1
|
Kueck AF, van den Boom J, Koska S, Ron D, Meyer H. Alternating binding and p97-mediated dissociation of SDS22 and I3 recycles active PP1 between holophosphatases. Proc Natl Acad Sci U S A 2024; 121:e2408787121. [PMID: 39207734 PMCID: PMC11388335 DOI: 10.1073/pnas.2408787121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Protein phosphatase-1 catalytic subunit (PP1) joins diverse targeting subunits to form holophosphatases that regulate many cellular processes. Newly synthesized PP1 is known to be transiently sequestered in an inhibitory complex with Suppressor-of-Dis2-number-2 (SDS22) and Inhibitor-3 (I3), which is disassembled by the ATPases Associated with diverse cellular Activities plus (AAA+) protein p97. Here, we show that the SDS22-PP1-I3 complex also acts as a thermodynamic sink for mature PP1 and that cycles of SDS22-PP1-I3 formation and p97-driven disassembly regulate PP1 function and subunit exchange beyond PP1 biogenesis. Förster Resonance energy transfer (FRET) analysis of labeled proteins in vitro revealed that in the p97-mediated disassembly step, both SDS22 and I3 dissociate concomitantly, releasing PP1. In presence of a targeting subunit, for instance Growth Arrest and DNA Damage-inducible protein 34 (GADD34), liberated PP1 formed an active holophosphatase that dephosphorylated its substrate, eukaryotic translation initiation factor 2 alpha (eIF2α). Inhibition of p97 results in displacement of the GADD34 targeting subunit by rebinding of PP1 to SDS22 and I3 indicating that the SDS22-PP1-I3 complex is thermodynamically favored. Likewise, p97 inhibition in cells causes rapid sequestration of PP1 by free SDS22 and I3 at the expense of other subunits. This suggests that PP1 exists in a steady state maintained by spontaneous SDS22-PP1-I3 formation and adenosine triphosphate (ATP) hydrolysis, p97-driven disassembly that recycles active PP1 between different holophosphatase complexes to warrant a dynamic holophosphatase landscape.
Collapse
Affiliation(s)
- Anja F Kueck
- Molecular Biology I, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Johannes van den Boom
- Molecular Biology I, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Sandra Koska
- Molecular Biology I, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - David Ron
- Cellular Pathophysiology and Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Hemmo Meyer
- Molecular Biology I, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
2
|
Cao X, Lake M, Van der Hoeven G, Claes Z, Del Pino García J, Lemaire S, Greiner EC, Karamanou S, Van Eynde A, Kettenbach AN, Natera de Benito D, Carrera García L, Hernando Davalillo C, Ortez C, Nascimento A, Urreizti R, Bollen M. SDS22 coordinates the assembly of holoenzymes from nascent protein phosphatase-1. Nat Commun 2024; 15:5359. [PMID: 38918402 PMCID: PMC11199634 DOI: 10.1038/s41467-024-49746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
SDS22 forms an inactive complex with nascent protein phosphatase PP1 and Inhibitor-3. SDS22:PP1:Inhibitor-3 is a substrate for the ATPase p97/VCP, which liberates PP1 for binding to canonical regulatory subunits. The exact role of SDS22 in PP1-holoenzyme assembly remains elusive. Here, we show that SDS22 stabilizes nascent PP1. In the absence of SDS22, PP1 is gradually lost, resulting in substrate hyperphosphorylation and a proliferation arrest. Similarly, we identify a female individual with a severe neurodevelopmental disorder bearing an unstable SDS22 mutant, associated with decreased PP1 levels. We furthermore find that SDS22 directly binds to Inhibitor-3 and that this is essential for the stable assembly of SDS22:PP1: Inhibitor-3, the recruitment of p97/VCP, and the extraction of SDS22 during holoenzyme assembly. SDS22 with a disabled Inhibitor-3 binding site co-transfers with PP1 to canonical regulatory subunits, thereby forming non-functional holoenzymes. Our data show that SDS22, through simultaneous interaction with PP1 and Inhibitor-3, integrates the major steps of PP1 holoenzyme assembly.
Collapse
Affiliation(s)
- Xinyu Cao
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000, Leuven, Belgium
| | - Madryn Lake
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000, Leuven, Belgium
| | - Gerd Van der Hoeven
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000, Leuven, Belgium
| | - Zander Claes
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000, Leuven, Belgium
| | - Javier Del Pino García
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000, Leuven, Belgium
| | - Sarah Lemaire
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000, Leuven, Belgium
| | - Elora C Greiner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Lebanon, NH, USA
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, KU Leuven Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000, Leuven, Belgium
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Lebanon, NH, USA
| | | | - Laura Carrera García
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Deu, Barcelona, Spain
| | | | - Carlos Ortez
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Roser Urreizti
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
3
|
Kommer DC, Stamatiou K, Vagnarelli P. Cell Cycle-Specific Protein Phosphatase 1 (PP1) Substrates Identification Using Genetically Modified Cell Lines. Methods Mol Biol 2024; 2740:37-61. [PMID: 38393468 DOI: 10.1007/978-1-0716-3557-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The identification of protein phosphatase 1 (PP1) holoenzyme substrates has proven to be a challenging task. PP1 can form different holoenzyme complexes with a variety of regulatory subunits, and many of those are cell cycle regulated. Although several methods have been used to identify PP1 substrates, their cell cycle specificity is still an unmet need. Here, we present a new strategy to investigate PP1 substrates throughout the cell cycle using clustered regularly interspersed short palindromic repeats (CRISPR)-Cas9 genome editing and generate cell lines with endogenously tagged PP1 regulatory subunit (regulatory interactor of protein phosphatase one, RIPPO). RIPPOs are tagged with the auxin-inducible degron (AID) or ascorbate peroxidase 2 (APEX2) modules, and PP1 substrate identification is conducted by SILAC proteomic-based approaches. Proteins in close proximity to RIPPOs are first identified through mass spectrometry (MS) analyses using the APEX2 system; then a list of differentially phosphorylated proteins upon RIPPOs rapid degradation (achieved via the AID system) is compiled via SILAC phospho-mass spectrometry. The "in silico" overlap between the two proteomes will be enriched for PP1 putative substrates. Several methods including fluorescence resonance energy transfer (FRET), proximity ligation assays (PLA), and in vitro assays can be used as substrate validations approaches.
