1
|
Talross GJS, Carlson JR. New dimensions in the molecular genetics of insect chemoreception. Trends Genet 2025:S0168-9525(25)00078-2. [PMID: 40340097 DOI: 10.1016/j.tig.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025]
Abstract
Chemoreception is the foundation of olfaction and taste, which in insects underlie the detection of humans to whom they spread disease and crops that they ravage. Recent advances have provided clear and in some cases surprising new insights into the molecular genetics of chemoreception. We describe mechanisms that govern the choice of a single Odorant receptor gene by an olfactory receptor neuron in Drosophila. We highlight genetic and epigenetic mechanisms by which chemoreceptor expression can be modulated. Exitrons, RNA editing, and pseudo-pseudogenes in chemosensory systems are described. We summarize key insights from the recent structural determinations of odorant and taste receptors. Finally, new molecular components of chemosensory systems, including long noncoding RNAs, are described.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
Wang Q, Zhang J, Liu C, Ru C, Qian Q, Yang M, Yan S, Liu W, Wang G. Identification of antennal alternative splicing by combining genome and full-length transcriptome analysis in Bactrocera dorsalis. Front Physiol 2024; 15:1384426. [PMID: 38952867 PMCID: PMC11215311 DOI: 10.3389/fphys.2024.1384426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Alternative splicing is an essential post-transcriptional regulatory mechanism that diversifies gene function by generating multiple protein isoforms from a single gene and act as a crucial role in insect environmental adaptation. Olfaction, a key sense for insect adaptation, relies heavily on the antennae, which are the primary olfactory organs expressing most of the olfactory genes. Despite the extensive annotation of olfactory genes within insect antennal tissues facilitated by high-throughput sequencing technology advancements, systematic analyses of alternative splicing are still relatively less. In this study, we focused on the oriental fruit fly (Bactrocera dorsalis), a significant pest of fruit crops. We performed a detailed analysis of alternative splicing in its antennae by utilizing the full-length transcriptome of its antennal tissue and the insect's genome. The results revealed 8600 non-redundant full-length transcripts identified in the oriental fruit fly antennal full-length transcriptome, spanning 4,145 gene loci. Over 40% of these loci exhibited multiple isoforms. Among these, 161 genes showed sex-biased isoform switching, involving seven different types of alternative splicing. Notably, events involving alternative transcription start sites (ATSS) and alternative transcription termination sites (ATTS) were the most common. Of all the genes undergoing ATSS and ATTS alternative splicing between male and female, 32 genes were alternatively spliced in protein coding regions, potentially affecting protein function. These genes were categorized based on the length of the sex-biased isoforms, with the highest difference in isoform fraction (dIF) associated with the ATSS type, including genes such as BdorABCA13, BdorCAT2, and BdorTSN3. Additionally, transcription factor binding sites for doublesex were identified upstream of both BdorABCA13 and BdorCAT2. Besides being expressed in the antennal tissues, BdorABCA13 and BdorCAT2 are also expressed in the mouthparts, legs, and genitalia of both female and male adults, suggesting their functional diversity. This study reveals alternative splicing events in the antennae of Bactrophora dorsalis from two aspects: odorant receptor genes and other types of genes expressed in the antennae. This study not only provides a research foundation for understanding the regulation of gene function by alternative splicing in the oriental fruit fly but also offers new insights for utilizing olfaction-based behavioral manipulation techniques to manage this pest.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chenhao Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chuanjian Ru
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Qian Qian
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
3
|
Xie Q, Li J, Li H, Udeshi ND, Svinkina T, Orlin D, Kohani S, Guajardo R, Mani DR, Xu C, Li T, Han S, Wei W, Shuster SA, Luginbuhl DJ, Quake SR, Murthy SE, Ting AY, Carr SA, Luo L. Transcription factor Acj6 controls dendrite targeting via a combinatorial cell-surface code. Neuron 2022; 110:2299-2314.e8. [PMID: 35613619 DOI: 10.1016/j.neuron.2022.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Transcription factors specify the fate and connectivity of developing neurons. We investigate how a lineage-specific transcription factor, Acj6, controls the precise dendrite targeting of Drosophila olfactory projection neurons (PNs) by regulating the expression of cell-surface proteins. Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains, and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion molecules and proteins previously not associated with wiring, such as Piezo, whose mechanosensitive ion channel activity is dispensable for its function in PN dendrite targeting. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combined expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, Acj6 controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.
