1
|
Ma AC, Cameron AD, Wiener M. Memorability shapes perceived time (and vice versa). Nat Hum Behav 2024; 8:1296-1308. [PMID: 38649460 DOI: 10.1038/s41562-024-01863-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Visual stimuli are known to vary in their perceived duration. Some visual stimuli are also known to linger for longer in memory. Yet, whether these two features of visual processing are linked is unknown. Despite early assumptions that time is an extracted or higher-order feature of perception, more recent work over the past two decades has demonstrated that timing may be instantiated within sensory modality circuits. A primary location for many of these studies is the visual system, where duration-sensitive responses have been demonstrated. Furthermore, visual stimulus features have been observed to shift perceived duration. These findings suggest that visual circuits mediate or construct perceived time. Here we present evidence across a series of experiments that perceived time is affected by the image properties of scene size, clutter and memorability. More specifically, we observe that scene size and memorability dilate time, whereas clutter contracts it. Furthermore, the durations of more memorable images are also perceived more precisely. Conversely, the longer the perceived duration of an image, the more memorable it is. To explain these findings, we applied a recurrent convolutional neural network model of the ventral visual system, in which images are progressively processed over time. We find that more memorable images are processed faster, and that this increase in processing speed predicts both the lengthening and the increased precision of perceived durations. These findings provide evidence for a link between image features, time perception and memory that can be further explored with models of visual processing.
Collapse
Affiliation(s)
- Alex C Ma
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Ayana D Cameron
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
2
|
Arslanova I, Kotsaris V, Tsakiris M. Perceived time expands and contracts within each heartbeat. Curr Biol 2023; 33:1389-1395.e4. [PMID: 36905931 DOI: 10.1016/j.cub.2023.02.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 02/10/2023] [Indexed: 03/12/2023]
Abstract
Perception of passing time can be distorted.1 Emotional experiences, particularly arousal, can contract or expand experienced duration via their interactions with attentional and sensory processing mechanisms.2,3 Current models suggest that perceived duration can be encoded from accumulation processes4,5 and from temporally evolving neural dynamics.6,7 Yet all neural dynamics and information processing ensue at the backdrop of continuous interoceptive signals originating from within the body. Indeed, phasic fluctuations within the cardiac cycle impact neural and information processing.8,9,10,11,12,13,14,15 Here, we show that these momentary cardiac fluctuations distort experienced time and that their effect interacts with subjectively experienced arousal. In a temporal bisection task, durations (200-400 ms) of an emotionally neutral visual shape or auditory tone (experiment 1) or of an image displaying happy or fearful facial expressions (experiment 2) were categorized as short or long.16 Across both experiments, stimulus presentation was time-locked to systole, when the heart contracts and baroreceptors fire signals to the brain, and to diastole, when the heart relaxes, and baroreceptors are quiescent. When participants judged the duration of emotionally neural stimuli (experiment 1), systole led to temporal contraction, whereas diastole led to temporal expansion. Such cardiac-led distortions were further modulated by the arousal ratings of the perceived facial expressions (experiment 2). At low arousal, systole contracted while diastole expanded time, but as arousal increased, this cardiac-led time distortion disappeared, shifting duration perception toward contraction. Thus, experienced time contracts and expands within each heartbeat-a balance that is disrupted under heightened arousal.
Collapse
Affiliation(s)
- Irena Arslanova
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EY, UK.
| | | | - Manos Tsakiris
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EY, UK; Centre for the Politics of Feeling, School of Advanced Study, University of London, London WC1E 7HU, UK
| |
Collapse
|
3
|
Kovarski K, Dos Reis J, Chevais C, Hamel A, Makowski D, Sperduti M. Movie editing influences spectators' time perception. Sci Rep 2022; 12:20084. [PMID: 36418366 PMCID: PMC9684412 DOI: 10.1038/s41598-022-23992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Filmmakers use different techniques (e.g., camera movements, editing) to shape viewers' experience. In particular, editing can be used to handle the temporal unfolding of events represented in a movie. Nevertheless, little is known about how different editing types impact viewers' time perception. In an exploratory on-line study (90 participants) and a pre-registered conceptual replication study (60 participants), we asked participants to judge (Study 1) or reproduce (Study 2) the duration of 45 excerpts of the movie "Le Ballon Rouge" containing either continuous editing, action discontinuity editing or no editing. Each excerpt was formatted in three durations (2000, 2500 or 3000 ms). In both studies, we reported that scenes containing continuous editing were perceived as longer than the other two scene types. Moreover, scenes containing action discontinuity editing were perceived as longer than scenes with no editing. This study contributes to the emerging field of psycho-cinematics which could ultimately develop the dialog between arts and science.