Collapse
Affiliation(s)
- Dorothee C Kommer
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | | | - Paola Vagnarelli
- College of Health, Medicine and Life Science, Brunel University London, London, UK.
| |
Collapse
|
4
|
Min X, Zhu Y, Hu Y, Yang M, Yu H, Xiong Y, Fu W, Li J, Matsuda F, Xiong X. Analysis of PPP1R11 expression in granulosa cells during developmental follicles of yak and its effects on cell function. Reprod Domest Anim 2023; 58:129-140. [PMID: 36178063 DOI: 10.1111/rda.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 01/07/2023]
Abstract
The aims of this study were to analyse the protein phosphatase 1 regulatory subunit 11 (PPP1R11) expression and cellular localization in yak follicles and investigate its effects on cell proliferation, apoptosis and oestrogen secretion in granulosa cells (GCs). Ten healthy and non-pregnant female yaks (4-year-old) were used as experimental animals. The mRNA relative expression level of PPP1R11 in GCs from small (<3.0 mm), medium (3.0-5.9 mm) and large (6.0-9.0 mm) follicles was detected by RT-qPCR, and the cellular localization of PPP1R11 protein was detected by immunohistochemistry staining (IHC). After isolation, culture and identification of yak GCs in vitro, si-PPP1R11 and si-NC (negative control) were transfected into GCs. RT-qPCR and immunofluorescence staining were used to evaluate the interference efficiency, and ELISA was performed to detect oestrogen concentration. Then, EdU staining and TUNEL staining were conducted to analyse cell proliferation and apoptosis. In addition, the oestrogen synthesis, proliferation- and apoptosis-related genes were detected by RT-qPCR after knockdown PPP1R11. The results showed that PPP1R11 is mainly located in ovarian GCs, and the expression levels of PPP1R11 in GCs from large follicles were significantly higher than that from medium and small follicles. Transfection of si-PPP1R11 into GCs could significantly inhibit the expression of PPP1R11. Interestingly, the oestrogen secretion ability and the expression level of oestrogen pathway-related genes (STAR, CYP11A1, CYP19A1 and HSD17B1) were also significantly downregulated. Moreover, the proportion of positive cells was decreased, and cellular proliferation-related genes (PCNA, CCNB1 and CDC25A) were significantly downregulated after knockdown PPP1R11. However, the proportion of apoptotic cells was increased, and apoptosis-related genes (BAX, CASP3 and P53) were significantly upregulated. Taken together, this study was the first revealed the expression and cellular localization of PPP1R11 in yak follicles. Interference PPP1R11 could reduce oestrogen secretion, inhibit proliferation and promote apoptosis in GCs, which provided a basis for further studies on the regulatory mechanism of PPP1R11 in follicle development.
Collapse
Affiliation(s)
- Xingyu Min
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yanjin Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yulei Hu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Manzhen Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Hailing Yu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Fuko Matsuda
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| |
Collapse
|
5
|
Fréville A, Gnangnon B, Tremp AZ, De Witte C, Cailliau K, Martoriati A, Aliouat EM, Fernandes P, Chhuon C, Silvie O, Marion S, Guerrera IC, Dessens JT, Pierrot C, Khalife J. Plasmodium berghei leucine-rich repeat protein 1 downregulates protein phosphatase 1 activity and is required for efficient oocyst development. Open Biol 2022; 12:220015. [PMID: 35920043 PMCID: PMC9346556 DOI: 10.1098/rsob.220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1-LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Annie Z. Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, WC1E 7HT London, UK
| | - Caroline De Witte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - El Moukthar Aliouat
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Priyanka Fernandes
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Cerina Chhuon
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Sabrina Marion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Johannes T. Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, WC1E 7HT London, UK
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| |
Collapse
|
6
|
PPP1R7 Is a Novel Translocation Partner of CBFB via t(2;16)(q37;q22) in Acute Myeloid Leukemia. Genes (Basel) 2022; 13:genes13081367. [PMID: 36011278 PMCID: PMC9407081 DOI: 10.3390/genes13081367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
In a subset of acute myeloid leukemia (AML) cases, the core binding factor beta subunit gene (CBFB) was rearranged via inv(16)(p13.1q22) or t(16;16)(p13.1;q22), in which the smooth muscle myosin heavy chain 11 gene (MYH11) was the partner (CBFB::MYH11). Rare variants of CBFB rearrangement occurring via non-classic chromosomal aberrations have been reported, such as t(1;16), t(2;16), t(3;16), t(5;16), and t(16;19), but the partners of CBFB have not been characterized. We report a case of AML with a complex karyotype, including t(2;16)(q37;q22), in which the protein phosphatase 1 regulatory subunit 7 gene (PPP1R7) at chromosome 2q37 was rearranged with CBFB (CBFB::PPP1R7). This abnormality was inconspicuous by conventional karyotype and interphase fluorescence in situ hybridization (FISH), thus leading to an initial interpretation of inv(16)(p13.1q22); however, metaphase FISH showed that the CBFB rearrangement involved chromosome 2. Using whole genome and Sanger sequencing, the breakpoints were identified as being located in intron 5 of CBFB and intron 7 of PPP1R7. A microhomology of CAG was found in the break and reconnection sites of CBFB and PPP1R7, thus supporting the formation of CBFB::PPP1R7 by microhomology-mediated end joining.
Collapse
|
7
|
Targeted substrate loop insertion by VCP/p97 during PP1 complex disassembly. Nat Struct Mol Biol 2021; 28:964-971. [PMID: 34824462 DOI: 10.1038/s41594-021-00684-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/07/2021] [Indexed: 12/30/2022]
Abstract
The AAA-ATPase VCP/p97/Cdc48 unfolds proteins by threading them through its central pore, but how substrates are recognized and inserted into the pore in diverse pathways has remained controversial. Here, we show that p97, with its adapter p37, binds an internal recognition site (IRS) within inhibitor-3 (I3) and then threads a peptide loop into its channel to strip I3 off protein phosphatase-1 (PP1). Of note, the IRS is adjacent to the prime interaction site of I3 to PP1, and IRS mutations block I3 processing both in vitro and in cells. In contrast, amino- and carboxy-terminal regions of I3 are not required, and even circularization of I3 does not prevent I3 processing. This was confirmed by an in vitro Förster resonance energy transfer assay that allowed kinetic analysis of the reaction. Thus, our data uncover how PP1 is released from its inhibitory partner for activation and demonstrate a remarkable plasticity in substrate threading by p97.
