1
|
|
2
|
Theoretical Modeling of Vibrational Spectra and Proton Tunneling in Hydrogen-Bonded Systems. ADVANCES IN CHEMICAL PHYSICS 2016. [DOI: 10.1002/9781119165156.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
3
|
Pitsevich GA, Malevich AE, Kozlovskaya EN, Doroshenko IY, Pogorelov VE, Sablinskas V, Balevicius V. Theoretical study of the C-H/O-H stretching vibrations in malonaldehyde. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 145:384-393. [PMID: 25795613 DOI: 10.1016/j.saa.2015.02.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/20/2014] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
IR and Raman spectra of the malonaldehyde molecule and its deuterated analogues were calculated in the B3LYP/cc-pVQZ approximation. Anharmonicity effects were taken into account both in the context of a standard model of the second order perturbation theory and by constructing the potential energy surfaces (PES) with a limited number of dimensions using the Cartesian coordinates of the hydroxyl hydrogen atom and the stretching coordinates of С-Н, C-D, O-H, and O-D bonds. It was shown that in each of the two equivalent forms of the molecule, besides the global minimum, an additional local minimum at the PES is formed with the energy more than 3,000 cm(-1) higher than the energy in the global minimum. Calculations carried out by constructing the 2D and 3D PESs indicate a high anharmonicity level and multiple manifestations of the stretching О-Н vibrations, despite the fact that the model used does not take into account the splitting of the ground-state and excited vibrational energy levels. In particular, the vibration with the frequency 3,258 cm(-1) may be associated with proton transfer to the region of a local minimum of energy. Comparing the results obtained with the experimental data presented in the literature allowed us to propose a new variant of bands assignments in IR and Raman spectra of the molecule in the spectral region 2,500-3,500 cm(-1).
Collapse
|
4
|
Jalali E, Nori-Shargh D. Symmetry breaking in the axial symmetrical configurations of enolic propanedial, propanedithial, and propanediselenal: pseudo Jahn–Teller effect versus the resonance-assisted hydrogen bond theory. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin of the symmetry breaking in the axial symmetrical configurations of enolic propanedial (1), propanedithial (2), and propanediselenal (3) have been investigated by means of time-dependence density functional theory and natural bond orbital interpretations. The results obtained at the quantum chemistry composite (G2MP2, CBS-QB3), ab initio molecular orbital (MP2/6-311++G**), and hybrid density functional theory (B3LYP/6-311++G**) levels of theory showed that the hydrogen-centered synchronous axial symmetrical (C2v) configurations of compounds 1–3 possessing the maximum π-electron delocalization within the M1=C2–C3=C4–M5–H6 keto-enol groups are less stable than their corresponding plane symmetrical (Cs) forms. Importantly, the symmetry breaking in the C2v configurations of the enol forms of compounds 1–3 to their corresponding plane symmetrical Cs configurations is due to the pseudo Jahn–Teller effect (PJTE) by mixing the ground A1 and excited B2 electronic states resulting in a PJT (A1 + B2) ⊗ b2 problem. We may expect that by the decrease of the energy gaps between reference states in the C2v forms that are involved in the PJTE decrease from compound 1 to compound 3, the PJT stabilization energy (PJTSE) may increase but the results obtained showed that the corresponding PJTSEs decrease. This fact can be justified by the increase of the electron delocalizations from the nonbonding orbitals of the C=M moieties to the antibonding orbitals of the H–M bonds, which leads to an increase of the π-electron delocalization within the M1=C2–C3=C4–M5–H6 keto-enol groups. In confrontation between the impacts of the resonance-assisted hydrogen bond and PJTE in the structural and configurational properties of compounds 1–3, PJTE has an overwhelming contribution and causes the symmetry breaking of the C2v configurations to their corresponding Cs forms. The correlations between the structural parameters, synchronicity indices, natural charges, PJTSEs, electron delocalizations, and the hardness of compounds 1–3 have been investigated.