Collapse
Affiliation(s)
- Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Orlin
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sayeh Kohani
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Wei Wei
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - S Andrew Shuster
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Swetha E Murthy
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Mika K, Benton R. Olfactory Receptor Gene Regulation in Insects: Multiple Mechanisms for Singular Expression. Front Neurosci 2021; 15:738088. [PMID: 34602974 PMCID: PMC8481607 DOI: 10.3389/fnins.2021.738088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
The singular expression of insect olfactory receptors in specific populations of olfactory sensory neurons is fundamental to the encoding of odors in patterns of neuronal activity in the brain. How a receptor gene is selected, from among a large repertoire in the genome, to be expressed in a particular neuron is an outstanding question. Focusing on Drosophila melanogaster, where most investigations have been performed, but incorporating recent insights from other insect species, we review the multilevel regulatory mechanisms of olfactory receptor expression. We discuss how cis-regulatory elements, trans-acting factors, chromatin modifications, and feedback pathways collaborate to activate and maintain expression of the chosen receptor (and to suppress others), highlighting similarities and differences with the mechanisms underlying singular receptor expression in mammals. We also consider the plasticity of receptor regulation in response to environmental cues and internal state during the lifetime of an individual, as well as the evolution of novel expression patterns over longer timescales. Finally, we describe the mechanisms and potential significance of examples of receptor co-expression.
Collapse
Affiliation(s)
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Li H, Li T, Horns F, Li J, Xie Q, Xu C, Wu B, Kebschull JM, McLaughlin CN, Kolluru SS, Jones RC, Vacek D, Xie A, Luginbuhl DJ, Quake SR, Luo L. Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory Receptor Expression and Axon Targeting. Curr Biol 2020; 30:1189-1198.e5. [PMID: 32059767 DOI: 10.1016/j.cub.2020.01.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
The regulatory mechanisms by which neurons coordinate their physiology and connectivity are not well understood. The Drosophila olfactory receptor neurons (ORNs) provide an excellent system to investigate this question. Each ORN type expresses a unique olfactory receptor, or a combination thereof, and sends their axons to a stereotyped glomerulus. Using single-cell RNA sequencing, we identified 33 transcriptomic clusters for ORNs and mapped 20 to their glomerular types, demonstrating that transcriptomic clusters correspond well with anatomically and physiologically defined ORN types. Each ORN type expresses hundreds of transcription factors. Transcriptome-instructed genetic analyses revealed that (1) one broadly expressed transcription factor (Acj6) only regulates olfactory receptor expression in one ORN type and only wiring specificity in another type, (2) one type-restricted transcription factor (Forkhead) only regulates receptor expression, and (3) another type-restricted transcription factor (Unplugged) regulates both events. Thus, ORNs utilize diverse strategies and complex regulatory networks to coordinate their physiology and connectivity.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Felix Horns
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Bing Wu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Justus M Kebschull
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Sai Saroja Kolluru
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Robert C Jones
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - David Vacek
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Anthony Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Yan H, Jafari S, Pask G, Zhou X, Reinberg D, Desplan C. Evolution, developmental expression and function of odorant receptors in insects. J Exp Biol 2020; 223:jeb208215. [PMID: 32034042 PMCID: PMC7790194 DOI: 10.1242/jeb.208215] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animals rely on their chemosensory system to discriminate among a very large number of attractive or repulsive chemical cues in the environment, which is essential to respond with proper action. The olfactory sensory systems in insects share significant similarities with those of vertebrates, although they also exhibit dramatic differences, such as the molecular nature of the odorant receptors (ORs): insect ORs function as heteromeric ion channels with a common Orco subunit, unlike the G-protein-coupled olfactory receptors found in vertebrates. Remarkable progress has recently been made in understanding the evolution, development and function of insect odorant receptor neurons (ORNs). These studies have uncovered the diversity of olfactory sensory systems among insect species, including in eusocial insects that rely extensively on olfactory sensing of pheromones for social communication. However, further studies, notably functional analyses, are needed to improve our understanding of the origins of the Orco-OR system, the mechanisms of ORN fate determination, and the extraordinary diversity of behavioral responses to chemical cues.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste (UFCST), University of Florida, Gainesville, FL 32610, USA
| | - Shadi Jafari
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Department of Biology, New York University, New York, NY 10003, USA
| | - Gregory Pask
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Danny Reinberg
- Howard Hughes Medical Institute (HHMI), Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
7
|
Leyva-Díaz E, Masoudi N, Serrano-Saiz E, Glenwinkel L, Hobert O. Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e374. [PMID: 32012462 DOI: 10.1002/wdev.374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