Collapse
|
8
|
Cao X, Lemaire S, Bollen M. Protein phosphatase 1: life-course regulation by SDS22 and Inhibitor-3. FEBS J 2021; 289:3072-3085. [PMID: 34028981 DOI: 10.1111/febs.16029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Protein phosphatase 1 (PP1) is expressed in all eukaryotic cells and catalyzes a sizable fraction of protein Ser/Thr dephosphorylation events. It is tightly regulated in space and time through association with a wide array of regulatory interactors of protein phosphatase one (RIPPOs). Suppressor-of-Dis2-number 2 (SDS22) and Inhibitor-3 (I3), which form a ternary complex with PP1, are the first two evolved and most widely expressed RIPPOs. Their deletion causes mitotic-arrest phenotypes and is lethal in some organisms. The role of SDS22 and I3 in PP1 regulation has been a mystery for decades as they were independently identified as both activators and inhibitors of PP1. This conundrum has largely been solved by recent reports showing that SDS22 and I3 control multiple steps of the life course of PP1. Indeed, they contribute to (a) the stabilization and activation of newly translated PP1, (b) the translocation of PP1 to the nucleus, and (c) the storage of PP1 as a reserve for holoenzyme assembly. Preliminary evidence suggests that SDS22 and I3 may also function as scavengers of released or aged PP1 for re-use in holoenzyme assembly or proteolytical degradation, respectively. Hence, SDS22 and I3 are emerging as master regulators of the life course of PP1.
Collapse
Affiliation(s)
- Xinyu Cao
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Sarah Lemaire
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| |
Collapse
|
9
|
Zhang J, Qin Q, Nan X, Guo Z, Liu Y, Jadoon S, Chen Y, Zhao L, Yan L, Hou S. Role of Protein Phosphatase1 Regulatory Subunit3 in Mediating the Abscisic Acid Response. PLANT PHYSIOLOGY 2020; 184:1317-1332. [PMID: 32948668 PMCID: PMC7608174 DOI: 10.1104/pp.20.01018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 05/06/2023]
Abstract
Protein phosphatase1 (PP1) plays important roles in eukaryotes, including in plant hormone responses, and functions as a holoenzyme that consists of catalytic and regulatory subunits. Animal genomes encode ∼200 PP1-interacting proteins; by contrast, only a few have been reported in plants. In this study, PP1 Regulatory Subunit3 (PP1R3), a protein that interacts with PP1 in Arabidopsis (Arabidopsis thaliana), was characterized by mass spectrometry. PP1R3 was widely expressed in various plant tissues and PP1R3 colocalized with Type One Protein Phosphatases (TOPPs) in the nucleus and cytoplasm. The pp1r3 mutants were hypersensitive to abscisic acid (ABA), similar to the dominant-negative mutant topp4-1 or the loss-of-function multiple mutants topp1 topp4-3, topp8 topp9, topp6/7/9, topp1/2/4-3/6/7/9, and topp1/4-3/5/6/7/8/9 (topp-7m). About two-thirds of differentially expressed genes in topp-7m showed the same gene expression changes as in pp1r3-2 In response to ABA, the phenotypes of pp1r3 topp1 topp4-3 and pp1r3 topp4-1 were consistent with those of pp1r3, while pp1r3 abi1-1 showed an additive effect of the pp1r3 and abi1-1 (mutation in Abscisic Acid Insensitive1 [ABI1]) single mutants. Moreover, pp1r3 could partially recover the ABA response-related phenotype, gene expression, and plant morphology of topp4-1 PP1R3 inhibited TOPP enzyme activity and facilitated the nuclear localization of TOPP4. By contrast, ABA treatment increased the amounts of TOPP1 and TOPP4 in the cytoplasm. Importantly, nuclear localization of TOPP4 partially restored the ABA-hypersensitive phenotype of topp4-1 Overall, our results suggest that the PP1R3:TOPP holoenzyme functions in parallel with ABI1 in the nucleus to regulate ABA signaling.
Collapse
Affiliation(s)
- Jing Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qianqian Qin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaohui Nan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zilong Guo
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yang Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sawaira Jadoon
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lulu Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Longfeng Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Kracht M, van den Boom J, Seiler J, Kröning A, Kaschani F, Kaiser M, Meyer H. Protein Phosphatase-1 Complex Disassembly by p97 is Initiated through Multivalent Recognition of Catalytic and Regulatory Subunits by the p97 SEP-domain Adapters. J Mol Biol 2020; 432:6061-6074. [PMID: 33058883 DOI: 10.1016/j.jmb.2020.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
The AAA-ATPase VCP/p97 cooperates with the SEP-domain adapters p37, UBXN2A and p47 in stripping inhibitor-3 (I3) from protein phosphatase-1 (PP1) for activation. In contrast to p97-mediated degradative processes, PP1 complex disassembly is ubiquitin-independent. It is therefore unclear how selective targeting is achieved. Using biochemical reconstitution and crosslink mass spectrometry, we show here that SEP-domain adapters use a multivalent substrate recognition strategy. An N-terminal sequence element predicted to form a helix, together with the SEP-domain, binds and engages the direct target I3 in the central pore of p97 for unfolding, while its partner PP1 is held by a linker between SHP box and UBX domain locked onto the peripheral N-domain of p97. Although the I3-binding element is functional in p47, p47 in vitro requires a transplant of the PP1-binding linker from p37 for activity stressing that both sites are essential to control specificity. Of note, unfolding is then governed by an inhibitory segment in the N-terminal region of p47, suggesting a regulatory function. Together, this study reveals how p97 adapters engage a protein complex for ubiquitin-independent disassembly while ensuring selectivity for one subunit.
Collapse
Affiliation(s)
- Matthias Kracht
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Johannes van den Boom
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Jonas Seiler
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Alexander Kröning
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology and Analytics Core Facility, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology and Analytics Core Facility, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Hemmo Meyer
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany.
| |
Collapse
|
11
|
Khalife J, Fréville A, Gnangnon B, Pierrot C. The Multifaceted Role of Protein Phosphatase 1 in Plasmodium. Trends Parasitol 2020; 37:154-164. [PMID: 33036936 DOI: 10.1016/j.pt.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Protein phosphatase type 1 (PP1) forms a wide range of Ser/Thr-specific phosphatase holoenzymes which contain one catalytic subunit (PP1c), present in all eukaryotic cells, associated with variable subunits known as regulatory proteins. It has recently been shown that regulators take a leading role in the organization and the control of PP1 functions. Many studies have addressed the role of these regulators in diverse organisms, including humans, and investigated their link to diseases. In this review we summarize recent advances on the role of PP1c in Plasmodium, its interactome and regulators. As a proof of concept, peptides interfering with the regulator binding capacity of PP1c were shown to inhibit the growth of P. falciparum, suggesting their potential as drug precursors.
