1
|
Pervin Z, Pinner J, Flynn L, Cerros CM, Williams ME, Hill DE, Stephen JM. School-aged children diagnosed with an FASD exhibit visuo-cortical network disturbance: A magnetoencephalography (MEG) study. Alcohol 2022; 99:59-69. [PMID: 34915151 PMCID: PMC9113084 DOI: 10.1016/j.alcohol.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022]
Abstract
Children with prenatal alcohol exposure (PAE) often suffer from cognitive and neurobehavioral dysfunction throughout their lives, which may rise to a level of concern such that children receive a diagnosis under the fetal alcohol spectrum disorders (FASD) umbrella. Magnetoencephalography (MEG) contributes direct insight into neural processing and functional connectivity measures with temporal precision to understand cortical processing disorders that manifest during development. The impairment of perception may become more consequential among school-aged children with an FASD in the process of intellectual functioning and behavioral maturation. Fifty participants with the age range of 8-13 years participated in our study following parental informed consent and child assent. For each participant, visual responses were recorded using magnetoencephalography (MEG) while performing a prosaccade task with central stimuli (fovea centralis) and peripheral stimuli (left and right of central) presented on a screen, requiring participants to shift their gaze to the stimuli. After source analysis using minimum norm estimation (MNE), we investigated visual responses from each participant by measuring the latency and amplitude of visual evoked fields. Delayed peak latency of the visual response was identified in the primary visual area (calcarine fissure) and visual association areas (v2, v3) in young children with an FASD for both stimulus types (central and peripheral). But the difference in visual response latency was only statistically significant (p ≤ 0.01) for the peripheral (right) stimulus. We also observed reduced amplitude (p ≤ 0.006) of visual evoked response in children with an FASD for the central stimulus type in both primary and visual association areas. Multiple visual areas show impairment in children with an FASD, with visual delay and conduction disturbance more prominent in response to peripheral stimuli. Children with an FASD also exhibit significantly reduced amplitude of neural activation to central stimuli. These sensory deficits may lead to slow cognitive processing speed through continued intra-cortical network disturbance in children with an FASD.
Collapse
Affiliation(s)
- Zinia Pervin
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, USA.,Department of Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - John Pinner
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, USA
| | - Lucinda Flynn
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, USA
| | - Cassandra M. Cerros
- Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mareth E. Williams
- Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Dina E. Hill
- Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Julia M. Stephen
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, USA.,Corresponding author Julia M. Stephen, Ph.D., MEG Core Director, Prof. of Translational Neuroscience, The Mind Research Network, Pete & Nancy Domenici hall, 1101 Yale Blvd. NE, Albuquerque, New Mexico 87106, Tel: (505)-504-1053.
| |
Collapse
|
2
|
Fehér KD, Nakataki M, Morishima Y. Phase-Dependent Modulation of Signal Transmission in Cortical Networks through tACS-Induced Neural Oscillations. Front Hum Neurosci 2017; 11:471. [PMID: 29021749 PMCID: PMC5624081 DOI: 10.3389/fnhum.2017.00471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/08/2017] [Indexed: 11/13/2022] Open
Abstract
Oscillatory neural activity is considered a basis of signal transmission in brain networks. However, the causal role of neural oscillations in regulating cortico-cortical signal transmission has so far not been directly demonstrated. To date, due to methodological limitations, studies on the online modulatory mechanisms of transcranial alternating current stimulation (tACS)-induced neural oscillations are confined to the primary motor cortex. To address the causal role of oscillatory activity in modulating cortico-cortical signal transmission, we have established a new method using concurrent tACS, transcranial magnetic stimulation (TMS) and electroencephalography (EEG). Through tACS, we introduced 6-Hz (theta) oscillatory activity in the human dorsolateral prefrontal cortex (DLPFC). During tACS, we applied single-pulse TMS over the DLPFC at different phases of tACS and assessed propagation of TMS-induced neural activity with EEG. We show that tACS-induced theta oscillations modulate the propagation of TMS-induced activity in a phase-dependent manner and that phase-dependent modulation is not simply explained by the instantaneous amplitude of tACS. The results demonstrate a phase-dependent modulatory mechanism of tACS at a cortical network level, which is consistent with a causal role of neural oscillations in regulating the efficacy of signal transmission in the brain.
