1
|
Noordhoek K, Bartel CJ. Accelerating the prediction of inorganic surfaces with machine learning interatomic potentials. NANOSCALE 2024. [PMID: 38470833 DOI: 10.1039/d3nr06468a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The surface properties of solid-state materials often dictate their functionality, especially for applications where nanoscale effects become important. The relevant surface(s) and their properties are determined, in large part, by the material's synthesis or operating conditions. These conditions dictate thermodynamic driving forces and kinetic rates responsible for yielding the observed surface structure and morphology. Computational surface science methods have long been applied to connect thermochemical conditions to surface phase stability, particularly in the heterogeneous catalysis and thin film growth communities. This review provides a brief introduction to first-principles approaches to compute surface phase diagrams before introducing emerging data-driven approaches. The remainder of the review focuses on the application of machine learning, predominantly in the form of learned interatomic potentials, to study complex surfaces. As machine learning algorithms and large datasets on which to train them become more commonplace in materials science, computational methods are poised to become even more predictive and powerful for modeling the complexities of inorganic surfaces at the nanoscale.
Collapse
Affiliation(s)
- Kyle Noordhoek
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Christopher J Bartel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Savara A, Sutton JE. SQERT-T: alleviating kinetic Monte Carlo (KMC)-stiffness in transient KMC simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:295901. [PMID: 29882745 DOI: 10.1088/1361-648x/aacb6d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lattice based kinetic Monte Carlo (KMC) is often used for simulating the dynamics of systems at a supramolecular scale, based on molecular scale transitions. A common challenge in KMC simulations is rapid 'back-and-forth' reactions, which dominate the events executed during simulations and inhibit the ability for simulations to reach longer time scales. Such processes are fast frivolous processes (FFPs) and are one manifestation of a phenomenon referred to as KMC-stiffness. Here, an algorithm for staggered quasi-equilibrium rank-based throttling geared towards transient kinetics (SQERT-T) is presented. Within the SQERT-T methodology, a pace-restrictor reaction and an FFP floor are utilized along with throttling of the process transition rate constants to accelerate the KMC simulations while still retaining sufficient time resolution for sampling of the data. KMC simulations were performed for CO oxidation over RuO2(1 1 0) and over RuO2(1 1 1), and the results were compared to experimental data obtained using RuO2 powders. The experiments and simulations were for transient conditions: the system was subjected to a temperature program which included temperatures in the range of 363 to 453 K. The timescales that were achieved during the KMC simulations in this study would not have been accessible without KMC acceleration, and were enabled by the use of SQERT-T.
Collapse
Affiliation(s)
- Aditya Savara
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | | |
Collapse
|
3
|
Sutton JE, Lorenzi JM, Krogel JT, Xiong Q, Pannala S, Matera S, Savara A. Electrons to Reactors Multiscale Modeling: Catalytic CO Oxidation over RuO2. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00713] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan E. Sutton
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Juan M. Lorenzi
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, 85748 Garching, Germany
| | - Jaron T. Krogel
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Qingang Xiong
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sreekanth Pannala
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sebastian Matera
- Fachbereich Mathematik & Informatik, Free University, 14195 Berlin, Germany
| | - Aditya Savara
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
4
|
Jia C, Zhong W, Deng M, Jiang J. CO oxidation on Ru-Pt bimetallic nanoclusters supported on TiO 2(101): The effect of charge polarization. J Chem Phys 2018; 148:124701. [PMID: 29604843 DOI: 10.1063/1.5021712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pt-based catalyst is widely used in CO oxidation, while its catalytic activity is often undermined because of the CO poisoning effect. Here, using density functional theory, we propose the use of a Ru-Pt bimetallic cluster supported on TiO2 for CO oxidation, to achieve both high activity and low CO poisoning effect. Excellent catalytic activity is obtained in a Ru1Pt7/TiO2(101) system, which is ascribed to strong electric fields induced by charge polarization between one Ru atom and its neighboring Pt atoms. Because of its lower electronegativity, the Ru atom donates electrons to neighboring Pt. This induces strong electric fields around the top-layered Ru, substantially promoting the adsorption of O2/CO + O2 and eliminating the CO poisoning effect. In addition, the charge polarization also drives the d-band center of the Ru1Pt7 cluster to up-shift to the Fermi level. For surface O2 activation/CO oxidation, the strong electric field and d-band center close to the Fermi level can promote the adsorption of O2 and CO as well as reduce the reaction barrier of the rate-determining step. Meanwhile, since O2 easily dissociates on Ru1Pt7/TiO2(101) resulting in unwanted oxidation of Ru and Pt, a CO-rich condition is necessary to protect the catalyst at high temperature.