Collapse
Affiliation(s)
- Jamal Khalife
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France.
| | - Aline Fréville
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Bénédicte Gnangnon
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Christine Pierrot
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
12
|
Casamayor A, Ariño J. Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:231-288. [PMID: 32951813 DOI: 10.1016/bs.apcsb.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphatase 1 is a major Ser/Thr protein phosphatase activity in eukaryotic cells. It is composed of a catalytic polypeptide (PP1C), with little substrate specificity, that interacts with a large variety of proteins of diverse structure (regulatory subunits). The diversity of holoenzymes that can be formed explain the multiplicity of cellular functions under the control of this phosphatase. In quite a few cases, regulatory subunits have an inhibitory role, downregulating the activity of the phosphatase. In this chapter we shall introduce PP1C and review the most relevant families of PP1C regulatory subunits, with particular emphasis in describing the structural basis for their interaction.
Collapse
Affiliation(s)
- Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| |
Collapse
|
13
|
Dey S, Brothag C, Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front Cell Dev Biol 2019; 7:341. [PMID: 31921853 PMCID: PMC6930163 DOI: 10.3389/fcell.2019.00341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
In mammals, motility and fertilizing ability of spermatozoa develop during their passage through the epididymis. After ejaculation, sperm undergo capacitation and hyperactivation in the female reproductive tract - a motility transition that is required for sperm penetration of the egg. Both epididymal initiation of sperm motility and hyperactivation are essential for male fertility. Motility initiation in the epididymis and sperm hyperactivation involve changes in metabolism, cAMP (cyclic adenosine mono-phosphate), calcium and pH acting through protein kinases and phosphatases. Despite this knowledge, we still do not understand, in biochemical terms, how sperm acquire motility in the epididymis and how motility is altered in the female reproductive tract. Recent data show that the sperm specific protein phosphatase PP1γ2, glycogen synthase kinase 3 (GSK3), and the calcium regulated phosphatase calcineurin (PP2B), are involved in epididymal sperm maturation. The protein phosphatase PP1γ2 is present only in testis and sperm in mammals. PP1γ2 has a isoform-specific requirement for normal function of mammalian sperm. Sperm PP1γ2 is regulated by three proteins - inhibitor 2, inhibitor 3 and SDS22. Changes in phosphorylation of these three inhibitors and their binding to PP1γ2 are involved in initiation and activation of sperm motility. The inhibitors are phosphorylated by protein kinases, one of which is GSK3. The isoform GSK3α is essential for epididymal sperm maturation and fertility. Calcium levels dramatically decrease during sperm maturation and initiation of motility suggesting that the calcium activated sperm phosphatase (PP2B) activity also decreases. Loss of PP2B results in male infertility due to impaired sperm maturation in the epididymis. Thus the three signaling enzymes PP1γ2, GSK3, and PP2B along with the documented PKA (protein kinase A) have key roles in sperm maturation and hyperactivation. Significantly, all these four signaling enzymes are present as specific isoforms only in placental mammals, a testimony to their essential roles in the unique aspects of sperm function in mammals. These findings should lead to a better biochemical understanding of the basis of male infertility and should lead to novel approaches to a male contraception and managed reproduction.
Collapse
|
14
|
Joshi RN, Fernandes SJ, Shang MM, Kiani NA, Gomez-Cabrero D, Tegnér J, Schmidt A. Phosphatase inhibitor PPP1R11 modulates resistance of human T cells toward Treg-mediated suppression of cytokine expression. J Leukoc Biol 2019; 106:413-430. [PMID: 30882958 PMCID: PMC6850362 DOI: 10.1002/jlb.2a0618-228r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/15/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) act as indispensable unit for maintaining peripheral immune tolerance mainly by regulating effector T cells. T cells resistant to suppression by Tregs pose therapeutic challenges in the treatment of autoimmune diseases, while augmenting susceptibility to suppression may be desirable for cancer therapy. To understand the cell intrinsic signals in T cells during suppression by Tregs, we have previously performed a global phosphoproteomic characterization. We revealed altered phosphorylation of protein phosphatase 1 regulatory subunit 11 (PPP1R11; Inhibitor‐3) in conventional T cells upon suppression by Tregs. Here, we show that silencing of PPP1R11 renders T cells resistant toward Treg‐mediated suppression of TCR‐induced cytokine expression. Furthermore, whole‐transcriptome sequencing revealed that PPP1R11 differentially regulates not only the expression of specific T cell stimulation‐induced cytokines but also other molecules and pathways in T cells. We further confirmed the target of PPP1R11, PP1, to augment TCR‐induced cytokine expression. In conclusion, we present PPP1R11 as a novel negative regulator of T cell activation‐induced cytokine expression. Targeting PPP1R11 may have therapeutic potential to regulate the T cell activation status including modulating the susceptibility of T cells toward Treg‐mediated suppression, specifically altering the stimulation‐induced T cell cytokine milieu.
Collapse
Affiliation(s)
- Rubin N Joshi
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sunjay Jude Fernandes
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ming-Mei Shang
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Narsis A Kiani
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Mucosal and Salivary Biology Division, King's College London Dental Institute, London, United Kingdom.,Translational Bioinformatics Unit, NavarraBiomed, Departamento de Salud-Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Angelika Schmidt
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
16
|
Structure-Guided Exploration of SDS22 Interactions with Protein Phosphatase PP1 and the Splicing Factor BCLAF1. Structure 2019; 27:507-518.e5. [PMID: 30661852 DOI: 10.1016/j.str.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/09/2018] [Accepted: 12/03/2018] [Indexed: 01/29/2023]
Abstract
SDS22 is an ancient regulator of protein phosphatase-1 (PP1). Our crystal structure of SDS22 shows that its twelve leucine-rich repeats adopt a banana-shaped fold that is shielded from solvent by capping domains at its extremities. Subsequent modeling and biochemical studies revealed that the concave side of SDS22 likely interacts with PP1 helices α5 and α6, which are distal from the binding sites of many previously described PP1 interactors. Accordingly, we found that SDS22 acts as a "third" subunit of multiple PP1 holoenzymes. The crystal structure of SDS22 also revealed a large basic surface patch that enables binding of a phosphorylated form of splicing factor BCLAF1. Taken together, our data provide insights into the formation of PP1:SDS22 and the recruitment of additional interaction proteins, such as BCLAF1.
