identify CR-cells positions in the disorganized hippocampus of the reeler mouse. As evidenced by morphological analysis, differences were found regarding CR-cell distribution and density: generally, we found fewer CR-cells in the developing and adult reeler hippocampus as compared to the hippocampus of wild-type animals (WT); however, in reeler mice, CR-cells were much more closely associated to the hippocampal fissure (HF), resulting in relatively higher local CR-cell densities. This higher local cell density was accompanied by stronger immunoreactivity of the CXCR4 ligand, stroma-derived factor-1 (SDF-1) that is known to regulate CR-cell positioning. Importantly, confocal microscopy indicates an integration of CR-cells into the developing and adult hippocampal network in reeler mice, raising evidence that network integration of CR-cells might be independent of Reelin.
Collapse
Affiliation(s)
- Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
13
|
Newell AJ, Lalitsasivimol D, Willing J, Gonzales K, Waters EM, Milner TA, McEwen BS, Wagner CK. Progesterone receptor expression in cajal-retzius cells of the developing rat dentate gyrus: Potential role in hippocampus-dependent memory. J Comp Neurol 2018; 526:2285-2300. [PMID: 30069875 PMCID: PMC6193812 DOI: 10.1002/cne.24485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
Abstract
The development of medial temporal lobe circuits is critical for subsequent learning and memory functions later in life. The present study reports the expression of progesterone receptor (PR), a powerful transcription factor of the nuclear steroid receptor superfamily, in Cajal-Retzius cells of the molecular layer of the dentate gyrus of rats. PR was transiently expressed from the day of birth through postnatal day 21, but was absent thereafter. Although PR immunoreactive (PR-ir) cells did not clearly express typical markers of mature neurons, they possessed an ultrastructural morphology consistent with neurons. PRir cells did not express markers for GABAergic neurons, neuronal precursor cells, nor radial glia. However, virtually all PR cells co-expressed the calcium binding protein, calretinin, and the glycoprotein, reelin, both reliable markers for Cajal-Retzius neurons, a transient population of developmentally critical pioneer neurons that guide synaptogenesis of perforant path afferents and histogenesis of the dentate gyrus. Indeed, inhibition of PR activity during the first two weeks of life impaired adult performance on both the novel object recognition and object placement memory tasks, two behavioral tasks hypothesized to describe facets of episodic-like memory in rodents. These findings suggest that PR plays an unexplored and important role in the development of hippocampal circuitry and adult memory function.
Collapse
Affiliation(s)
- Andrew J. Newell
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Diana Lalitsasivimol
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Jari Willing
- Department of Psychology, Behavioral Neuroscience Program, 603 E Daniel St., University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Keith Gonzales
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61, St New York, NY 1006521
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Christine K. Wagner
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| |
Collapse
|
14
|
Anstötz M, Quattrocolo G, Maccaferri G. Cajal-Retzius cells and GABAergic interneurons of the developing hippocampus: Close electrophysiological encounters of the third kind. Brain Res 2018; 1697:124-133. [PMID: 30071194 DOI: 10.1016/j.brainres.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/28/2018] [Indexed: 01/24/2023]
Abstract
In contrast to the large number of studies investigating the electrophysiological properties and synaptic connectivity of hippocampal pyramidal neurons, granule cells, and GABAergic interneurons, much less is known about Cajal-Retzius cells. In this review article, we discuss the possible reasons underlying this difference, and review experimental work performed on this cell type in the hippocampus, comparing it with results obtained in the neocortex. Our main emphasis is on data obtained with in vitro electrophysiology. In particular, we address the bidirectional connectivity between Cajal-Retzius cells and GABAergic interneurons, examine their synaptic properties and propose specific functions of Cajal-Retzius cell/GABAergic interneuron microcircuits. Lastly, we discuss the potential involvement of these microcircuits in critical physiological hippocampal functions such as postnatal neurogenesis or pathological scenarios such as temporal lobe epilepsy.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Giulia Quattrocolo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gianmaria Maccaferri