Collapse
Affiliation(s)
- Elahe Jalali
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Davood Nori-Shargh
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
5
|
Hydrogen bonded pyridine N-oxide/trichloroacetic acid complex in polar media: 2D potential energy surface and O–H⋯O vibration analysis using exact vibrational Hamiltonian. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Lüttschwager NO, Wassermann TN, Coussan S, Suhm MA. Vibrational tuning of the Hydrogen transfer in malonaldehyde – a combined FTIR and Raman jet study†. Mol Phys 2013. [DOI: 10.1080/00268976.2013.798042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nils O.B. Lüttschwager
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen , Tammannstr. 6, Göttingen, D-37077, Germany
| | - Tobias N. Wassermann
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen , Tammannstr. 6, Göttingen, D-37077, Germany
- Laboratoire PIIM, Université de Provence, Centre Saint-Jérôme , F-13 397 cedex 20, Marseille, France
| | - Stéphane Coussan
- Laboratoire PIIM, Université de Provence, Centre Saint-Jérôme , F-13 397 cedex 20, Marseille, France
| | - Martin A. Suhm
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen , Tammannstr. 6, Göttingen, D-37077, Germany
| |
Collapse
|
7
|
Markle TF, Rhile IJ, Mayer JM. Kinetic effects of increased proton transfer distance on proton-coupled oxidations of phenol-amines. J Am Chem Soc 2011; 133:17341-52. [PMID: 21919508 PMCID: PMC3228417 DOI: 10.1021/ja2056853] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh(2)NH(2) substituent (1). Spectroscopic, structural, thermochemical, and computational studies show that the two amino-phenols are very similar, except that the O···N distance (d(ON)) is >0.1 Å longer in 2 than in 1. The difference in d(ON) is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations (•)OAr-NH(3)(+) by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. 2 orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C(6)H(4)OMe)(3)(•+) (3a(+)) occurs at (1.4 ± 0.1) × 10(4) M(-1) s(-1), only a factor of 2 slower than the closely related reaction of 1 with N(C(6)H(4)OMe)(2)(C(6)H(4)Br)(•+) (3b(+)). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG° (2 + 3a(+)) = +0.078 V versus ΔG° (1 + 3b(+)) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δ ln(k)/Δ ln(K(eq))). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly anharmonic O···H···N potential energy surface and the influence of proton vibrational excited states.
Collapse
Affiliation(s)
- Todd F Markle
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA.
| | | | | |
Collapse
|
8
|
Stare J, Mavri J, Grdadolnik J, Zidar J, Maksić ZB, Vianello R. Hydrogen Bond Dynamics of Histamine Monocation in Aqueous Solution: Car–Parrinello Molecular Dynamics and Vibrational Spectroscopy Study. J Phys Chem B 2011; 115:5999-6010. [DOI: 10.1021/jp111175e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jernej Stare
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Janez Mavri
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Dunajska 156, SI-1000 Ljubljana, Slovenia
| | - Jože Grdadolnik
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Dunajska 156, SI-1000 Ljubljana, Slovenia
| | - Jernej Zidar
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Dunajska 156, SI-1000 Ljubljana, Slovenia
| | | | - Robert Vianello
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Pirc G, Stare J, Mavri J. Car-Parrinello simulation of hydrogen bond dynamics in sodium hydrogen bissulfate. J Chem Phys 2010; 132:224506. [PMID: 20550407 DOI: 10.1063/1.3429251] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We studied proton dynamics of a short hydrogen bond of the crystalline sodium hydrogen bissulfate, a hydrogen-bonded ferroelectric system. Our approach was based on the established Car-Parrinello molecular dynamics (CPMD) methodology, followed by an a posteriori quantization of the OH stretching motion. The latter approach is based on snapshot structures taken from CPMD trajectory, calculation of proton potentials, and solving of the vibrational Schrodinger equation for each of the snapshot potentials. The so obtained contour of the OH stretching band has the center of gravity at about 1540 cm(-1) and a half width of about 700 cm(-1), which is in qualitative agreement with the experimental infrared spectrum. The corresponding values for the deuterated form are 1092 and 600 cm(-1), respectively. The hydrogen probability densities obtained by solving the vibrational Schrodinger equation allow for the evaluation of potential of mean force along the proton transfer coordinate. We demonstrate that for the present system the free energy profile is of the single-well type and features a broad and shallow minimum near the center of the hydrogen bond, allowing for frequent and barrierless proton (or deuteron) jumps. All the calculated time-averaged geometric parameters were in reasonable agreement with the experimental neutron diffraction data. As the present methodology for quantization of proton motion is applicable to a variety of hydrogen-bonded systems, it is promising for potential use in computational enzymology.
