1
|
Deng S, Cai J, Harrison SC, Zhou H, Hinshaw SM. Recognition of centromere-specific histone Cse4 by the inner kinetochore Okp1-Ame1 complex. EMBO Rep 2023; 24:e57702. [PMID: 37983946 PMCID: PMC10702835 DOI: 10.15252/embr.202357702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Successful mitosis depends on the timely establishment of correct chromosomal attachments to microtubules. The kinetochore, a modular multiprotein complex, mediates this connection by recognizing specialized chromatin containing a histone H3 variant called Cse4 in budding yeast and CENP-A in vertebrates. Structural features of the kinetochore that enable discrimination between Cse4/CENP-A and H3 have been identified in several species. How and when these contribute to centromere recognition and how they relate to the overall structure of the inner kinetochore are unsettled questions. More generally, this molecular recognition ensures that only one kinetochore is built on each chromatid and that this happens at the right place on the chromatin fiber. We have determined the crystal structure of a Cse4 peptide bound to the essential inner kinetochore Okp1-Ame1 heterodimer from budding yeast. The structure and related experiments show in detail an essential point of Cse4 contact and provide information about the arrangement of the inner kinetochore.
Collapse
Affiliation(s)
- Sunbin Deng
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School, and Howard Hughes Medical InstituteBostonMAUSA
| | - Jiaxi Cai
- Department of BioengineeringJacobs School of Engineering, UCSDSan DiegoCAUSA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School, and Howard Hughes Medical InstituteBostonMAUSA
| | - Huilin Zhou
- Department of BioengineeringJacobs School of Engineering, UCSDSan DiegoCAUSA
- Department of Cellular and Molecular Medicine, School of MedicineMoores Cancer Center, UCSDSan DiegoCAUSA
| | | |
Collapse
|
2
|
Li S, Garcia-Rodriguez LJ, Tanaka TU. Chromosome biorientation requires Aurora B's spatial separation from its outer kinetochore substrates, but not its turnover at kinetochores. Curr Biol 2023; 33:4557-4569.e3. [PMID: 37788666 DOI: 10.1016/j.cub.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023]
Abstract
For correct chromosome segregation in mitosis, sister kinetochores must interact with microtubules from opposite spindle poles (biorientation). For this, aberrant kinetochore-microtubule interaction must be resolved (error correction) by Aurora B kinase. Once biorientation is formed, tension is applied on kinetochore-microtubule interaction, stabilizing this interaction. The mechanism for this tension-dependent process has been debated. Here, we study how Aurora B localizations at different kinetochore sites affect the biorientation establishment and maintenance in budding yeast. Without the physiological Aurora B-INCENP recruitment mechanisms, engineered recruitment of Aurora B-INCENP to the inner kinetochore, but not to the outer kinetochore, prior to biorientation supports the subsequent biorientation establishment. Moreover, when the physiological Aurora B-INCENP recruitment mechanisms are present, an engineered Aurora B-INCENP recruitment to the outer kinetochore, but not to the inner kinetochore, during metaphase (after biorientation establishment) disrupts biorientation, which is dependent on the Aurora B kinase activity. These results suggest that the spatial separation of Aurora B from its outer kinetochore substrates is required to stabilize kinetochore-microtubule interaction when biorientation is formed and tension is applied on this interaction. Meanwhile, Aurora B exhibits dynamic turnover on the centromere/kinetochore during early mitosis, a process thought to be crucial for error correction and biorientation. However, using the engineered Aurora B-INCENP recruitment to the inner kinetochore, we demonstrate that, even without such a turnover, Aurora B-INCENP can efficiently support biorientation. Our study provides important insights into how Aurora B promotes error correction for biorientation in a tension-dependent manner.
Collapse
Affiliation(s)
- Shuyu Li
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Luis J Garcia-Rodriguez
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Tomoyuki U Tanaka
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
3
|
Cieslinski K, Wu YL, Nechyporenko L, Hörner SJ, Conti D, Skruzny M, Ries J. Nanoscale structural organization and stoichiometry of the budding yeast kinetochore. J Cell Biol 2023; 222:213833. [PMID: 36705601 PMCID: PMC9929930 DOI: 10.1083/jcb.202209094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023] Open
Abstract
Proper chromosome segregation is crucial for cell division. In eukaryotes, this is achieved by the kinetochore, an evolutionarily conserved multiprotein complex that physically links the DNA to spindle microtubules and takes an active role in monitoring and correcting erroneous spindle-chromosome attachments. Our mechanistic understanding of these functions and how they ensure an error-free outcome of mitosis is still limited, partly because we lack a complete understanding of the kinetochore structure in the cell. In this study, we use single-molecule localization microscopy to visualize individual kinetochore complexes in situ in budding yeast. For major kinetochore proteins, we measured their abundance and position within the metaphase kinetochore. Based on this comprehensive dataset, we propose a quantitative model of the budding yeast kinetochore. While confirming many aspects of previous reports based on bulk imaging, our results present a unifying nanoscale model of the kinetochore in budding yeast.