Collapse
Affiliation(s)
- Klara Kovarski
- grid.419339.5Hôpital Fondation Rothschild, Paris, France ,grid.508487.60000 0004 7885 7602Integrative Neuroscience and Cognition Center-CNRS, Université Paris Cité, Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Université, INSPE, Paris, France ,grid.462521.6LaPsyDÉ, Université Paris Cité, CNRS, Paris, France
| | - Joanna Dos Reis
- grid.508487.60000 0004 7885 7602Laboratoire Mémoire, Cerveau and Cognition, (LMC2 UPR 7536), Institut de Psychologie, Université Paris Cité, 92100 Boulogne-Billancourt, France
| | - Claire Chevais
- grid.508487.60000 0004 7885 7602Laboratoire Mémoire, Cerveau and Cognition, (LMC2 UPR 7536), Institut de Psychologie, Université Paris Cité, 92100 Boulogne-Billancourt, France
| | - Anaïs Hamel
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Neuropresage Team, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France ,grid.4989.c0000 0001 2348 0746UR2NF-Neuropsychology and Functional Neuroimaging Research Unit at CRCN-Center for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominique Makowski
- grid.59025.3b0000 0001 2224 0361Clinical Brain Lab, Nanyang Technological University, Singapore, Singapore
| | - Marco Sperduti
- grid.508487.60000 0004 7885 7602Laboratoire Mémoire, Cerveau and Cognition, (LMC2 UPR 7536), Institut de Psychologie, Université Paris Cité, 92100 Boulogne-Billancourt, France
| |
Collapse
|
4
|
Sherman MT, Fountas Z, Seth AK, Roseboom W. Trial-by-trial predictions of subjective time from human brain activity. PLoS Comput Biol 2022; 18:e1010223. [PMID: 35797365 PMCID: PMC9262235 DOI: 10.1371/journal.pcbi.1010223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/17/2022] [Indexed: 11/19/2022] Open
Abstract
Human experience of time exhibits systematic, context-dependent deviations from clock time; for example, time is experienced differently at work than on holiday. Here we test the proposal that differences from clock time in subjective experience of time arise because time estimates are constructed by accumulating the same quantity that guides perception: salient events. Healthy human participants watched naturalistic, silent videos of up to 24 seconds in duration and estimated their duration while fMRI was acquired. We were able to reconstruct trial-by-trial biases in participants’ duration reports, which reflect subjective experience of duration, purely from salient events in their visual cortex BOLD activity. By contrast, salient events in neither of two control regions–auditory and somatosensory cortex–were predictive of duration biases. These results held despite being able to (trivially) predict clock time from all three brain areas. Our results reveal that the information arising during perceptual processing of a dynamic environment provides a sufficient basis for reconstructing human subjective time duration. Our perception of time isn’t like a clock; it varies depending on other aspects of experience, such as what we see and hear in that moment. Previous studies have shown that differences in simple features, such as an image being larger or smaller, or brighter or dimmer, can change how we perceive time for those experiences. But in everyday life, the properties of these simple features can change frequently, presenting a challenge to understanding real-world time perception based on simple lab experiments. To overcome this problem, we developed a computational model of human time perception based on tracking changes in neural activity across brain regions involved in sensory processing (using non-invasive brain imaging). By measuring changes in brain activity patterns across these regions, our approach accommodates the different and changing feature combinations present in natural scenarios, such as walking on a busy street. Our model reproduces people’s duration reports for natural videos (up to almost half a minute long) and, most importantly, predicts whether a person reports a scene as relatively shorter or longer–the biases in time perception that reflect how natural experience of time deviates from clock time.
Collapse
Affiliation(s)
- Maxine T. Sherman
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
- Department of Informatics, University of Sussex, Brighton, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- * E-mail: (MTS); (WR)
| | - Zafeirios Fountas
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Anil K. Seth
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
- Department of Informatics, University of Sussex, Brighton, United Kingdom
- Canadian Institute for Advanced Research, Program on Brain, Mind, and Consciousness, Toronto, Canada
| | - Warrick Roseboom
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
- Department of Informatics, University of Sussex, Brighton, United Kingdom
- School of Psychology, University of Sussex, Brighton, United Kingdom
- * E-mail: (MTS); (WR)
| |
Collapse
|
5
|
A proxy measure of striatal dopamine predicts individual differences in temporal precision. Psychon Bull Rev 2022; 29:1307-1316. [PMID: 35318580 PMCID: PMC9436857 DOI: 10.3758/s13423-022-02077-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
Abstract
The perception of time is characterized by pronounced variability across individuals, with implications for a diverse array of psychological functions. The neurocognitive sources of this variability are poorly understood, but accumulating evidence suggests a role for inter-individual differences in striatal dopamine levels. Here we present a pre-registered study that tested the predictions that spontaneous eyeblink rates, which provide a proxy measure of striatal dopamine availability, would be associated with aberrant interval timing (lower temporal precision or overestimation bias). Neurotypical adults (N = 69) underwent resting state eye tracking and completed visual psychophysical interval timing and control tasks. Elevated spontaneous eyeblink rates were associated with poorer temporal precision but not with inter-individual differences in perceived duration or performance on the control task. These results signify a role for striatal dopamine in variability in human time perception and can help explain deficient temporal precision in psychiatric populations characterized by elevated dopamine levels.
Collapse
|