One approach to understand the construction of complex systems is to investigate whether there are simple design principles that are commonly used in building such a system. In the context of nervous system development, one may ask whether the generation of its highly diverse sets of constituents, that is, distinct neuronal cell types, relies on genetic mechanisms that share specific common features. Specifically, are there common patterns in the function of regulatory genes across different neuron types and are those regulatory mechanisms not only used in different parts of one nervous system, but are they conserved across animal phylogeny? We address these questions here by focusing on one specific, highly conserved and well-studied regulatory factor, the POU homeodomain transcription factor UNC-86. Work over the last 30 years has revealed a common and paradigmatic theme of unc-86 function throughout most of the neuron types in which Caenorhabditis elegans unc-86 is expressed. Apart from its role in preventing lineage reiterations during development, UNC-86 operates in combination with distinct partner proteins to initiate and maintain terminal differentiation programs, by coregulating a vast array of functionally distinct identity determinants of specific neuron types. Mouse orthologs of unc-86, the Brn3 genes, have been shown to fulfill a similar function in initiating and maintaining neuronal identity in specific parts of the mouse brain and similar functions appear to be carried out by the sole Drosophila ortholog, Acj6. The terminal selector function of UNC-86 in many different neuron types provides a paradigm for neuronal identity regulation across phylogeny. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Invertebrate Organogenesis > Worms Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | | | - Lori Glenwinkel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| |
Collapse
|
8
|
Gomez-Diaz C, Martin F, Garcia-Fernandez JM, Alcorta E. The Two Main Olfactory Receptor Families in Drosophila, ORs and IRs: A Comparative Approach. Front Cell Neurosci 2018; 12:253. [PMID: 30214396 PMCID: PMC6125307 DOI: 10.3389/fncel.2018.00253] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Most insect species rely on the detection of olfactory cues for critical behaviors for the survival of the species, e.g., finding food, suitable mates and appropriate egg-laying sites. Although insects show a diverse array of molecular receptors dedicated to the detection of sensory cues, two main types of molecular receptors have been described as responsible for olfactory reception in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). Although both receptor families share the role of being the first chemosensors in the insect olfactory system, they show distinct evolutionary origins and several distinct structural and functional characteristics. While ORs are seven-transmembrane-domain receptor proteins, IRs are related to the ionotropic glutamate receptor (iGluR) family. Both types of receptors are expressed on the olfactory sensory neurons (OSNs) of the main olfactory organ, the antenna, but they are housed in different types of sensilla, IRs in coeloconic sensilla and ORs in basiconic and trichoid sensilla. More importantly, from the functional point of view, they display different odorant specificity profiles. Research advances in the last decade have improved our understanding of the molecular basis, evolution and functional roles of these two families, but there are still controversies and unsolved key questions that remain to be answered. Here, we present an updated review on the advances of the genetic basis, evolution, structure, functional response and regulation of both types of chemosensory receptors. We use a comparative approach to highlight the similarities and differences among them. Moreover, we will discuss major open questions in the field of olfactory reception in insects. A comprehensive analysis of the structural and functional convergence and divergence of both types of receptors will help in elucidating the molecular basis of the function and regulation of chemoreception in insects.
Collapse
Affiliation(s)
- Carolina Gomez-Diaz
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Fernando Martin
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | | | - Esther Alcorta
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
9
|
Li H, Shuster SA, Li J, Luo L. Linking neuronal lineage and wiring specificity. Neural Dev 2018; 13:5. [PMID: 29653548 PMCID: PMC5899351 DOI: 10.1186/s13064-018-0102-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/14/2018] [Indexed: 02/01/2023] Open
Abstract
Brain function requires precise neural circuit assembly during development. Establishing a functional circuit involves multiple coordinated steps ranging from neural cell fate specification to proper matching between pre- and post-synaptic partners. How neuronal lineage and birth timing influence wiring specificity remains an open question. Recent findings suggest that the relationships between lineage, birth timing, and wiring specificity vary in different neuronal circuits. In this review, we summarize our current understanding of the cellular, molecular, and developmental mechanisms linking neuronal lineage and birth timing to wiring specificity in a few specific systems in Drosophila and mice, and review different methods employed to explore these mechanisms.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - S. Andrew Shuster
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305 USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Computational genome-wide survey of odorant receptors from two solitary bees Dufourea novaeangliae (Hymenoptera: Halictidae) and Habropoda laboriosa (Hymenoptera: Apidae). Sci Rep 2017; 7:10823. [PMID: 28883425 PMCID: PMC5589748 DOI: 10.1038/s41598-017-11098-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022] Open
Abstract
Olfactory/odorant receptors (ORs) probably govern eusocial behaviour in honey bees through detection of cuticular hydrocarbons (CHCs) and queen mandibular gland pheromones (QMP). CHCs are involved in nest-mate recognition whereas QMP acts as sex pheromone for drones and as retinue pheromone for female workers. Further studies on the effect of eusociality on the evolution of ORs are hindered by the non-availability of comprehensive OR sets of solitary species. We report complete OR repertoires from two solitary bees Dufourea novaeangliae (112 ORs) and Habropoda laboriosa (151 ORs). We classify these ORs into 34 phylogenetic clades/subfamilies. Differences in the OR sets of solitary and eusocial bees are observed in individual subfamilies like subfamily 9-exon (putative CHC receptors) and L (contains putative QMP receptor group). A subfamily (H) including putative floral scent receptors is expanded in the generalist honey bees only, but not in the specialists. On the contrary, subfamily J is expanded in all bees irrespective of their degree of social complexity or food preferences. Finally, we show species-lineage specific and OR-subfamily specific differences in the putative cis-regulatory DNA motifs of the ORs from six hymenopteran species. Out of these, [A/G]CGCAAGCG[C/T] is a candidate master transcription factor binding site for multiple olfactory genes.