Collapse
Affiliation(s)
- Gordana Pirc
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
10
|
Petković M, Novak J, Došlić N. Shaping the infrared spectrum of the acetic acid dimer in the OH-stretching range: Multiple conformers and anharmonic coupling. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Stare J, Panek J, Eckert J, Grdadolnik J, Mavri J, Hadži D. Proton Dynamics in the Strong Chelate Hydrogen Bond of Crystalline Picolinic Acid N-Oxide. A New Computational Approach and Infrared, Raman and INS Study. J Phys Chem A 2008; 112:1576-86. [DOI: 10.1021/jp077107u] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jernej Stare
- National Institute of Chemistry, Ljubljana, Slovenia; Center for Non-Linear Studies/Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, New Mexico; Faculty of Chemistry, Wrocław University, Wrocław, Poland; and Materials Research Laboratory, University of California, Santa Barbara, California
| | - Jarosław Panek
- National Institute of Chemistry, Ljubljana, Slovenia; Center for Non-Linear Studies/Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, New Mexico; Faculty of Chemistry, Wrocław University, Wrocław, Poland; and Materials Research Laboratory, University of California, Santa Barbara, California
| | - Juergen Eckert
- National Institute of Chemistry, Ljubljana, Slovenia; Center for Non-Linear Studies/Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, New Mexico; Faculty of Chemistry, Wrocław University, Wrocław, Poland; and Materials Research Laboratory, University of California, Santa Barbara, California
| | - Jože Grdadolnik
- National Institute of Chemistry, Ljubljana, Slovenia; Center for Non-Linear Studies/Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, New Mexico; Faculty of Chemistry, Wrocław University, Wrocław, Poland; and Materials Research Laboratory, University of California, Santa Barbara, California
| | - Janez Mavri
- National Institute of Chemistry, Ljubljana, Slovenia; Center for Non-Linear Studies/Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, New Mexico; Faculty of Chemistry, Wrocław University, Wrocław, Poland; and Materials Research Laboratory, University of California, Santa Barbara, California
| | - Dušan Hadži
- National Institute of Chemistry, Ljubljana, Slovenia; Center for Non-Linear Studies/Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, New Mexico; Faculty of Chemistry, Wrocław University, Wrocław, Poland; and Materials Research Laboratory, University of California, Santa Barbara, California
| |
Collapse
|
12
|
Demšar K, Stare J, Mavri J. Structure and vibrational dynamics of hydrogen bond in hydrogenbissulfate anion in the gas phase and in the solid state: A computational study. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2007.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Matanović I, Došlić N. Theoretical modeling of the formic acid dimer infrared spectrum: Shaping the O–H stretch band. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Doslić N, Kovacević G, Ljubić I. Signature of the Conformational Preferences of Small Peptides: a Theoretical Investigation. J Phys Chem A 2007; 111:8650-8. [PMID: 17691755 DOI: 10.1021/jp072565o] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An extensive computational study of the conformational preferences of N-acetylphenylalaninylamide (NAPA) is reported, including conformational and anharmonic frequency analyses, as well as calculations of excitation energies of the four NAPA conformers lowest in energy. Particular attention is paid to the influence of hydrogen-bonding interactions on the relative stability of the conformers, which was found to be very sensitive to both the level of quantum chemical computations and the anharmonic treatment of molecular vibrations. The assignments of the UV spectral peaks are well supported by the multireference CASSCF/MS-CASPT2 calculations. Upon consideration of the second-order Möller-Plesset (MP2) and density functional theory (DFT) structures, overall energetics, and harmonic and anharmonic corrections, we found no conclusive theoretical evidence for the assumed conformational propensity of small model peptides toward extended beta-strand structures.