Collapse
Affiliation(s)
- Konstanty Cieslinski
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Translational Radiation Oncology Unit, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Yu-Le Wu
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Faculty of Biosciences, Collaboration for Joint PhD Degree Between European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| | - Lisa Nechyporenko
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,https://ror.org/04p61dj41Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany,Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg, Germany
| | - Duccio Conti
- https://ror.org/03vpj4s62Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michal Skruzny
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jonas Ries
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
4
|
Kuenzel NA, Alcázar-Román AR, Saiardi A, Bartsch SM, Daunaraviciute S, Fiedler D, Fleig U. Inositol Pyrophosphate-Controlled Kinetochore Architecture and Mitotic Entry in S. pombe. J Fungi (Basel) 2022; 8:933. [PMID: 36135658 PMCID: PMC9506091 DOI: 10.3390/jof8090933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Inositol pyrophosphates (IPPs) comprise a specific class of signaling molecules that regulate central biological processes in eukaryotes. The conserved Vip1/PPIP5K family controls intracellular IP8 levels, the highest phosphorylated form of IPPs present in yeasts, as it has both inositol kinase and pyrophosphatase activities. Previous studies have shown that the fission yeast S. pombe Vip1/PPIP5K family member Asp1 impacts chromosome transmission fidelity via the modulation of spindle function. We now demonstrate that an IP8 analogue is targeted by endogenous Asp1 and that cellular IP8 is subject to cell cycle control. Mitotic entry requires Asp1 kinase function and IP8 levels are increased at the G2/M transition. In addition, the kinetochore, the conductor of chromosome segregation that is assembled on chromosomes is modulated by IP8. Members of the yeast CCAN kinetochore-subcomplex such as Mal2/CENP-O localize to the kinetochore depending on the intracellular IP8-level: higher than wild-type IP8 levels reduce Mal2 kinetochore targeting, while a reduction in IP8 has the opposite effect. As our perturbations of the inositol polyphosphate and IPP pathways demonstrate that kinetochore architecture depends solely on IP8 and not on other IPPs, we conclude that chromosome transmission fidelity is controlled by IP8 via an interplay between entry into mitosis, kinetochore architecture, and spindle dynamics.
Collapse
Affiliation(s)
- Natascha Andrea Kuenzel
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Abel R. Alcázar-Román
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Simon M. Bartsch
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sarune Daunaraviciute
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Dorothea Fiedler
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Ursula Fleig
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Sridhar S, Fukagawa T. Kinetochore Architecture Employs Diverse Linker Strategies Across Evolution. Front Cell Dev Biol 2022; 10:862637. [PMID: 35800888 PMCID: PMC9252888 DOI: 10.3389/fcell.2022.862637] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The assembly of a functional kinetochore on centromeric chromatin is necessary to connect chromosomes to the mitotic spindle, ensuring accurate chromosome segregation. This connecting function of the kinetochore presents multiple internal and external structural challenges. A microtubule interacting outer kinetochore and centromeric chromatin interacting inner kinetochore effectively confront forces from the external spindle and centromere, respectively. While internally, special inner kinetochore proteins, defined as "linkers," simultaneously interact with centromeric chromatin and the outer kinetochore to enable association with the mitotic spindle. With the ability to simultaneously interact with outer kinetochore components and centromeric chromatin, linker proteins such as centromere protein (CENP)-C or CENP-T in vertebrates and, additionally CENP-QOkp1-UAme1 in yeasts, also perform the function of force propagation within the kinetochore. Recent efforts have revealed an array of linker pathways strategies to effectively recruit the largely conserved outer kinetochore. In this review, we examine these linkages used to propagate force and recruit the outer kinetochore across evolution. Further, we look at their known regulatory pathways and implications on kinetochore structural diversity and plasticity.
Collapse
Affiliation(s)
- Shreyas Sridhar
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Barbosa J, Sunkel CE, Conde C. The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Front Cell Dev Biol 2022; 10:787294. [PMID: 35155423 PMCID: PMC8832123 DOI: 10.3389/fcell.2022.787294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.