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Anstötz M, Lee SK, Maccaferri G. Expression of TRPV1 channels by Cajal-Retzius cells and layer-specific modulation of synaptic transmission by capsaicin in the mouse hippocampus. J Physiol 2018; 596:3739-3758. [PMID: 29806907 DOI: 10.1113/jp275685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/16/2018] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS By taking advantage of calcium imaging and electrophysiology, we provide direct pharmacological evidence for the functional expression of TRPV1 channels in hippocampal Cajal-Retzius cells. Application of the TRPV1 activator capsaicin powerfully enhances spontaneous synaptic transmission in the hippocampal layers that are innervated by the axons of Cajal-Retzius cells. Capsaicin-triggered calcium responses and membrane currents in Cajal-Retzius cells, as well as layer-specific modulation of spontaneous synaptic transmission, are absent when the drug is applied to slices prepared from TRPV1- /- animals. We discuss the implications of the functional expression of TRPV1 channels in Cajal-Retzius cells and of the observed TRPV1-dependent layer-specific modulation of synaptic transmission for physiological and pathological network processing. ABSTRACT The vanilloid receptor TRPV1 forms complex polymodal channels that are expressed by sensory neurons and play a critical role in nociception. Their distribution pattern and functions in cortical circuits are, however, much less understood. Although TRPV1 reporter mice have suggested that, in the hippocampus, TRPV1 is predominantly expressed by Cajal-Retzius cells (CRs), direct functional evidence is missing. As CRs powerfully excite GABAergic interneurons of the molecular layers, TRPV1 could play important roles in the regulation of layer-specific processing. Here, we have taken advantage of calcium imaging with the genetically encoded indicator GCaMP6s and patch-clamp techniques to study the responses of hippocampal CRs to the activation of TRPV1 by capsaicin, and have compared the effect of TRPV1 stimulation on synaptic transmission in layers innervated or non-innervated by CRs. Capsaicin induced both calcium responses and membrane currents in ∼50% of the cell tested. Neither increases of intracellular calcium nor whole-cell currents were observed in the presence of the TRPV1 antagonists capsazepine/Ruthenium Red or in slices prepared from TRPV1 knockout mice. We also report a powerful TRPV1-dependent enhancement of spontaneous synaptic transmission onto interneurons with dendritic trees confined to the layers innervated by CRs. In conclusion, our work establishes that functional TRPV1 is expressed by a significant fraction of CRs and we propose that TRPV1 activity may regulate layer-specific synaptic transmission in the hippocampus. Lastly, as CR density decreases during postnatal development, we also propose that functional TRPV1 receptors may be related to mechanisms involved in CR progressive reduction by calcium-dependent toxicity/apoptosis.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611-3008, USA.,Institute for Neuroanatomy, University/University Hospital Hamburg, Martinistr. 52, 20246, Hamburg, Germany
| | - Sun Kyong Lee
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611-3008, USA
| | - Gianmaria Maccaferri
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611-3008, USA
| |
Collapse
|
16
|
An Optogenetic Approach for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice Expressing Channelrhodopsin-2 in GABAergic Neurons. J Neurosci 2017; 36:5961-73. [PMID: 27251618 DOI: 10.1523/jneurosci.3482-15.2016] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/12/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED To investigate excitatory and inhibitory GABA actions in cortical neuronal networks, we present a novel optogenetic approach using a mouse knock-in line with conditional expression of channelrhodopsin-2 (ChR2) in GABAergic interneurons. During whole-cell recordings from hippocampal and neocortical slices from postnatal day (P) 2-P15 mice, photostimulation caused depolarization and excitation of interneurons and evoked barrages of postsynaptic GABAergic currents. Excitatory/inhibitory GABA actions on pyramidal cells were assessed by monitoring the alteration in the frequency of EPSCs during photostimulation of interneurons. We found that in slices from P2-P8 mice, photostimulation evoked an increase in EPSC frequency, whereas in P9-P15 mice the response switched to a reduction in EPSC frequency, indicating a developmental excitatory-to-inhibitory switch in GABA actions on glutamatergic neurons. Using a similar approach in urethane-anesthetized animals in vivo, we found that photostimulation of interneurons reduces EPSC frequency at ages P3-P9. Thus, expression of ChR2 in GABAergic interneurons of mice enables selective photostimulation of interneurons during the early postnatal period, and these mice display a developmental excitatory-to-inhibitory switch in GABA action in cortical slices in vitro, but so far show mainly inhibitory GABA actions on spontaneous EPSCs in the immature hippocampus and neocortex in vivo SIGNIFICANCE STATEMENT We report a novel optogenetic approach for investigating excitatory and inhibitory GABA actions in mice with conditional expression of channelrhodopsin-2 in GABAergic interneurons. This approach shows a developmental excitatory-to-inhibitory switch in the actions of GABA on glutamatergic neurons in neocortical and hippocampal slices from neonatal mouse pups in vitro, but also reveals inhibitory GABA actions in the neonatal mouse neocortex and hippocampus in vivo.