Collapse
Affiliation(s)
- Kristoffer D. Fehér
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Masahito Nakataki
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
3
|
Timing of emotion representation in right and left occipital region: Evidence from combined TMS-EEG. Brain Cogn 2016; 106:13-22. [DOI: 10.1016/j.bandc.2016.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 02/26/2016] [Accepted: 04/17/2016] [Indexed: 11/20/2022]
|
4
|
Hwang K, Ghuman AS, Manoach DS, Jones SR, Luna B. Frontal preparatory neural oscillations associated with cognitive control: A developmental study comparing young adults and adolescents. Neuroimage 2016; 136:139-48. [PMID: 27173759 DOI: 10.1016/j.neuroimage.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/24/2016] [Accepted: 05/05/2016] [Indexed: 01/22/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies suggest that age-related changes in the frontal cortex may underlie developmental improvements in cognitive control. In the present study we used magnetoencephalography (MEG) to identify frontal oscillatory neurodynamics that support age-related improvements in cognitive control during adolescence. We characterized the differences in neural oscillations in adolescents and adults during the preparation to suppress a prepotent saccade (antisaccade trials-AS) compared to preparing to generate a more automatic saccade (prosaccade trials-PS). We found that for adults, AS were associated with increased beta-band (16-38Hz) power in the dorsal lateral prefrontal cortex (DLPFC), enhanced alpha- to low beta-band (10-18Hz) power in the frontal eye field (FEF) that predicted performance, and increased cross-frequency alpha-beta (10-26Hz) amplitude coupling between the DLPFC and the FEF. Developmental comparisons between adults and adolescents revealed similar engagement of DLPFC beta-band power but weaker FEF alpha-band power, and lower cross-frequency coupling between the DLPFC and the FEF in adolescents. These results suggest that lateral prefrontal neural activity associated with cognitive control is adult-like by adolescence; the development of cognitive control from adolescence to adulthood is instead associated with increases in frontal connectivity and strengthening of inhibition signaling for suppressing task-incompatible processes.
Collapse
Affiliation(s)
- Kai Hwang
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States.
| | - Avniel S Ghuman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Kida T, Tanaka E, Kakigi R. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity. Front Hum Neurosci 2016; 9:713. [PMID: 26834608 PMCID: PMC4717327 DOI: 10.3389/fnhum.2015.00713] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.
Collapse
Affiliation(s)
- Tetsuo Kida
- Department of Integrative Physiology, National Institute for Physiological SciencesOkazaki, Japan
| | | | | |
Collapse
|
6
|
Bortoletto M, Veniero D, Thut G, Miniussi C. The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome. Neurosci Biobehav Rev 2014; 49:114-24. [PMID: 25541459 DOI: 10.1016/j.neubiorev.2014.12.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/14/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022]
Abstract
Recent developments in neuroscience have emphasised the importance of integrated distributed networks of brain areas for successful cognitive functioning. Our current understanding is that the brain has a modular organisation in which segregated networks supporting specialised processing are linked through a few long-range connections, ensuring processing integration. Although such architecture is structurally stable, it appears to be flexible in its functioning, enabling long-range connections to regulate the information flow and facilitate communication among the relevant modules, depending on the contingent cognitive demands. Here we show how insights brought by the coregistration of transcranial magnetic stimulation and electroencephalography (TMS-EEG) integrate and support recent models of functional brain architecture. Moreover, we will highlight the types of data that can be obtained through TMS-EEG, such as the timing of signal propagation, the excitatory/inhibitory nature of connections and causality. Last, we will discuss recent emerging applications of TMS-EEG in the study of brain disorders.
Collapse
Affiliation(s)
- Marta Bortoletto
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Domenica Veniero
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Neuroscience Section, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
7
|
Abstract
The ability to inhibit prepotent responses is critical for successful goal-directed behaviors. To investigate the neural basis of inhibitory control, we conducted a magnetoencephalography study where human participants performed the antisaccade task. Results indicated that neural oscillations in the prefrontal cortex (PFC) showed significant task modulations in preparation to suppress saccades. Before successfully inhibiting a saccade, beta-band power (18-38 Hz) in the lateral PFC and alpha-band power (10-18 Hz) in the frontal eye field (FEF) increased. Trial-by-trial prestimulus FEF alpha-band power predicted successful saccadic inhibition. Further, inhibitory control enhanced cross-frequency amplitude coupling between PFC beta-band (18-38 Hz) activity and FEF alpha-band activity, and the coupling appeared to be initiated by the PFC. Our results suggest a generalized mechanism for top-down inhibitory control: prefrontal beta-band activity initiates alpha-band activity for functional inhibition of the effector and/or sensory system.