Collapse
Affiliation(s)
- João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Mehta G, Sanyal K, Abhishek S, Rajakumara E, Ghosh SK. Minichromosome maintenance proteins in eukaryotic chromosome segregation. Bioessays 2021; 44:e2100218. [PMID: 34841543 DOI: 10.1002/bies.202100218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023]
Abstract
Minichromosome maintenance (Mcm) proteins are well-known for their functions in DNA replication. However, their roles in chromosome segregation are yet to be reviewed in detail. Following the discovery in 1984, a group of Mcm proteins, known as the ARS-nonspecific group consisting of Mcm13, Mcm16-19, and Mcm21-22, were characterized as bonafide kinetochore proteins and were shown to play significant roles in the kinetochore assembly and high-fidelity chromosome segregation. This review focuses on the structure, function, and evolution of this group of Mcm proteins. Our in silico analysis of the physical interactors of these proteins reveals that they share non-overlapping functions despite being copurified in biochemically stable complexes. We have discussed the contrasting results reported in the literature and experimental strategies to address them. Taken together, this review focuses on the structure-function of the ARS-nonspecific Mcm proteins and their evolutionary flexibility to maintain genome stability in various organisms.
Collapse
Affiliation(s)
- Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| | - Suman Abhishek
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
8
|
Cell-cycle phospho-regulation of the kinetochore. Curr Genet 2021; 67:177-193. [PMID: 33221975 DOI: 10.1007/s00294-020-01127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore is a mega-dalton protein assembly that forms within centromeric regions of chromosomes and directs their segregation during cell division. Here we review cell cycle-mediated phosphorylation events at the kinetochore, with a focus on the budding yeast Saccharomyces cerevisiae and the insight gained from forced associations of kinases and phosphatases. The point centromeres found in the budding yeast S. cerevisiae are one of the simplest such structures found in eukaryotes. The S. cerevisiae kinetochore comprises a single nucleosome, containing a centromere-specific H3 variant Cse4CENP-A, bound to a set of kinetochore proteins that connect to a single microtubule. Despite the simplicity of the budding yeast kinetochore, the proteins are mostly homologous with their mammalian counterparts. In some cases, human proteins can complement their yeast orthologs. Like its mammalian equivalent, the regulation of the budding yeast kinetochore is complex: integrating signals from the cell cycle, checkpoints, error correction, and stress pathways. The regulatory signals from these diverse pathways are integrated at the kinetochore by post-translational modifications, notably phosphorylation and dephosphorylation, to control chromosome segregation. Here we highlight the complex interplay between the activity of the different cell-cycle kinases and phosphatases at the kinetochore, emphasizing how much more we have to understand this essential structure.
Collapse
|
9
|
Cao B, Zhao C, Zhang Y, Wang X, Ye J, Hu L, He X. The novel interaction mode among centromere sub-complex CENP-O/P/U/Q/R. J Mol Recognit 2021; 34:e2892. [PMID: 33660361 DOI: 10.1002/jmr.2892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
The kinetochore is essential for the accurate segregation of sister chromosome in the eukaryote cell. Among the kinetochore subunits, five proteins CENP-O/P/U/Q/R form a stable complex, referred to as CENP-O class, and are required for proper kinetochore function. Although the function and structure of yeast COMA complex (CENP-O/P/U/Q homologs) have been revealed extensively, the assembly mechanism and detail interactions among human CENP-O class are significantly different and remain largely unclear. Here, we identified the fragment (residues 241-360) of CENP-U and the C-terminal half of CENP-Q are essential to form a hetero-complex and interact with CENP-O/P sub-complex in vitro. We for the first time showed that CENP-R does not directly interact with CENP-O/P in vitro, but indeed interact with CENP-U and CENP-Q. Furthermore, both the N- and C-terminus of CENP-R are required for the interaction with CENP-U and CENP-Q. Our research pinpointed a novel interaction pattern that might shed light on the assembly mechanism of vertebrate CENP-O class.