Collapse
|
17
|
Meyer G, González-Gómez M. The Subpial Granular Layer and Transient Versus Persisting Cajal-Retzius Neurons of the Fetal Human Cortex. Cereb Cortex 2017; 28:2043-2058. [DOI: 10.1093/cercor/bhx110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Gundela Meyer
- Units of Anatomy (MGG) and Histology (GM), Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Miriam González-Gómez
- Units of Anatomy (MGG) and Histology (GM), Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| |
Collapse
|
18
|
Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife 2016; 5:e18566. [PMID: 28009257 DOI: 10.7554/elife.18566.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/15/2016] [Indexed: 05/25/2023] Open
Abstract
The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations.
Collapse
Affiliation(s)
- Marianne J Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Raikov
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
- Department of Neurosurgery, Stanford University, Stanford, United States
| | - Kelly Burk
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Dhrumil Vyas
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, United States
| |
Collapse
|
19
|
Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife 2016; 5. [PMID: 28009257 PMCID: PMC5313080 DOI: 10.7554/elife.18566] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022] Open
Abstract
The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations. DOI:http://dx.doi.org/10.7554/eLife.18566.001
Collapse
Affiliation(s)
- Marianne J Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Raikov
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States.,Department of Neurosurgery, Stanford University, Stanford, United States
| | - Kelly Burk
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Dhrumil Vyas
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, United States
| |
Collapse
|
20
|
|
21
|
Cell Type-Specific Circuit Mapping Reveals the Presynaptic Connectivity of Developing Cortical Circuits. J Neurosci 2016; 36:3378-90. [PMID: 26985044 DOI: 10.1523/jneurosci.0375-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The mammalian cerebral cortex is a dense network composed of local, subcortical, and intercortical synaptic connections. As a result, mapping cell type-specific neuronal connectivity in the cerebral cortex in vivo has long been a challenge for neurobiologists. In particular, the development of excitatory and inhibitory interneuron presynaptic input has been hard to capture. We set out to analyze the development of this connectivity in the first postnatal month using a murine model. First, we surveyed the connectivity of one of the earliest populations of neurons in the brain, the Cajal-Retzius (CR) cells in the neocortex, which are known to be critical for cortical layer formation and are hypothesized to be important in the establishment of early cortical networks. We found that CR cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We also found that both excitatory pyramidal neurons and inhibitory interneurons received broad inputs in the first postnatal week, including inputs from CR cells. Expanding our analysis into the more mature brain, we assessed the inputs onto inhibitory interneurons and excitatory projection neurons, labeling neuronal progenitors with Cre drivers to study discrete populations of neurons in older cortex, and found that excitatory cortical and subcortical inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period. Cell type-specific circuit mapping is specific, reliable, and effective, and can be used on molecularly defined subtypes to determine connectivity in the cortex. SIGNIFICANCE STATEMENT Mapping cortical connectivity in the developing mammalian brain has been an intractable problem, in part because it has not been possible to analyze connectivity with cell subtype precision. Our study systematically targets the presynaptic connections of discrete neuronal subtypes in both the mature and developing cerebral cortex. We analyzed the connections that Cajal-Retzius cells make and receive, and found that these cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We assessed the inputs onto inhibitory interneurons and excitatory projection neurons, the major two types of neurons in the cortex, and found that excitatory inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period.
Collapse
|
22
|
Anstötz M, Huang H, Marchionni I, Haumann I, Maccaferri G, Lübke JHR. Developmental Profile, Morphology, and Synaptic Connectivity of Cajal-Retzius Cells in the Postnatal Mouse Hippocampus. Cereb Cortex 2015; 26:855-72. [PMID: 26582498 PMCID: PMC4712808 DOI: 10.1093/cercor/bhv271] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cajal–Retzius (CR) cells are early generated neurons, involved in the assembly of developing neocortical and hippocampal circuits. However, their roles in networks of the postnatal brain remain poorly understood. In order to get insights into these latter functions, we have studied their morphological and synaptic properties in the postnatal hippocampus of the CXCR4-EGFP mouse, where CR cells are easily identifiable. Our data indicate that CR cells are nonuniformly distributed along different subfields of the hippocampal formation, and that their postnatal decline is regulated in a region-specific manner. In fact, CR cells persist in distinct areas of fully mature animals. Subclasses of CR cells project and target either local (molecular layers) or distant regions [subicular complex and entorhinal cortex (EC)] of the hippocampal formation, but have similar firing patterns. Lastly, CR cells are biased toward targeting dendritic shafts compared with spines, and produce large-amplitude glutamatergic unitary postsynaptic potentials on γ-aminobutyric acid (GABA) containing interneurons. Taken together, our results suggest that CR cells are involved in a novel excitatory loop of the postnatal hippocampal formation, which potentially contributes to shaping the flow of information between the hippocampus, parahippocampal regions and entorhinal cortex, and to the low seizure threshold of these brain areas.