Collapse
|
11
|
Barish S, Li Q, Pan JW, Soeder C, Jones C, Volkan PC. Transcriptional profiling of olfactory system development identifies distal antenna as a regulator of subset of neuronal fates. Sci Rep 2017; 7:40873. [PMID: 28102318 PMCID: PMC5244397 DOI: 10.1038/srep40873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/13/2016] [Indexed: 01/22/2023] Open
Abstract
Drosophila uses 50 different olfactory receptor neuron (ORN) classes that are clustered within distinct sensilla subtypes to decipher their chemical environment. Each sensilla subtype houses 1-4 ORN identities that arise through asymmetric divisions of a single sensory organ precursor (SOP). Despite a number of mutational studies investigating the regulation of ORN development, a majority of the transcriptional programs that lead to the different ORN classes in the developing olfactory system are unknown. Here we use transcriptional profiling across the time series of antennal development to identify novel transcriptional programs governing the differentiation of ORNs. We surveyed four critical developmental stages of the olfactory system: 3rd instar larval (prepatterning), 8 hours after puparium formation (APF, SOP selection), 40 hrs APF (neurogenesis), and adult antennae. We focused on the expression profiles of olfactory receptor genes and transcription factors-the two main classes of genes that regulate the sensory identity of ORNs. We identify distinct clusters of genes that have overlapping temporal expression profiles suggesting they have a key role during olfactory system development. We show that the expression of the transcription factor distal antenna (dan) is highly similar to other prepatterning factors and is required for the expression of a subset of ORs.
Collapse
Affiliation(s)
- Scott Barish
- Duke University, Department of Biology, Durham, NC, USA
| | - Qingyun Li
- Duke University, Department of Biology, Durham, NC, USA
| | - Jia W. Pan
- Duke University, Department of Biology, Durham, NC, USA
| | - Charlie Soeder
- University of North Carolina- Chapel Hill, Integrative Program for Biological & Genome Sciences, Chapel Hill, NC, USA
| | - Corbin Jones
- University of North Carolina- Chapel Hill, Integrative Program for Biological & Genome Sciences, Chapel Hill, NC, USA
- University of North Carolina- Chapel Hill, Department of Biology, Chapel Hill, NC, USA
| | - Pelin C. Volkan
- Duke University, Department of Biology, Durham, NC, USA
- Duke Institute for Brain Sciences, Durham, NC, USA
| |
Collapse
|
12
|
Li Q, Barish S, Okuwa S, Maciejewski A, Brandt AT, Reinhold D, Jones CD, Volkan PC. A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity. PLoS Genet 2016; 12:e1005780. [PMID: 26765103 PMCID: PMC4713227 DOI: 10.1371/journal.pgen.1005780] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Scott Barish
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Abigail Maciejewski
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alicia T. Brandt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dominik Reinhold
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Mathematics and Computer Science, Clark University, Worcester, Massachusetts, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
13
|
Joseph RM, Carlson JR. Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. Trends Genet 2015; 31:683-695. [PMID: 26477743 DOI: 10.1016/j.tig.2015.09.005] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 10/22/2022]
Abstract
Chemoreception is essential for survival. Feeding, mating, and avoidance of predators depend on detection of sensory cues. Drosophila contains diverse families of chemoreceptors that detect odors, tastants, pheromones, and noxious stimuli, including receptors of the odor receptor (Or), gustatory receptor (Gr), ionotropic receptor (IR), Pickpocket (Ppk), and Trp families. We consider recent progress in understanding chemoreception in the fly, including the identification of new receptors, the discovery of novel biological functions for receptors, and the localization of receptors in unexpected places. We discuss major unsolved problems and suggest areas that may be particularly ripe for future discoveries, including the roles of these receptors in driving the circuits and behaviors that are essential to the survival and reproduction of the animal.
Collapse
Affiliation(s)
- Ryan M Joseph
- Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| | - John R Carlson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA.
| |
Collapse
|
14
|
Sajgo S, Ali S, Popescu O, Badea TC. Dynamic expression of transcription factor Brn3b during mouse cranial nerve development. J Comp Neurol 2015; 524:1033-61. [PMID: 26356988 DOI: 10.1002/cne.23890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/18/2015] [Accepted: 08/31/2015] [Indexed: 01/23/2023]
Abstract
During development, transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors but rather emerge through the intersection of their expression domains. Brn3a, Brn3b, and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of retinal ganglion cells (RGC), spiral and vestibular ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the dorsal root ganglia. The present study investigates the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII, and VIII and visceromotor nuclei of nerves VII, IX, and X as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3b(KO) RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However, loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor.