Collapse
|
17
|
Choy MS, Bolik-Coulon N, Archuleta TL, Peti W, Page R. The structure of SDS22 provides insights into the mechanism of heterodimer formation with PP1. Acta Crystallogr F Struct Biol Commun 2018; 74:817-824. [PMID: 30511677 PMCID: PMC6277963 DOI: 10.1107/s2053230x18016503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/19/2018] [Indexed: 01/18/2023] Open
Abstract
Protein phosphatase 1 (PP1) dephosphorylates hundreds of key biological targets by associating with nearly 200 regulatory proteins to form highly specific holoenzymes. The vast majority of regulators are intrinsically disordered proteins (IDPs) and bind PP1 via short linear motifs within their intrinsically disordered regions. One of the most ancient PP1 regulators is SDS22, a protein that is conserved from yeast to mammals. Sequence analysis of SDS22 revealed that it is a leucine-rich repeat (LRR) protein, suggesting that SDS22, unlike nearly every other known PP1 regulator, is not an IDP but instead is fully structured. Here, the 2.9 Å resolution crystal structure of human SDS22 in space group P212121 is reported. SDS22 adopts an LRR fold with the horseshoe-like curvature typical for this family of proteins. The structure results in surfaces with distinct chemical characteristics that are likely to be critical for PP1 binding.
Collapse
Affiliation(s)
- Meng S. Choy
- Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Drive, Biosciences West, Tucson, AZ 85281, USA
| | - Nicolas Bolik-Coulon
- Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Drive, Biosciences West, Tucson, AZ 85281, USA
| | - Tara L. Archuleta
- Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Drive, Biosciences West, Tucson, AZ 85281, USA
| | - Wolfgang Peti
- Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Drive, Biosciences West, Tucson, AZ 85281, USA
| | - Rebecca Page
- Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Drive, Biosciences West, Tucson, AZ 85281, USA
| |
Collapse
|
18
|
Protein Phosphatase 1 Regulatory Subunit SDS22 Inhibits Breast Cancer Cell Tumorigenesis by Functioning as a Negative Regulator of the AKT Signaling Pathway. Neoplasia 2018; 21:30-40. [PMID: 30500680 PMCID: PMC6262785 DOI: 10.1016/j.neo.2018.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023] Open
Abstract
Protein phosphatases play a crucial role in cell cycle progression, cell survival, cellular signaling, and genomic integrity. The protein phosphatase 1 (PP1) regulatory subunit SDS22 plays a significant role in cell cycle progression. A recent study showed that SDS22 plays a vital role in epithelial integrity and tumor suppression in Drosophila. However, its tumor suppressive activity remains obscure in the mammalian system. Here, for the first time, we show that SDS22 inhibits the growth of breast cancer cells through induction of apoptosis. SDS22 negatively regulates the AKT kinase signaling pathway through PP1. SDS22 associates predominantly with AKT and dephosphorylates the phospho Thr308 and phospho Ser473 through PP1 and hence abrogates the cell migration, invasion, and tumor growth. Thus, our study deciphers the long-standing question of how PP1 negatively regulates the AKT signaling pathway. Further, we observed a significant converse correlation in the expression levels of SDS22 and phospho form of AKT with reduced levels of SDS22 in the higher grades of cancer. Overall, our results suggest that SDS22 could be a putative tumor suppressor and replenishment of SDS22 would be an important strategy to restrict the tumor progression.
Collapse
|
19
|
Nilsson J. Protein phosphatases in the regulation of mitosis. J Cell Biol 2018; 218:395-409. [PMID: 30446607 PMCID: PMC6363451 DOI: 10.1083/jcb.201809138] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
The accurate segregation of genetic material to daughter cells during mitosis depends on the precise coordination and regulation of hundreds of proteins by dynamic phosphorylation. Mitotic kinases are major regulators of protein function, but equally important are protein phosphatases that balance their actions, their coordinated activity being essential for accurate chromosome segregation. Phosphoprotein phosphatases (PPPs) that dephosphorylate phosphoserine and phosphothreonine residues are increasingly understood as essential regulators of mitosis. In contrast to kinases, the lack of a pronounced peptide-binding cleft on the catalytic subunit of PPPs suggests that these enzymes are unlikely to be specific. However, recent exciting insights into how mitotic PPPs recognize specific substrates have revealed that they are as specific as kinases. Furthermore, the activities of PPPs are tightly controlled at many levels to ensure that they are active only at the proper time and place. Here, I will discuss substrate selection and regulation of mitotic PPPs focusing mainly on animal cells and explore how these actions control mitosis, as well as important unanswered questions.
Collapse
Affiliation(s)
- Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Ubiquitin-Independent Disassembly by a p97 AAA-ATPase Complex Drives PP1 Holoenzyme Formation. Mol Cell 2018; 72:766-777.e6. [PMID: 30344098 DOI: 10.1016/j.molcel.2018.09.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The functional diversity of protein phosphatase-1 (PP1), with its countless substrates, relies on the ordered assembly of alternative PP1 holoenzymes. Here, we show that newly synthesized PP1 is first held by its partners SDS22 and inhibitor-3 (I3) in an inactive complex, which needs to be disassembled by the p97 AAA-ATPase to promote exchange to substrate specifiers. Unlike p97-mediated degradative processes that require the Ufd1-Npl4 ubiquitin adapters, p97 is targeted to PP1 by p37 and related adapter proteins. Reconstitution with purified components revealed direct interaction of the p37 SEP domain with I3 without the need for ubiquitination, and ATP-driven pulling of I3 into the central channel of the p97 hexamer, which triggers dissociation of I3 and SDS22. Thus, we establish regulatory ubiquitin-independent protein complex disassembly as part of the functional arsenal of p97 and define an unanticipated essential step in PP1 biogenesis that illustrates the molecular challenges of ordered subunit exchange.