Collapse
Affiliation(s)
- Max Anstötz
- Institute of Neuroscience and Medicine INM-2, Research Centre Jülich GmbH, Jülich 52425, Germany Institute for Neuroanatomy, University/University Hospital Hamburg, Hamburg 20246, Germany
| | - Hao Huang
- Department of Physiology, Northwestern University, Feinberg School of Medicine, IL 60611-3008, USA
| | - Ivan Marchionni
- Department of Physiology, Northwestern University, Feinberg School of Medicine, IL 60611-3008, USA Current address: Instituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova 16163, Italy
| | - Iris Haumann
- Institute for Neuroanatomy, University/University Hospital Hamburg, Hamburg 20246, Germany
| | - Gianmaria Maccaferri
- Department of Physiology, Northwestern University, Feinberg School of Medicine, IL 60611-3008, USA
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-2, Research Centre Jülich GmbH, Jülich 52425, Germany Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH/University Hospital Aachen, Aachen 52074, Germany JARA Translational Medicine, Jülich/Aachen, Germany
| |
Collapse
|
23
|
Abstract
Recent research into local-circuit GABAergic inhibitory interneurons of the mammalian central nervous system has provided unprecedented insight into the mechanics of neuronal circuitry and its dysfunction. Inhibitory interneurons consist of a broad array of anatomically and neurochemically diverse cell types, and this suggests that each occupies an equally diverse functional role. Although neurogliaform cells were observed by Cajal over a century ago, our understanding of the functional role of this class of interneurons is in its infancy. However, it is rapidly becoming clear that this cell type operates under a distinct repertoire of rules to provide novel forms of inhibitory control of numerous afferent pathways.
Collapse
|
24
|
Nicola Z, Fabel K, Kempermann G. Development of the adult neurogenic niche in the hippocampus of mice. Front Neuroanat 2015; 9:53. [PMID: 25999820 PMCID: PMC4423450 DOI: 10.3389/fnana.2015.00053] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/16/2015] [Indexed: 11/13/2022] Open
Abstract
When does adult hippocampal neurogenesis begin? We describe the development of the neurogenic niche in the subgranular zone (SGZ) of the hippocampal dentate gyrus. We did so from the perspective of the situation in the adult. Ontogeny of the dentate gyrus is complex and results in an ectopic neurogenic niche that lifelong generates new granule cells. Neurogenesis during the fetal and early postnatal periods builds the dentate gyrus and gives way to activity-dependent "adult" neurogenesis. We used markers most relevant to adult neurogenesis research to describe this transition: Nestin, Sox2, BLBP, GFAP, Tbr2, Doublecortin (DCX), NeuroD1 and Prox1. We found that massive changes and a local condensation of proliferating precursor cells occurs between postnatal day 7 (P7), near the peak in proliferation, and P14. Before and around P7, the spatial distribution of cells and the co-localization of markers were distinct from the situation in the adult. Unlike the adult SGZ, the marker pair Nestin/Sox2 and the radial glial marker BLBP were not overlapping during embryonic development, presumably indicating different types of radial glia-like cells. Before P7 GFAP-positive cells in the hilus lacked the radial orientation that is characteristic of the adult type-1 cells. DCX, which is concentrated in type-2b and type-3 progenitor cells and early postmitotic neurons in the adult, showed diffuse expression before P7. Intermediate progenitor cell marker Tbr2 became restricted to the SGZ but was found in the granule cell layer (GCL) and hilus before. Lineage markers NeuroD1 and Prox1 confirmed this pattern. We conclude that the neurogenic niche of adult neurogenesis is in place well before true adulthood. This might indicate that consistent with the hypothesized function of adult neurogenesis in activity-dependent plasticity, the early transition from postnatal neurogenesis to adult neurogenesis coincides with the time, when the young mice start to become active themselves.