Collapse
Affiliation(s)
- Beibei Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Congcong Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Ye
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liqiao Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhang Z, Bellini D, Barford D. Crystal structure of the Cenp-HIKHead-TW sub-module of the inner kinetochore CCAN complex. Nucleic Acids Res 2020; 48:11172-11184. [PMID: 32976599 PMCID: PMC7641736 DOI: 10.1093/nar/gkaa772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 11/12/2022] Open
Abstract
Kinetochores are large multi-subunit complexes that attach centromeric chromatin to microtubules of the mitotic spindle, enabling sister chromatid segregation in mitosis. The inner kinetochore constitutive centromere associated network (CCAN) complex assembles onto the centromere-specific Cenp-A nucleosome (Cenp-ANuc), thereby coupling the centromere to the microtubule-binding outer kinetochore. CCAN is a conserved 14-16 subunit complex composed of discrete modules. Here, we determined the crystal structure of the Saccharomyces cerevisiae Cenp-HIKHead-TW sub-module, revealing how Cenp-HIK and Cenp-TW interact at the conserved Cenp-HIKHead-Cenp-TW interface. A major interface is formed by the C-terminal anti-parallel α-helices of the histone fold extension (HFE) of the Cenp-T histone fold domain (HFD) combining with α-helix H3 of Cenp-K to create a compact three α-helical bundle. We fitted the Cenp-HIKHead-TW sub-module to the previously determined cryo-EM map of the S. cerevisiae CCAN-Cenp-ANuc complex. This showed that the HEAT repeat domain of Cenp-IHead and C-terminal HFD of Cenp-T of the Cenp-HIKHead-TW sub-module interact with the nucleosome DNA gyre at a site close to the Cenp-ANuc dyad axis. Our structure provides a framework for understanding how Cenp-T links centromeric Cenp-ANuc to the outer kinetochore through its HFD and N-terminal Ndc80-binding motif, respectively.
Collapse
Affiliation(s)
- Ziguo Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
11
|
Vijay N. Loss of inner kinetochore genes is associated with the transition to an unconventional point centromere in budding yeast. PeerJ 2020; 8:e10085. [PMID: 33062452 PMCID: PMC7531349 DOI: 10.7717/peerj.10085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/11/2020] [Indexed: 01/28/2023] Open
Abstract
Background The genomic sequences of centromeres, as well as the set of proteins that recognize and interact with centromeres, are known to quickly diverge between lineages potentially contributing to post-zygotic reproductive isolation. However, the actual sequence of events and processes involved in the divergence of the kinetochore machinery is not known. The patterns of gene loss that occur during evolution concomitant with phenotypic changes have been used to understand the timing and order of molecular changes. Methods I screened the high-quality genomes of twenty budding yeast species for the presence of well-studied kinetochore genes. Based on the conserved gene order and complete genome assemblies, I identified gene loss events. Subsequently, I searched the intergenic regions to identify any un-annotated genes or gene remnants to obtain additional evidence of gene loss. Results My analysis identified the loss of four genes (NKP1, NKP2, CENPL/IML3 and CENPN/CHL4) of the inner kinetochore constitutive centromere-associated network (CCAN/also known as CTF19 complex in yeast) in both the Naumovozyma species for which genome assemblies are available. Surprisingly, this collective loss of four genes of the CCAN/CTF19 complex coincides with the emergence of unconventional centromeres in N. castellii and N. dairenensis. My study suggests a tentative link between the emergence of unconventional point centromeres and the turnover of kinetochore genes in budding yeast.
Collapse
Affiliation(s)
- Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
12
|
Kuhl LM, Makrantoni V, Recknagel S, Vaze AN, Marston AL, Vader G. A dCas9-Based System Identifies a Central Role for Ctf19 in Kinetochore-Derived Suppression of Meiotic Recombination. Genetics 2020; 216:395-408. [PMID: 32843356 PMCID: PMC7536843 DOI: 10.1534/genetics.120.303384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/23/2020] [Indexed: 11/18/2022] Open
Abstract
In meiosis, crossover (CO) formation between homologous chromosomes is essential for faithful segregation. However, misplaced meiotic recombination can have catastrophic consequences on genome stability. Within pericentromeres, COs are associated with meiotic chromosome missegregation. In organisms ranging from yeast to humans, pericentromeric COs are repressed. We previously identified a role for the kinetochore-associated Ctf19 complex (Ctf19c) in pericentromeric CO suppression. Here, we develop a dCas9/CRISPR-based system that allows ectopic targeting of Ctf19c-subunits. Using this approach, we query sufficiency in meiotic CO suppression, and identify Ctf19 as a mediator of kinetochore-associated CO control. The effect of Ctf19 is encoded in its NH2-terminal tail, and depends on residues important for the recruitment of the Scc2-Scc4 cohesin regulator. This work provides insight into kinetochore-derived control of meiotic recombination. We establish an experimental platform to investigate and manipulate meiotic CO control. This platform can easily be adapted in order to investigate other aspects of chromosome biology.