Collapse
|
21
|
Bajaj R, Bollen M, Peti W, Page R. KNL1 Binding to PP1 and Microtubules Is Mutually Exclusive. Structure 2018; 26:1327-1336.e4. [PMID: 30100357 PMCID: PMC6601351 DOI: 10.1016/j.str.2018.06.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023]
Abstract
The kinetochore scaffold 1 (KNL1) protein coordinates the spindle assembly checkpoint (SAC), a signaling pathway that delays chromosome segregation until all sister chromatids are properly attached to spindle microtubules. Recently, microtubules and protein phosphatase 1 (PP1), which both bind the N-terminal domain of KNL1, have emerged as regulators of the SAC; however, how these proteins interact to contribute to SAC signaling is unknown. Here, we use X-ray crystallography, nuclear magnetic resonance spectroscopy, and biochemical assays to show how KNL1 binds both PP1 and microtubules. Unexpectedly, we discovered that PP1 and microtubules bind KNL1 via overlapping binding sites. Further, we showed that Aurora B kinase phosphorylation results in distinct patterns of KNL1 complex disruption. Finally, combining this data with co-sedimentation assays unequivocally demonstrated that microtubules and PP1 binding to KNL1 is mutually exclusive, with preferential formation of the KNL1:PP1 holoenzyme in the presence of PP1.
Collapse
Affiliation(s)
- Rakhi Bajaj
- Department of Chemistry and Biochemistry, University of Arizona, AZ 85721, USA
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Wolfgang Peti
- Department of Chemistry and Biochemistry, University of Arizona, AZ 85721, USA
| | - Rebecca Page
- Department of Chemistry and Biochemistry, University of Arizona, AZ 85721, USA;,Corresponding (lead contact) author: Rebecca Page, Department of Chemistry and Biochemistry, University of Arizona, AZ 85721, USA., 520.626.0389,
| |
Collapse
|
22
|
Ravindran R, Polk P, Robinson LC, Tatchell K. New ubiquitin-dependent mechanisms regulating the Aurora B-protein phosphatase 1 balance in Saccharomyces cerevisiae. J Cell Sci 2018; 131:jcs.217620. [PMID: 30054382 DOI: 10.1242/jcs.217620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Protein ubiquitylation regulates many cellular processes, including cell division. We report here a novel mutation altering the Saccharomyces cerevisiae E1 ubiquitin-activating enzyme (uba1-W928R) that suppresses the temperature sensitivity and chromosome loss phenotype of a well-characterized Aurora B mutant (ip1-2). The uba1-W928R mutation increases histone H3-S10 phosphorylation in the ipl1-2 strain, indicating that uba1-W928R acts by increasing Ipl1 activity and/or reducing the opposing protein phosphatase 1 (PP1; Glc7 in S. cerevisiae) phosphatase activity. Consistent with this hypothesis, Ipl1 protein levels and stability are elevated in the uba1-W928R mutant, likely mediated via the E2 enzymes Ubc4 and Cdc34. In contrast, the uba1-W928R mutation does not affect Glc7 stability, but exhibits synthetic lethality with several glc7 mutations. Moreover, uba1-W928R cells have an altered subcellular distribution of Glc7 and form nuclear Glc7 foci. These effects are likely mediated via the E2 enzymes Rad6 and Cdc34. Our new UBA1 allele reveals new roles for ubiquitylation in regulating the Ipl1-Glc7 balance in budding yeast. While ubiquitylation likely regulates Ipl1 protein stability via the canonical proteasomal degradation pathway, a non-canonical ubiquitin-dependent pathway maintains normal Glc7 localization and activity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rini Ravindran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Paula Polk
- Research Core Facility Genomics Core, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Lucy C Robinson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
23
|
Saurin AT. Kinase and Phosphatase Cross-Talk at the Kinetochore. Front Cell Dev Biol 2018; 6:62. [PMID: 29971233 PMCID: PMC6018199 DOI: 10.3389/fcell.2018.00062] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
Multiple kinases and phosphatases act on the kinetochore to control chromosome segregation: Aurora B, Mps1, Bub1, Plk1, Cdk1, PP1, and PP2A-B56, have all been shown to regulate both kinetochore-microtubule attachments and the spindle assembly checkpoint. Given that so many kinases and phosphatases converge onto two key mitotic processes, it is perhaps not surprising to learn that they are, quite literally, entangled in cross-talk. Inhibition of any one of these enzymes produces secondary effects on all the others, which results in a complicated picture that is very difficult to interpret. This review aims to clarify this picture by first collating the direct effects of each enzyme into one overarching schematic of regulation at the Knl1/Mis12/Ndc80 (KMN) network (a major signaling hub at the outer kinetochore). This schematic will then be used to discuss the implications of the cross-talk that connects these enzymes; both in terms of why it may be needed to produce the right type of kinetochore signals and why it nevertheless complicates our interpretations about which enzymes control what processes. Finally, some general experimental approaches will be discussed that could help to characterize kinetochore signaling by dissociating the direct from indirect effect of kinase or phosphatase inhibition in vivo. Together, this review should provide a framework to help understand how a network of kinases and phosphatases cooperate to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Adrian T. Saurin
- Jacqui Wood Cancer Centre, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
24
|
Lee BH, Schwager F, Meraldi P, Gotta M. p37/UBXN2B regulates spindle orientation by limiting cortical NuMA recruitment via PP1/Repo-Man. J Cell Biol 2017; 217:483-493. [PMID: 29222185 PMCID: PMC5800812 DOI: 10.1083/jcb.201707050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/03/2022] Open
Abstract
The p97 adapter p37 was known to regulate spindle orientation in human cells, but the mechanism was unknown. In this study, we show that it limits the cortical recruitment of NuMA in a PP1–Repo-Man–dependent manner. This study identifies a novel pathway controlling cortical NuMA localization. Spindle orientation determines the axis of division and is crucial for cell fate, tissue morphogenesis, and the development of an organism. In animal cells, spindle orientation is regulated by the conserved Gαi–LGN–NuMA complex, which targets the force generator dynein–dynactin to the cortex. In this study, we show that p37/UBXN2B, a cofactor of the p97 AAA ATPase, regulates spindle orientation in mammalian cells by limiting the levels of cortical NuMA. p37 controls cortical NuMA levels via the phosphatase PP1 and its regulatory subunit Repo-Man, but it acts independently of Gαi, the kinase Aurora A, and the phosphatase PP2A. Our data show that in anaphase, when the spindle elongates, PP1/Repo-Man promotes the accumulation of NuMA at the cortex. In metaphase, p37 negatively regulates this function of PP1, resulting in lower cortical NuMA levels and correct spindle orientation.