Collapse
Affiliation(s)
- Zeina Nicola
- Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) Dresden, and CRTD DFG Research Center for Regenerative Therapy, Technische Universität Dresden Dresden, Germany
| | - Klaus Fabel
- Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) Dresden, and CRTD DFG Research Center for Regenerative Therapy, Technische Universität Dresden Dresden, Germany
| | - Gerd Kempermann
- Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) Dresden, and CRTD DFG Research Center for Regenerative Therapy, Technische Universität Dresden Dresden, Germany
| |
Collapse
|
25
|
Optogenetic activation of cajal-retzius cells reveals their glutamatergic output and a novel feedforward circuit in the developing mouse hippocampus. J Neurosci 2014; 34:13018-32. [PMID: 25253849 DOI: 10.1523/jneurosci.1407-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cajal-Retzius cells orchestrate the development of cortical circuits by secreting the glycoprotein reelin. However, their computational functions are still unknown. In fact, the nature of their postsynaptic targets, major neurotransmitter released, as well as the class of postsynaptic receptors activated by their firing remain unclear. Here, we have addressed these questions by activating Cajal-Retzius cells optogenetically in mouse hippocampal slices. Light delivered to stratum lacunosum-moleculare triggered EPSCs both on local interneurons and on pyramidal cells. Responses recorded under voltage-clamp conditions had identical short latencies and similar amplitudes, but were kinetically different (i.e., faster in interneurons vs pyramidal cells). In both cases, responses were blocked by TTX, indicating that they were generated by action potential-dependent release. Responses in interneurons were rescued by the addition of 4-AP to TTX, and decreased when presynaptic firing in Cajal-Retzius cells was reduced by the chemokine CXCL12, indicating the existence of a direct Cajal-Retzius cell-interneuron monosynaptic connection. Although the combined application of 4-AP and TTX did not rescue responses in pyramidal cells, neither were they affected by the GABAA receptor blocker gabazine, which would be expected if they were polysynaptic. Both connections showed physiological and pharmacological properties indicating the involvement of AMPA- and NMDA-type glutamate receptors. The connectivity from presynaptic Cajal-Retzius cells to interneurons was strong enough to generate long-latency feedforward GABAergic input onto pyramidal cells. We propose that this newly defined Cajal-Retzius cell-dependent microcircuit may regulate synaptic plasticity and dendritic development in stratum lacunosum-moleculare, thus impacting the integrative properties of the developing hippocampus.
Collapse
|
26
|
Sema3E/PlexinD1 regulates the migration of hem-derived Cajal-Retzius cells in developing cerebral cortex. Nat Commun 2014; 5:4265. [PMID: 24969029 DOI: 10.1038/ncomms5265] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/31/2014] [Indexed: 02/06/2023] Open
Abstract
During the development of the cerebral cortex, Cajal-Retzius (CR) cells settle in the preplate and coordinate the precise growth of the neocortex. Indeed, CR cells migrate tangentially from specific proliferative regions of the telencephalon (for example, the cortical hem (CH)) to populate the entire cortical surface. This is a very finely tuned process regulated by an emerging number of factors that has been sequentially revealed in recent years. However, the putative participation of one of the major families of axon guidance molecules in this process, the Semaphorins, was not explored. Here we show that Semaphorin-3E (Sema3E) is a natural negative regulator of the migration of PlexinD1-positive CR cells originating in the CH. Our results also indicate that Sema3E/PlexinD1 signalling controls the motogenic potential of CR cells in vitro and in vivo. Indeed, absence of Sema3E/PlexinD1 signalling increased the migratory properties of CR cells. This modulation implies negative effects on CXCL12/CXCR4 signalling and increased ADF/Cofilin activity.
Collapse
|
27
|
Qian T, Chen R, Nakamura M, Furukawa T, Kumada T, Akita T, Kilb W, Luhmann HJ, Nakahara D, Fukuda A. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats. Front Cell Neurosci 2014; 8:33. [PMID: 24574969 PMCID: PMC3918584 DOI: 10.3389/fncel.2014.00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/22/2014] [Indexed: 12/27/2022] Open
Abstract
In the developing cerebral cortex, the marginal zone (MZ), consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA) in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl−]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na+, K+-2Cl− cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na+ channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of glycine receptors in the MZ.
Collapse
Affiliation(s)
- Taizhe Qian
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Rongqing Chen
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Masato Nakamura
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Tomonori Furukawa
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Tatsuro Kumada
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan ; Department of Occupational Therapy, Tokoha University Hamamatsu, Japan
| | - Tenpei Akita
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Daiichiro Nakahara
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| |
Collapse
|