Collapse
|
8
|
Napolitani M, Bodart O, Canali P, Seregni F, Casali A, Laureys S, Rosanova M, Massimini M, Gosseries O. Transcranial magnetic stimulation combined with high-density EEG in altered states of consciousness. Brain Inj 2014; 28:1180-9. [DOI: 10.3109/02699052.2014.920524] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Patuzzo S, Manganotti P. Deep brain stimulation in persistent vegetative States: ethical issues governing decision making. Behav Neurol 2014; 2014:641213. [PMID: 24803730 PMCID: PMC4006619 DOI: 10.1155/2014/641213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 11/17/2022] Open
Abstract
The aim of the present paper was to investigate the fundamental ethical issues of Deep Brain Stimulation (DBS) on patients remaining in Persistent Vegetative State (PVS). First, the purpose of this analysis was to discuss the nature of this intervention in order to classify it such as an ordinary clinical practice, or otherwise as an extraordinary clinical practice or as experimental research. Second, ethical issues, criticisms, and methodological issues of this intervention, also in the future perspectives, are discussed, attempting to identify who could give informed consent for a patient in PVS.
Collapse
Affiliation(s)
- Sara Patuzzo
- Department of Public Health and Community Medicine, Unit of Forensic Medicine, University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| | - Paolo Manganotti
- Department of Neurologic and Movement Sciences, Unit of Neurology, University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| |
Collapse
|
10
|
Akaishi R, Umeda K, Nagase A, Sakai K. Autonomous Mechanism of Internal Choice Estimate Underlies Decision Inertia. Neuron 2014; 81:195-206. [DOI: 10.1016/j.neuron.2013.10.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2013] [Indexed: 10/25/2022]
|
11
|
Kida T, Kakigi R. Task-related changes in functional properties of the human brain network underlying attentional control. PLoS One 2013; 8:e79023. [PMID: 24223876 PMCID: PMC3817093 DOI: 10.1371/journal.pone.0079023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
Previous studies have demonstrated task-related changes in brain activation and inter-regional connectivity but the temporal dynamics of functional properties of the brain during task execution is still unclear. In the present study, we investigated task-related changes in functional properties of the human brain network by applying graph-theoretical analysis to magnetoencephalography (MEG). Subjects performed a cue-target attention task in which a visual cue informed them of the direction of focus for incoming auditory or tactile target stimuli, but not the sensory modality. We analyzed the MEG signal in the cue-target interval to examine network properties during attentional control. Cluster-based non-parametric permutation tests with the Monte-Carlo method showed that in the cue-target interval, beta activity was desynchronized in the sensori-motor region including premotor and posterior parietal regions in the hemisphere contralateral to the attended side. Graph-theoretical analysis revealed that, in beta frequency, global hubs were found around the sensori-motor and prefrontal regions, and functional segregation over the entire network was decreased during attentional control compared to the baseline. Thus, network measures revealed task-related temporal changes in functional properties of the human brain network, leading to the understanding of how the brain dynamically responds to task execution as a network.
Collapse
Affiliation(s)
- Tetsuo Kida
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- * E-mail:
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
12
|
Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Brain Excitability in Severely Brain-Injured Patients in Minimally Conscious or Vegetative State. Brain Stimul 2013; 6:913-21. [DOI: 10.1016/j.brs.2013.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/30/2013] [Accepted: 06/30/2013] [Indexed: 11/18/2022] Open
|
13
|
Mattavelli G, Rosanova M, Casali AG, Papagno C, Romero Lauro LJ. Top-down interference and cortical responsiveness in face processing: A TMS-EEG study. Neuroimage 2013; 76:24-32. [DOI: 10.1016/j.neuroimage.2013.03.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/26/2013] [Accepted: 03/09/2013] [Indexed: 11/25/2022] Open
|
14
|
Akaishi R, Ueda N, Sakai K. Task-related modulation of effective connectivity during perceptual decision making: dissociation between dorsal and ventral prefrontal cortex. Front Hum Neurosci 2013; 7:365. [PMID: 23874285 PMCID: PMC3710996 DOI: 10.3389/fnhum.2013.00365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022] Open
Abstract
The dorsal and ventral parts of the lateral prefrontal cortex have been thought to play distinct roles in decision making. Although its dorsal part such as the frontal eye field (FEF) is shown to play roles in accumulation of sensory information during perceptual decision making, the role of the ventral prefrontal cortex (PFv) is not well-documented. Previous studies have suggested that the PFv is involved in selective attention to the task-relevant information and is associated with accuracy of the behavioral performance. It is unknown, however, whether the accumulation and selection processes are anatomically dissociated between the FEF and PFv. Here we show that, by using concurrent TMS and EEG recording, the short-latency (20-40 ms) TMS-evoked potentials after stimulation of the FEF change as a function of the time to behavioral response, whereas those after stimulation of the PFv change depending on whether the response is correct or not. The potentials after stimulation of either region did not show significant interaction between time to response and performance accuracy, suggesting dissociation between the processes subserved by the FEF and PFv networks. The results are consistent with the idea that the network involving the FEF plays a role in information accumulation, whereas the network involving the PFv plays a role in selecting task relevant information. In addition, stimulation of the FEF and PFv induced activation in common regions in the dorsolateral and medial frontal cortices, suggesting convergence of information processed in the two regions. Taken together, the results suggest dissociation between the FEF and PFv networks for their computational roles in perceptual decision making. The study also highlights the advantage of TMS-EEG technique in investigating the computational processes subserved by the neural network in the human brain with a high temporal resolution.