Collapse
Affiliation(s)
- Szilard Sajgo
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892.,Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Science, Babes-Bolyai University, Cluj-Napoca, Cluj, 400084, Romania
| | - Seid Ali
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Octavian Popescu
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Science, Babes-Bolyai University, Cluj-Napoca, Cluj, 400084, Romania.,Institute of Biology, Romanian Academy, Bucharest, 060031, Romania
| | | |
Collapse
|
15
|
Barish S, Volkan PC. Mechanisms of olfactory receptor neuron specification in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:609-21. [PMID: 26088441 PMCID: PMC4744966 DOI: 10.1002/wdev.197] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/04/2015] [Accepted: 05/16/2015] [Indexed: 11/05/2022]
Abstract
Detection of a broad range of chemosensory signals is necessary for the survival of multicellular organisms. Chemical signals are the main facilitators of foraging, escape, and social behaviors. To increase detection coverage, animal sensory systems have evolved to create a large number of neurons with highly specific functions. The olfactory system, much like the nervous system as a whole, is astonishingly diverse. The mouse olfactory system has millions of neurons with over a thousand classes, whereas the more compact Drosophila genome has approximately 80 odorant receptor genes that give rise to 50 neuronal classes and 1300 neurons in the adult.(4) Understanding how neuronal diversity is generated remains one of the central questions in developmental neurobiology. Here, we review the current knowledge on the development of the adult Drosophila olfactory system and the progress that has been made toward answering this central question.
Collapse
Affiliation(s)
- Scott Barish
- Department of Biology, Duke University, Durham, NC, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC, USA.,Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
16
|
Jafari S, Alenius M. Cis-regulatory mechanisms for robust olfactory sensory neuron class-restricted odorant receptor gene expression in Drosophila. PLoS Genet 2015; 11:e1005051. [PMID: 25760344 PMCID: PMC4356613 DOI: 10.1371/journal.pgen.1005051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/02/2015] [Indexed: 12/26/2022] Open
Abstract
Odor perception requires that each olfactory sensory neuron (OSN) class continuously express a single odorant receptor (OR) regardless of changes in the environment. However, little is known about the control of the robust, class-specific OR expression involved. Here, we investigate the cis-regulatory mechanisms and components that generate robust and OSN class-specific OR expression in Drosophila. Our results demonstrate that the spatial restriction of expression to a single OSN class is directed by clusters of transcription-factor DNA binding motifs. Our dissection of motif clusters of differing complexity demonstrates that structural components such as motif overlap and motif order integrate transcription factor combinations and chromatin status to form a spatially restricted pattern. We further demonstrate that changes in metabolism or temperature perturb the function of complex clusters. We show that the cooperative regulation between motifs around and within the cluster generates robust, class-specific OR expression. Our neurons can become over a hundred years old. Even if neurons are restructured and remodeled by their constant work of receiving, storing and sending information, they stay devoted to one single task and retain their identity for their whole life. How a neuron keeps its identity is not well understood. In the olfactory system, the identity of the olfactory sensory neuron (OSN) is a result of the expression of a single odorant receptor (OR) from a large receptor gene repertoire in the genome. Neurons that share an expressed receptor make a functional class. Here, we identify clusters of transcription factor binding motifs to be the smallest unit that drive expression in a single olfactory sensory neuron class. We further demonstrate that it is the structure of the cluster that determines the class specific expression. However, environmental stress, such as temperature changes or starvation, destabilizes the expression produced by the cluster. Our results demonstrate that stable expression is generated from redundant motifs outside the cluster and suggest that cooperative regulation generates robust expression of the genes that determine neuronal identity and function.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mattias Alenius
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
17
|
Li Q, Ha TS, Okuwa S, Wang Y, Wang Q, Millard SS, Smith DP, Volkan PC. Combinatorial rules of precursor specification underlying olfactory neuron diversity. Curr Biol 2013; 23:2481-90. [PMID: 24268416 DOI: 10.1016/j.cub.2013.10.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/18/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Sensory neuron diversity ensures optimal detection of the external world and is a hallmark of sensory systems. An extreme example is the olfactory system, as individual olfactory receptor neurons (ORNs) adopt unique sensory identities by typically expressing a single receptor gene from a large genomic repertoire. In Drosophila, about 50 different ORN classes are generated from a field of precursor cells, giving rise to spatially restricted and distinct clusters of ORNs on the olfactory appendages. Developmental strategies spawning ORN diversity from an initially homogeneous population of precursors are largely unknown. RESULTS Here we unravel the nested and binary logic of the combinatorial code that patterns the decision landscape of precursor states underlying ORN diversity in the Drosophila olfactory system. The transcription factor Rotund (Rn) is a critical component of this code that is expressed in a subset of ORN precursors. Addition of Rn to preexisting transcription factors that assign zonal identities to precursors on the antenna subdivides each zone and almost exponentially increases ORN diversity by branching off novel precursor fates from default ones within each zone. In rn mutants, rn-positive ORN classes are converted to rn-negative ones in a zone-specific manner. CONCLUSIONS We provide a model describing how nested and binary changes in combinations of transcription factors could coordinate and pattern a large number of distinct precursor identities within a population to modulate the level of ORN diversity during development and evolution.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Tal Soo Ha
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yiping Wang
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Qian Wang
- The Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - S Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dean P Smith
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA; Duke Institute for Brain Sciences, Durham, NC 27708, USA.