Collapse
Affiliation(s)
- Nada Doslić
- Department of Physical Chemistry, Ruder Bosković Institute, Bijenicka cesta 54, Post Office Box 180, HR-10002, Zagreb, Republic of Croatia.
| | | | | |
Collapse
|
15
|
Szczepaniak K, Person WB, Hadzi D. Experimental matrix isolation study and quantum-mechanics-based normal-coordinate analysis of the anharmonic infrared spectrum of picolinic acid N-oxide. J Phys Chem A 2007; 109:6710-24. [PMID: 16834024 DOI: 10.1021/jp058089o] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work is, according to our knowledge, the first experimental matrix isolation study of a molecular system with a very short and strong intramolecular OH...O hydrogen bond. It also includes a satisfying interpretation of its entire infrared spectrum. The interpretation relies on the calculation at the DFT/B3LYP/6-31G(d,p) level of the harmonic spectrum and of the anharmonic relaxed potential energy for the stretching motion of the hydrogen-bonded proton, used with our recently modified quantum-mechanics-based normal-coordinate analysis. An important observation about the anharmonic spectrum obtained from this procedure is that the OH stretch coordinate contributes to several normal modes, mixing extensively with other in-plane internal coordinates, in particular OH-bending and C=O-stretching. The two intense normal modes with the largest contributions from the OH-stretching coordinate to the potential energy distribution and to the intensity are located near 1700 and 1500 cm(-1). A calculated anharmonic spectrum obtained from this procedure agrees with the experimental spectrum (frequencies and intensity distribution), within the limits of the estimated uncertainties for the calculation and experiment, allowing the interpretation of the latter. The agreement for the frequencies is about 1-3%. The anharmonic spectrum calculated using the anharmonic keyword in Gaussian 03w is not in satisfactory agreement with experiment insofar as the OH-stretching mode is concerned.
Collapse
Affiliation(s)
- Krystyna Szczepaniak
- Department of Chemistry, University of Florida, P O Box 117200, Gainesville, Florida 32611, USA
| | | | | |
Collapse
|
16
|
Stare J. First-principle calculation of reduced masses in vibrational analysis using generalized internal coordinates: some crucial aspects and examples. J Chem Inf Model 2007; 47:840-50. [PMID: 17487962 DOI: 10.1021/ci6005245] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper we present and analyze the most essential aspects of reduced masses along generalized internal coordinates. The definition of reduced masses in the internal coordinate formalism is established through the Wilson G-matrix concept and includes sophisticated relations between internal and Cartesian coordinates. Moreover, reduced masses in internal coordinates are, in general, no longer constant but coordinate-dependent. Based on the approach presented earlier [Stare, J.; Balint-Kurti, G. G. J. Phys. Chem. A 2003, 107, 7204-7214] and on our experience with reduced masses discussed in this paper, we have developed a robust program for the calculation of Wilson G-matrix elements and their functional coordinate dependence. The approach is based on the first principles and can be used in virtually any (internal) coordinate set. Since the program allows for projection of any kind of nuclear motion on the selected internal coordinates, the method is particularly suitable for ab initio or DFT potential energy functions calculated by partial geometry optimization. Moreover, reduced masses obtained by this program can be used as a decision tool for selecting the most appropriate internal coordinates for the considered vibrational problem and for the inclusion or omission of the kinetic coupling terms in the vibrational Hamiltonian.
Collapse
Affiliation(s)
- Jernej Stare
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Design of a depside with a lipophilic adamantane moiety: Synthesis, crystal structure and molecular conformation. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Viel A, Coutinho-Neto MD, Manthe U. The ground state tunneling splitting and the zero point energy of malonaldehyde: A quantum Monte Carlo determination. J Chem Phys 2007; 126:024308. [PMID: 17228955 DOI: 10.1063/1.2406074] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.