Collapse
Affiliation(s)
- Byung Ho Lee
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Francoise Schwager
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland .,Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Biogenesis and activity regulation of protein phosphatase 1. Biochem Soc Trans 2017; 45:89-99. [DOI: 10.1042/bst20160154] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/06/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Protein phosphatase 1 (PP1) is expressed in all eukaryotic cells and catalyzes a substantial fraction of phosphoserine/threonine dephosphorylation reactions. It forms stable complexes with PP1-interacting proteins (PIPs) that guide the phosphatase throughout its life cycle and control its fate and function. The diversity of PIPs is huge (≈200 in vertebrates), and most of them combine short linear motifs to form large and unique interaction interfaces with PP1. Many PIPs have separate domains for PP1 anchoring, PP1 regulation, substrate recruitment and subcellular targeting, which enable them to direct associated PP1 to a specific subset of substrates and mediate acute activity control. Hence, PP1 functions as the catalytic subunit of a large number of multimeric holoenzymes, each with its own subset of substrates and mechanism(s) of regulation.
Collapse
|
26
|
Heim A, Rymarczyk B, Mayer TU. Regulation of Cell Division. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:83-116. [PMID: 27975271 DOI: 10.1007/978-3-319-46095-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The challenging task of mitotic cell divisions is to generate two genetically identical daughter cells from a single precursor cell. To accomplish this task, a complex regulatory network evolved, which ensures that all events critical for the duplication of cellular contents and their subsequent segregation occur in the correct order, at specific intervals and with the highest possible fidelity. Transitions between cell cycle stages are triggered by changes in the phosphorylation state and levels of components of the cell cycle machinery. Entry into S-phase and M-phase are mediated by cyclin-dependent kinases (Cdks), serine-threonine kinases that require a regulatory cyclin subunit for their activity. Resetting the system to the interphase state is mediated by protein phosphatases (PPs) that counteract Cdks by dephosphorylating their substrates. To avoid futile cycles of phosphorylation and dephosphorylation, Cdks and PPs must be regulated in a manner such that their activities are mutually exclusive.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Beata Rymarczyk
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
27
|
Papadopoulos C, Kirchner P, Bug M, Grum D, Koerver L, Schulze N, Poehler R, Dressler A, Fengler S, Arhzaouy K, Lux V, Ehrmann M, Weihl CC, Meyer H. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 2016; 36:135-150. [PMID: 27753622 DOI: 10.15252/embj.201695148] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 01/05/2023] Open
Abstract
Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin-directed AAA-ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo-Lysosomal Damage Response. Together, they act downstream of K63-linked ubiquitination and p62 recruitment, and selectively remove K48-linked ubiquitin conjugates from a subpopulation of damaged lysosomes to promote autophagosome formation. Lysosomal clearance is also compromised in MEFs harboring a p97 mutation that causes inclusion body myopathy and neurodegeneration, and damaged lysosomes accumulate in affected patient tissue carrying the mutation. Moreover, we show that p97 helps clear late endosomes/lysosomes ruptured by endocytosed tau fibrils. Thus, our data reveal an important mechanism of how p97 maintains lysosomal homeostasis, and implicate the pathway as a modulator of degenerative diseases.
Collapse
Affiliation(s)
- Chrisovalantis Papadopoulos
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Philipp Kirchner
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Monika Bug
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Grum
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Lisa Koerver
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Nina Schulze
- Imaging Center Campus Essen, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Robert Poehler
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Alina Dressler
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Sven Fengler
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Khalid Arhzaouy
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vanda Lux
- Microbiology, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Michael Ehrmann
- Microbiology, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hemmo Meyer
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
28
|
Duan H, Wang C, Wang M, Gao X, Yan M, Akram S, Peng W, Zou H, Wang D, Zhou J, Chu Y, Dou Z, Barrett G, Green HN, Wang F, Tian R, He P, Wang W, Liu X, Yao X. Phosphorylation of PP1 Regulator Sds22 by PLK1 Ensures Accurate Chromosome Segregation. J Biol Chem 2016; 291:21123-21136. [PMID: 27557660 PMCID: PMC5076521 DOI: 10.1074/jbc.m116.745372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/22/2016] [Indexed: 11/06/2022] Open
Abstract
During cell division, accurate chromosome segregation is tightly regulated by Polo-like kinase 1 (PLK1) and opposing activities of Aurora B kinase and protein phosphatase 1 (PP1). However, the regulatory mechanisms underlying the aforementioned hierarchical signaling cascade during mitotic chromosome segregation have remained elusive. Sds22 is a conserved regulator of PP1 activity, but how it regulates PP1 activity in space and time during mitosis remains elusive. Here we show that Sds22 is a novel and cognate substrate of PLK1 in mitosis, and the phosphorylation of Sds22 by PLK1 elicited an inhibition of PP1-mediated dephosphorylation of Aurora B at threonine 232 (Thr232) in a dose-dependent manner. Overexpression of a phosphomimetic mutant of Sds22 causes a dramatic increase in mitotic delay, whereas overexpression of a non-phosphorylatable mutant of Sds22 results in mitotic arrest. Mechanistically, the phosphorylation of Sds22 by PLK1 strengthens the binding of Sds22 to PP1 and inhibits the dephosphorylation of Thr232 of Aurora B to ensure a robust, error-free metaphase-anaphase transition. These findings delineate a conserved signaling hierarchy that orchestrates dynamic protein phosphorylation and dephosphorylation of critical mitotic regulators during chromosome segregation to guard chromosome stability.