| |
Collapse
|
18
|
Rister J, Desplan C, Vasiliauskas D. Establishing and maintaining gene expression patterns: insights from sensory receptor patterning. Development 2013; 140:493-503. [PMID: 23293281 DOI: 10.1242/dev.079095] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In visual and olfactory sensory systems with high discriminatory power, each sensory neuron typically expresses one, or very few, sensory receptor genes, excluding all others. Recent studies have provided insights into the mechanisms that generate and maintain sensory receptor expression patterns. Here, we review how this is achieved in the fly retina and compare it with the mechanisms controlling sensory receptor expression patterns in the mouse retina and in the mouse and fly olfactory systems.
Collapse
Affiliation(s)
- Jens Rister
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003-6688, USA
| | | | | |
Collapse
|
19
|
Sim CK, Perry S, Tharadra SK, Lipsick JS, Ray A. Epigenetic regulation of olfactory receptor gene expression by the Myb-MuvB/dREAM complex. Genes Dev 2012; 26:2483-98. [PMID: 23105004 DOI: 10.1101/gad.201665.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In both mammals and insects, an olfactory neuron will usually select a single olfactory receptor and repress remaining members of large receptor families. Here we show that a conserved multiprotein complex, Myb-MuvB (MMB)/dREAM, plays an important role in mediating neuron-specific expression of the carbon dioxide (CO(2)) receptor genes (Gr63a/Gr21a) in Drosophila. Activity of Myb in the complex is required for expression of Gr63a/Gr21a and acts in opposition to the histone methyltransferase Su(var)3-9. Consistent with this, we observed repressive dimethylated H3K9 modifications at the receptor gene loci, suggesting a mechanism for silencing receptor gene expression. Conversely, other complex members, Mip120 (Myb-interacting protein 120) and E2F2, are required for repression of Gr63a in inappropriate neurons. Misexpression in mutants is accompanied by an increase in the H3K4me3 mark of active chromatin at the receptor gene locus. Nuclei of CO(2) receptor-expressing neurons contain reduced levels of the repressive subunit Mip120 compared with surrounding neurons and increased levels of Myb, suggesting that activity of the complex can be regulated in a cell-specific manner. Our evidence suggests a model in which olfactory receptors are regulated epigenetically and the MMB/dREAM complex plays a critical role in specifying, maintaining, and modulating the receptor-to-neuron map.
Collapse
Affiliation(s)
- Choon Kiat Sim
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
20
|
Combinatorial expression of Brn3 transcription factors in somatosensory neurons: genetic and morphologic analysis. J Neurosci 2012; 32:995-1007. [PMID: 22262898 DOI: 10.1523/jneurosci.4755-11.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The three members of the Brn3 family of POU-domain transcription factors (Brn3a/Pou4f1, Brn3b/Pou4f2, and Brn3c/Pou4f3) are expressed in overlapping subsets of visual, auditory/vestibular, and somatosensory neurons. Using unmarked Brn3-null alleles and Brn3 conditional alleles in which gene loss is coupled to expression of an alkaline phosphatase reporter, together with sparse Cre-mediated recombination, we describe the following: (1) the overlapping patterns of Brn3 gene expression in somatosensory neurons; (2) the manner in which these patterns correlate with molecular markers, peripheral afferent arbor morphologies, and dorsal horn projections; and (3) the consequences for these neurons of deleting individual Brn3 genes in the mouse. We observe broad expression of Brn3a among DRG neurons, but subtype-restricted expression of Brn3b and Brn3c. We also observe a nearly complete loss of hair follicle-associated sensory endings among Brn3a(-/-) neurons. Together with earlier analyses of Brn3 gene expression patterns in the retina and inner ear, these experiments suggest a deep functional similarity among primary somatosensory neurons, spiral and vestibular ganglion neurons, and retinal ganglion cells. This work also demonstrates the utility of sparse genetically directed labeling for visualizing individual somatosensory afferent arbors and for defining cell-autonomous mutant phenotypes.