Collapse
Affiliation(s)
- Alexandra Viel
- Theoretische Chemie, TU München, Lichtenbergstrasse 4, D-85747 Garching, Germany.
| | | | | |
Collapse
|
19
|
Redington RL, Redington TE, Sams RL. Quantum Tunneling in the Midrange Vibrational Fundamentals of Tropolone. J Phys Chem A 2006; 110:9633-42. [PMID: 16884197 DOI: 10.1021/jp062068s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Fourier transform infrared spectrum of tropolone(OH) vapor in the 1175-1700 cm(-1) region is reported at 0.0025 and 0.10 cm(-1) spectral resolutions. The 12 vibrational fundamentals in this region of rapidly rising vibrational state density are dominated by mixtures of the CC, CO, CCH, and COH internal coordinates. Estimates based on the measurement of sharp Q branch peaks are reported for 11 of the spectral doublet component separations DS(v) = |Delta(v) +/- Delta(0)|. Delta(0) = 0.974 cm(-1) is the known zero-point splitting, and three a(1) modes show tunneling splittings Delta(v) approximately Delta(0), four b(2) modes show splittings Delta(v) approximately 0.90Delta(0), and the remaining four modes show splittings Delta(v) falling 5-14% from Delta(0.) Significantly, the splitting for the nominal COH bending mode nu(8) (a(1)) is small, that is, 10% from Delta(0). Many of the vibrational excited states demonstrate strong anharmonic behavior, but there are only mild perturbations on the tautomerization mechanism driving Delta(0). The data suggest, especially for the higher frequency a(1) fundamentals, the onset of selective intramolecular vibrational energy redistribution processes that are fast on the time scale of the tautomerization process. These appear to delocalize and smooth out the topographical modifications of the zero-point potential energy surface that are anticipated to follow absorption of the nu(v) photon. Further, the spectra show the propensity for the Delta(v) splittings of b(2) and other complex vibrations to be damped relative to Delta(0).
Collapse
Affiliation(s)
- Richard L Redington
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | | | | |
Collapse
|
20
|
Meyer * R, Ha TK. Rotational constants of malonaldehyde and isotopic species derived fromab initioresults. Mol Phys 2005. [DOI: 10.1080/00268970500126199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Matanović I, Doslić N. Infrared Spectroscopy of the Intramolecular Hydrogen Bond in Acethylacetone: A Computational Approach. J Phys Chem A 2005; 109:4185-94. [PMID: 16833744 DOI: 10.1021/jp044695s] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The intramolecular hydrogen bond in the enol-acethylacetone (ACAC) is investigated by performing reduced-dimensional quantum calculations. To analyze the shared proton vibrations, two sets of coordinates were employed: normal mode coordinates describing the motion in the vicinity of the most stable configuration, and internal coordinates accounting for the double minimum proton motion. It is proved that the extreme broadness of the OH-stretch band in ACAC is a consequence of the coexistence of two enol-ACAC structures: the global minimum and the transition state for rotation of the distal methyl group. Further, a ground-state tunneling splitting of 116 cm(-1) is found, and it is shown that the inclusion of the kinematic coupling is mandatory when treating large-amplitude proton motion. In the OH-stretch direction a splitting of 853 cm(-1) was predicted.
Collapse
Affiliation(s)
- I Matanović
- Department of Physical Chemistry, R. Bosković Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | | |
Collapse
|
22
|
Matanović I, Došlić N, Mihalić Z. Exploring the potential energy surface for proton transfer in acetylacetone. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2004.07.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
|
24
|
|
25
|
Ultrafast wave packet dynamics of an intramolecular hydrogen transfer system: from vibrational motion to reaction control. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2004.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Panek J, Stare J, Hadži D. From the Isolated Molecule to Oligomers and the Crystal: A Static Density Functional Theory and Car−Parrinello Molecular Dynamics Study of Geometry and Potential Function Modifications of the Short Intramolecular Hydrogen Bond in Picolinic Acid N-Oxide. J Phys Chem A 2004. [DOI: 10.1021/jp0495794] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jarosław Panek
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Jernej Stare
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Dušan Hadži
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
|