Collapse
Affiliation(s)
- Rei Akaishi
- Department of Cognitive Neuroscience, Graduate School of Medicine, The University of Tokyo Tokyo, Japan ; Department of Experimental Psychology, University of Oxford Oxford, UK
| | | | | |
Collapse
|
15
|
Passingham RE, Rowe JB, Sakai K. Has brain imaging discovered anything new about how the brain works? Neuroimage 2012; 66:142-50. [PMID: 23123632 DOI: 10.1016/j.neuroimage.2012.10.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/26/2012] [Accepted: 10/27/2012] [Indexed: 11/16/2022] Open
Abstract
There have now been roughly 130,000 papers on fMRI. While these have clearly contributed to our understanding of the functional anatomy of the human brain, it is less clear that they have changed the way in which we think about the brain. The issue, in other words, is whether they have established new principles about how the brain works. In this paper we offer as an example one new principle, partly to lay down the criteria that are required for establishing a new principle, and partly to encourage others to offer other principles. Our example concerns the flexible flow of information through the cortex that must occur according to the demands of the task or current context. We suggest that this flexibility is achieved by feedback connections from the prefrontal and parietal cortex, and that these include connections to sensory and motor areas. However, the nature of the selective effect differs. The parietal cortex can select both within and across processing streams. By across streams we mean that it can have the same influence on different streams, for example the dorsal and ventral visual systems. However, only the prefrontal cortex can also select between processing streams. The difference between the prefrontal and parietal effects is due to their different positions within the processing hierarchy.
Collapse
Affiliation(s)
- R E Passingham
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK; Wellcome Centre for Imaging Neuroscience, University College London, 12 Queen Square, London.
| | - J B Rowe
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 2EF, UK; Department of Clinical Neuroscience, Cambridge University, Cambridge CB2 2QQ, UK
| | - K Sakai
- Department of Cognitive Neuroscience, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Unraveling brain network coding with a connectivity-based classifier. Trends Cogn Sci 2012. [DOI: 10.1016/j.tics.2012.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Johnson JS, Kundu B, Casali AG, Postle BR. Task-dependent changes in cortical excitability and effective connectivity: a combined TMS-EEG study. J Neurophysiol 2012; 107:2383-92. [PMID: 22323626 PMCID: PMC3362246 DOI: 10.1152/jn.00707.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 02/03/2012] [Indexed: 11/22/2022] Open
Abstract
The brain's electrical response to transcranial magnetic stimulation (TMS) is known to be influenced by exogenous factors such as the frequency and intensity of stimulation and the orientation and positioning of the stimulating coil. Less understood, however, is the influence of endogenous neural factors, such as global brain state, on the TMS-evoked response (TMS-ER). In the present study, we explored how changes in behavioral state affect the TMS-ER by perturbing the superior parietal lobule (SPL) with single pulses of TMS and measuring consequent differences in the frequency, strength, and spatial spread of TMS-evoked currents during the delay period of a spatial short-term memory task and during a period of passive fixation. Results revealed that task performance increased the overall strength of electrical currents induced by TMS, increased the spatial spread of TMS-evoked activity to distal brain regions, and increased the ability of TMS to reset the phase of ongoing broadband cortical oscillations. By contrast, task performance had little effect on the dominant frequency of the TMS-ER, both locally and at distal brain areas. These findings contribute to a growing body of work using combined TMS and neuroimaging methods to explore task-dependent changes in the functional organization of cortical networks implicated in task performance.
Collapse
Affiliation(s)
- Jeffrey S Johnson
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, WI 53719, USA.
| | | | | | | |
Collapse
|
18
|
Rosanova M, Gosseries O, Casarotto S, Boly M, Casali AG, Bruno MA, Mariotti M, Boveroux P, Tononi G, Laureys S, Massimini M. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. ACTA ACUST UNITED AC 2012; 135:1308-20. [PMID: 22226806 PMCID: PMC3326248 DOI: 10.1093/brain/awr340] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subject's ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment.
Collapse
Affiliation(s)
- Mario Rosanova
- Department of Clinical Sciences Luigi Sacco, University of Milan, 20157 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Combining Transcranial Magnetic Stimulation with Electroencephalography to Study Human Cortical Excitability and Effective Connectivity. NEUROMETHODS 2011. [DOI: 10.1007/7657_2011_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|