Collapse
|
21
|
Sex-linked transcription factor involved in a shift of sex-pheromone preference in the silkmoth Bombyx mori. Proc Natl Acad Sci U S A 2011; 108:18038-43. [PMID: 22006327 DOI: 10.1073/pnas.1107282108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the sex-pheromone communication systems of moths, odorant receptor (Or) specificity as well as higher olfactory information processing in males should be finely tuned to the pheromone of conspecific females. Accordingly, male sex-pheromone preference should have diversified along with the diversification of female sex pheromones; however, the genetic mechanisms that facilitated the diversification of male preference are not well understood. Here, we explored the mechanisms involved in a drastic shift in sex-pheromone preference in the silkmoth Bombyx mori using spli mutants in which the genomic structure of the gene Bmacj6, which encodes a class IV POU domain transcription factor, is disrupted or its expression is repressed. B. mori females secrete an ∼11:1 mixture of bombykol and bombykal. Bombykol alone elicits full male courtship behavior, whereas bombykal alone shows no apparent activity. In the spli mutants, the behavioral responsiveness of males to bombykol was markedly reduced, whereas bombykal alone evoked full courtship behavior. The reduced response of spli males to bombykol was explained by the paucity of bombykol receptors on the male antennae. It was also found that, in the spli males, neurons projecting into the toroid, a compartment in the brain where bombykol receptor neurons normally project, responded strongly to bombykal. The present study highlights a POU domain transcription factor, Bmacj6, which may have caused a shift of sex-pheromone preference in B. mori through Or gene choice and/or axon targeting.
Collapse
|
22
|
Similar odorants elicit different behavioral and physiological responses, some supersustained. J Neurosci 2011; 31:7891-9. [PMID: 21613503 DOI: 10.1523/jneurosci.6254-10.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An intriguing question in the field of olfaction is how animals distinguish among structurally similar odorants. We systematically analyzed olfactory responses elicited by a panel of 25 pyrazines. We found that structurally similar pyrazines elicit a wide range of behavioral responses from Drosophila larvae. Each pyrazine was tested against all functional receptors of the larval Odor receptor (Or) repertoire, yielding 525 odorant-receptor combinations. Different pyrazines vary markedly in the responses they elicit from the Or repertoire, with most strong responses deriving from two receptors, Or33b and Or59a. Surprisingly, 2-ethylpyrazine and 2-methylpyrazine, which elicit strikingly similar physiological responses across the receptor repertoire, elicit dramatically different behavioral responses. A small fraction of odorant-receptor combinations elicit remarkably long responses. These responses, which we term "supersustained" responses, are receptor specific and odorant specific, and can last for minutes. Such supersustained responses may prevent olfactory neurons from reporting contemporaneous information about the local odor environment. Odors that elicit such responses could provide a novel means of controlling insect pests and vectors of human disease by impairing the location of human hosts, food sources, and mates.
Collapse
|
23
|
Abstract
The expression of behaviours is influenced by many segregating genes. Behaviours are, therefore, complex traits. They have, however, unique characteristics that set them apart from physiological and morphological quantitative traits. First, behaviours are the ultimate expression of the nervous system. This means that understanding the genetic underpinnings of behaviours requires a neurobiological context, i.e. an understanding of the genes-brain-behaviour axis. In other words, how do ensembles of genes empower specific neural circuits to drive behaviours? Second, behaviours represent the interface between an organism and its environment. Thus, environmental effects are likely to make substantial contributions to determining behavioural outputs and genotype-by-environment interactions are expected to be prominent. It is important to differentiate between genes that contribute to the manifestation of the behavioural phenotype and genes that contribute to phenotypic variation in behaviour. The former are identified by classical mutagenesis experiments, whereas the latter can be detected through quantitative genetic approaches. Genes that contribute to phenotypic variation in behaviour harbour polymorphisms that provide the substrates for evolution. This review focuses on olfactory behaviour in Drosophila with the goal to illustrate how fundamental insights derived from studies on chemosensation can be applied to a wide range of behavioural phenotypes.
Collapse
|
24
|
Pitts RJ, Rinker DC, Jones PL, Rokas A, Zwiebel LJ. Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics 2011; 12:271. [PMID: 21619637 PMCID: PMC3126782 DOI: 10.1186/1471-2164-12-271] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/27/2011] [Indexed: 11/10/2022] Open
Abstract
Background Chemosensory signal transduction guides the behavior of many insects, including Anopheles gambiae, the major vector for human malaria in sub-Saharan Africa. To better understand the molecular basis of mosquito chemosensation we have used whole transcriptome RNA sequencing (RNA-seq) to compare transcript expression profiles between the two major chemosensory tissues, the antennae and maxillary palps, of adult female and male An. gambiae. Results We compared chemosensory tissue transcriptomes to whole body transcriptomes of each sex to identify chemosensory enhanced genes. In the six data sets analyzed, we detected expression of nearly all known chemosensory genes and found them to be highly enriched in both olfactory tissues of males and females. While the maxillary palps of both sexes demonstrated strict chemosensory gene expression overlap, we observed acute differences in sensory specialization between male and female antennae. The relatively high expression levels of chemosensory genes in the female antennae reveal its role as an organ predominately assigned to chemosensation. Remarkably, the expression of these genes was highly conserved in the male antennae, but at much lower relative levels. Alternatively, consistent with a role in mating, the male antennae displayed significant enhancement of genes involved in audition, while the female enhancement of these genes was observed, but to a lesser degree. Conclusions These findings suggest that the chemoreceptive spectrum, as defined by gene expression profiles, is largely similar in female and male An. gambiae. However, assuming sensory receptor expression levels are correlated with sensitivity in each case, we posit that male and female antennae are perceptive to the same stimuli, but possess inverse receptive prioritizations and sensitivities. Here we have demonstrated the use of RNA-seq to characterize the sensory specializations of an important disease vector and grounded future studies investigating chemosensory processes.