Collapse
Affiliation(s)
- Hequan Duan
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Chunli Wang
- the National Chromatographic Research and Analysis Center, Chinesse Academy of Sciences, Dalian 116023, China
| | - Ming Wang
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Xinjiao Gao
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Maomao Yan
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Saima Akram
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Wei Peng
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Hanfa Zou
- the National Chromatographic Research and Analysis Center, Chinesse Academy of Sciences, Dalian 116023, China
| | - Dong Wang
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Jiajia Zhou
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Youjun Chu
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Zhen Dou
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Gregory Barrett
- the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Hadiyah-Nicole Green
- the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310
| | - Fangjun Wang
- the National Chromatographic Research and Analysis Center, Chinesse Academy of Sciences, Dalian 116023, China
| | - Ruijun Tian
- the Guangzhou Women and Children's Medical Center, Guangzhou 510623, China, and the Center of Molecular Proteomics, South University of Science & Technology of China, Shenzhen 518055, China
| | - Ping He
- the Guangzhou Women and Children's Medical Center, Guangzhou 510623, China, and the Center of Molecular Proteomics, South University of Science & Technology of China, Shenzhen 518055, China
| | - Wenwen Wang
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310,
| | - Xing Liu
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China, the Morehouse School of Medicine and Atlanta Clinical & Translational Science Institute, Atlanta, Georgia 30310,
| | - Xuebiao Yao
- From the Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, MOE Collaborative Innovation Center of Chemistry for Life Sciences, University of Science & Technology of China, Hefei 230027, China,
| |
Collapse
|
29
|
ASPP1/2-PP1 complexes are required for chromosome segregation and kinetochore-microtubule attachments. Oncotarget 2016; 6:41550-65. [PMID: 26595804 PMCID: PMC4747173 DOI: 10.18632/oncotarget.6355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/02/2015] [Indexed: 01/01/2023] Open
Abstract
Regulated interactions between kinetochores and spindle microtubules are critical for maintaining genomic stability during chromosome segregation. Defects in chromosome segregation are widespread phenomenon in human cancers that are thought to serve as the fuel for tumorigenic progression. Tumor suppressor proteins ASPP1 and ASPP2, two members of the apoptosis stimulating proteins of p53 (ASPP) family, are frequently down-regulated in human cancers. Here we report that ASPP1/2 are required for proper mitotic progression. In ASPP1/2 co-depleted cells, the persistence of unaligned chromosomes and the reduction of tension across sister kinetochores on aligned chromosomes resulted in persistent spindle assembly checkpoint (SAC) activation. Using protein affinity purification methods, we searched for functional partners of ASPP1/2, and found that ASPP1/2 were associated with a subset of kinetochore proteins (Hec1, KNL-1, and CENP-F). It was found that ASPP1/2 act as PP1-targeting subunits to facilitate the interaction between PP1 and Hec1, and catalyze Hec1 (Ser165) dephosphorylation during late mitosis. These observations revealed a previously unrecognized function of ASPP1/2 in chromosome segregation and kinetochore-microtubule attachments that likely contributes to their roles in chromosome stability and tumor suppression.
Collapse
|
30
|
Sds22 participates in Glc7 mediated Rad53 dephosphorylation in MMS-induced DNA damage in Candida albicans. Fungal Genet Biol 2016; 93:50-61. [DOI: 10.1016/j.fgb.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 01/21/2023]
|
31
|
Sivakumar S, Janczyk PŁ, Qu Q, Brautigam CA, Stukenberg PT, Yu H, Gorbsky GJ. The human SKA complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores. eLife 2016; 5. [PMID: 26981768 PMCID: PMC4821802 DOI: 10.7554/elife.12902] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/03/2016] [Indexed: 01/06/2023] Open
Abstract
The spindle- and kinetochore-associated (Ska) complex is essential for normal anaphase onset in mitosis. The C-terminal domain (CTD) of Ska1 binds microtubules and was proposed to facilitate kinetochore movement on depolymerizing spindle microtubules. Here, we show that Ska complex recruits protein phosphatase 1 (PP1) to kinetochores. This recruitment requires the Ska1 CTD, which binds PP1 in vitro and in human HeLa cells. Ska1 lacking its CTD fused to a PP1-binding peptide or fused directly to PP1 rescues mitotic defects caused by Ska1 depletion. Ska1 fusion to catalytically dead PP1 mutant does not rescue and shows dominant negative effects. Thus, the Ska complex, specifically the Ska1 CTD, recruits PP1 to kinetochores to oppose spindle checkpoint signaling kinases and promote anaphase onset. Microtubule binding by Ska, rather than acting in force production for chromosome movement, may instead serve to promote PP1 recruitment to kinetochores fully attached to spindle microtubules at metaphase.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, United States.,Department of Pharmacology, University of Texas Southwestern Medical center, Dallas, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical center, Dallas, United States
| | - Paweł Ł Janczyk
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Qianhui Qu
- Department of Pharmacology, University of Texas Southwestern Medical center, Dallas, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical center, Dallas, United States
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical center, Dallas, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical center, Dallas, United States
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| |
Collapse
|
32
|
Winkler C, De Munter S, Van Dessel N, Lesage B, Heroes E, Boens S, Beullens M, Van Eynde A, Bollen M. The selective inhibition of protein phosphatase-1 results in mitotic catastrophe and impaired tumor growth. J Cell Sci 2015; 128:4526-37. [PMID: 26542020 DOI: 10.1242/jcs.175588] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/26/2015] [Indexed: 01/07/2023] Open
Abstract
The serine/threonine protein phosphatase-1 (PP1) complex is a key regulator of the cell cycle. However, the redundancy of PP1 isoforms and the lack of specific inhibitors have hampered studies on the global role of PP1 in cell cycle progression in vertebrates. Here, we show that the overexpression of nuclear inhibitor of PP1 (NIPP1; also known as PPP1R8) in HeLa cells culminated in a prometaphase arrest, associated with severe spindle-formation and chromosome-congression defects. In addition, the spindle assembly checkpoint was activated and checkpoint silencing was hampered. Eventually, most cells either died by apoptosis or formed binucleated cells. The NIPP1-induced mitotic arrest could be explained by the inhibition of PP1 that was titrated away from other mitotic PP1 interactors. Consistent with this notion, the mitotic-arrest phenotype could be rescued by the overexpression of PP1 or the inhibition of the Aurora B kinase, which acts antagonistically to PP1. Finally, we demonstrate that the overexpression of NIPP1 also hampered colony formation and tumor growth in xenograft assays in a PP1-dependent manner. Our data show that the selective inhibition of PP1 can be used to induce cancer cell death through mitotic catastrophe.
Collapse
Affiliation(s)
- Claudia Winkler
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Sofie De Munter
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Nele Van Dessel
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Bart Lesage
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Ewald Heroes
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Shannah Boens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| |
Collapse
|