Collapse
Affiliation(s)
- Chuanyi Jia
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang 550018, China
| | - Wenhui Zhong
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang 550018, China
| | - Mingsen Deng
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang 550018, China
| | - Jun Jiang
- Guizhou Synergetic Innovation Center of Scientific Big Data for Advance Manufacturing Technology, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
5
|
Krause PPT, Camuka H, Leichtweiss T, Over H. Temperature-induced transformation of electrochemically formed hydrous RuO2 layers over Ru(0001) model electrodes. NANOSCALE 2016; 8:13944-13953. [PMID: 27009374 DOI: 10.1039/c6nr00732e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydrous RuO2 reveals excellent performance both as a supercapacitor and as a heterogeneous oxidation catalyst. Molecular understanding of these processes needs, however, a model system with preferably low structural and morphological complexity. This goal is partly accomplished here by using single crystalline Ru(0001) as a template on which hydrous RuO2 is electrochemically formed. The hydrous RuO2 layers on Ru(0001) and their temperature induced transformation under ultra high vacuum (UHV) conditions are comprehensively characterized by scanning electron microscopy and X-ray photoemission spectroscopy. The hydrous RuO2 layer grows with an intricate morphology governed by the presence of step bunching regions of the Ru(0001) surface. Upon annealing to 200 °C in UHV the hydrous RuO2 layer transforms mostly into flat metallic Ru islands and occasionally into (100) and (111) oriented RuO2 particles aligned along the high symmetry direction of Ru(0001).
Collapse
Affiliation(s)
- Philipp P T Krause
- Physikalisch-Chemisches Institut, Justus-Liebig-University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| | | | | | | |
Collapse
|
6
|
Wang T, Reuter K. Structure sensitivity in oxide catalysis: First-principles kinetic Monte Carlo simulations for CO oxidation at RuO2(111). J Chem Phys 2015; 143:204702. [DOI: 10.1063/1.4936354] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tongyu Wang
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory and Stanford University, 443 Via Ortega, Stanford, California 94035-4300, USA
| |
Collapse
|
7
|
|
8
|
Abstract
A heterogeneous catalyst is a functional material that continually creates active sites with its reactants under reaction conditions. These sites change the rates of chemical reactions of the reactants localized on them without changing the thermodynamic equilibrium between the materials.
Collapse
Affiliation(s)
- Robert Schlögl
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany) http://www.fhi-berlin.mpg.de http://www.cec.mpg.de; Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim a.d. Ruhr (Germany).
| |
Collapse
|
9
|
Novio F, Monahan D, Coppel Y, Antorrena G, Lecante P, Philippot K, Chaudret B. Surface Chemistry on Small Ruthenium Nanoparticles: Evidence for Site Selective Reactions and Influence of Ligands. Chemistry 2014; 20:1287-97. [DOI: 10.1002/chem.201303935] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Indexed: 11/08/2022]
|
10
|
Wang T, Jelic J, Rosenthal D, Reuter K. Exploring Pretreatment-Morphology Relationships: Ab Initio Wulff Construction for RuO2Nanoparticles under Oxidising Conditions. ChemCatChem 2013. [DOI: 10.1002/cctc.201300168] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Kipnis MA, Samokhin PV, Volnina EA. Carbon monoxide hydrogenation in the mode of Ru/Al2O3 catalyst surface ignition. KINETICS AND CATALYSIS 2013. [DOI: 10.1134/s0023158413020080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Kipnis MA, Volnina EA. Oscillations in the H2 oxidation reaction on ruthenium. KINETICS AND CATALYSIS 2013. [DOI: 10.1134/s0023158413020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Over H. Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chem Rev 2012; 112:3356-426. [DOI: 10.1021/cr200247n] [Citation(s) in RCA: 509] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Gao F, Goodman DW. CO oxidation over ruthenium: identification of the catalytically active phases at near-atmospheric pressures. Phys Chem Chem Phys 2012; 14:6688-97. [DOI: 10.1039/c2cp40121e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|