Collapse
Affiliation(s)
- R Jason Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
25
|
Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR. The molecular and cellular basis of bitter taste in Drosophila. Neuron 2011; 69:258-72. [PMID: 21262465 DOI: 10.1016/j.neuron.2011.01.001] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2010] [Indexed: 11/30/2022]
Abstract
The extent of diversity among bitter-sensing neurons is a fundamental issue in the field of taste. Data are limited and conflicting as to whether bitter neurons are broadly tuned and uniform, resulting in indiscriminate avoidance of bitter stimuli, or diverse, allowing a more discerning evaluation of food sources. We provide a systematic analysis of how bitter taste is encoded by the major taste organ of the Drosophila head, the labellum. Each of 16 bitter compounds is tested physiologically against all 31 taste hairs, revealing responses that are diverse in magnitude and dynamics. Four functional classes of bitter neurons are defined. Four corresponding classes are defined through expression analysis of all 68 gustatory taste receptors. A receptor-to-neuron-to-tastant map is constructed. Misexpression of one receptor confers bitter responses as predicted by the map. These results reveal a degree of complexity that greatly expands the capacity of the system to encode bitter taste.
Collapse
Affiliation(s)
- Linnea A Weiss
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | | | |
Collapse
|
26
|
Brochtrup A, Hummel T. Olfactory map formation in the Drosophila brain: genetic specificity and neuronal variability. Curr Opin Neurobiol 2010; 21:85-92. [PMID: 21112768 DOI: 10.1016/j.conb.2010.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/02/2010] [Indexed: 11/17/2022]
Abstract
The development of the Drosophila olfactory system is a striking example of how genetic programs specify a large number of different neuron types and assemble them into functional circuits. To ensure precise odorant perception, each sensory neuron has to not only select a single olfactory receptor (OR) type out of a large genomic repertoire but also segregate its synaptic connections in the brain according to the OR class identity. Specification and patterning of second-order interneurons in the olfactory brain center occur largely independent of sensory input, followed by a precise point-to-point matching of sensory and relay neurons. Here we describe recent progress in the understanding of how cell-intrinsic differentiation programs and context-dependent cellular interactions generate a stereotyped sensory map in the Drosophila brain. Recent findings revealed an astonishing morphological diversity among members of the same interneuron class, suggesting an unexpected variability in local microcircuits involved in insect sensory processing.
Collapse
Affiliation(s)
- Anna Brochtrup
- Institut für Neurobiologie, Universität Münster, Badestr. 9, D-48149 Münster, Germany
| | | |
Collapse
|
27
|
Disruption of olfactory receptor neuron patterning in Scutoid mutant Drosophila. Mol Cell Neurosci 2010; 46:252-61. [PMID: 20875862 DOI: 10.1016/j.mcn.2010.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 09/18/2010] [Accepted: 09/20/2010] [Indexed: 11/20/2022] Open
Abstract
Olfactory neurons show an extreme diversity of cell types with each cell usually expressing one member from a large family of 60 Odorant receptor (Or) genes in Drosophila. Little is known about the developmental processes and transcription factors that generate this stereotyped pattern of cellular diversity. Here we investigate the molecular and cellular basis of defects in olfactory system function in an unusual dominant mutant, Scutoid. We show that the defects map to olfactory neurons innervating a specific morphological class of sensilla on the antenna, large basiconics. Molecular analysis indicates defects in neurons expressing specific classes of receptor genes that map to large basiconic sensilla. Previous studies have shown that in Scutoid mutants the coding region of the transcriptional repressor snail is translocated near the no-ocelli promoter, leading to misexpression of snail in the developing eye-antenna disc. We show that ectopic expression of snail in developing olfactory neurons leads to severe defects in neurons of the antennal large basiconics, supporting the model that the dominant olfactory phenotype in Scutoid is caused by misexpression of snail.
Collapse
|
28
|
Evolving olfactory systems on the fly. Trends Genet 2010; 26:307-16. [PMID: 20537755 DOI: 10.1016/j.tig.2010.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/20/2022]
|