Collapse
Affiliation(s)
- Lisa-Marie Kuhl
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Vasso Makrantoni
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
| | - Sarah Recknagel
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Animish N Vaze
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
- International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| |
Collapse
|
13
|
Kixmoeller K, Allu PK, Black BE. The centromere comes into focus: from CENP-A nucleosomes to kinetochore connections with the spindle. Open Biol 2020; 10:200051. [PMID: 32516549 PMCID: PMC7333888 DOI: 10.1098/rsob.200051] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic chromosome segregation relies upon specific connections from DNA to the microtubule-based spindle that forms at cell division. The chromosomal locus that directs this process is the centromere, where a structure called the kinetochore forms upon entry into mitosis. Recent crystallography and single-particle electron microscopy have provided unprecedented high-resolution views of the molecular complexes involved in this process. The centromere is epigenetically specified by nucleosomes harbouring a histone H3 variant, CENP-A, and we review recent progress on how it differentiates centromeric chromatin from the rest of the chromosome, the biochemical pathway that mediates its assembly and how two non-histone components of the centromere specifically recognize CENP-A nucleosomes. The core centromeric nucleosome complex (CCNC) is required to recruit a 16-subunit complex termed the constitutive centromere associated network (CCAN), and we highlight recent structures reported of the budding yeast CCAN. Finally, the structures of multiple modular sub-complexes of the kinetochore have been solved at near-atomic resolution, providing insight into how connections are made to the CCAN on one end and to the spindle microtubules on the other. One can now build molecular models from the DNA through to the physical connections to microtubules.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Killinger K, Böhm M, Steinbach P, Hagemann G, Blüggel M, Jänen K, Hohoff S, Bayer P, Herzog F, Westermann S. Auto-inhibition of Mif2/CENP-C ensures centromere-dependent kinetochore assembly in budding yeast. EMBO J 2020; 39:e102938. [PMID: 32515113 PMCID: PMC7360964 DOI: 10.15252/embj.2019102938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 11/28/2022] Open
Abstract
Kinetochores are chromatin‐bound multi‐protein complexes that allow high‐fidelity chromosome segregation during mitosis and meiosis. Kinetochore assembly is exclusively initiated at chromatin containing Cse4/CENP‐A nucleosomes. The molecular mechanisms ensuring that subcomplexes assemble efficiently into kinetochores only at centromeres, but not anywhere else, are incompletely understood. Here, we combine biochemical and genetic experiments to demonstrate that auto‐inhibition of the conserved kinetochore subunit Mif2/CENP‐C contributes to preventing unscheduled kinetochore assembly in budding yeast cells. We show that wild‐type Mif2 is attenuated in its ability to bind a key downstream component in the assembly pathway, the Mtw1 complex, and that addition of Cse4 nucleosomes overcomes this inhibition. By exchanging the N‐terminus of Mif2 with its functional counterpart from Ame1/CENP‐U, we have created a Mif2 mutant which bypasses the Cse4 requirement for Mtw1 binding in vitro, thereby shortcutting kinetochore assembly. Expression of this Mif2 mutant in cells leads to mis‐localization of the Mtw1 complex and causes pronounced chromosome segregation defects. We propose that auto‐inhibition of Mif2/CENP‐C constitutes a key concept underlying the molecular logic of kinetochore assembly.
Collapse
Affiliation(s)
- Kerstin Killinger
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Miriam Böhm
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Philine Steinbach
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Götz Hagemann
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Mike Blüggel
- Structural and Medicinal Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karolin Jänen
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Simone Hohoff
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Franz Herzog
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Stefan Westermann
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Lawrimore J, Doshi A, Walker B, Bloom K. AI-Assisted Forward Modeling of Biological Structures. Front Cell Dev Biol 2019; 7:279. [PMID: 31799251 PMCID: PMC6868055 DOI: 10.3389/fcell.2019.00279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
The rise of machine learning and deep learning technologies have allowed researchers to automate image classification. We describe a method that incorporates automated image classification and principal component analysis to evaluate computational models of biological structures. We use a computational model of the kinetochore to demonstrate our artificial-intelligence (AI)-assisted modeling method. The kinetochore is a large protein complex that connects chromosomes to the mitotic spindle to facilitate proper cell division. The kinetochore can be divided into two regions: the inner kinetochore, including proteins that interact with DNA; and the outer kinetochore, comprised of microtubule-binding proteins. These two kinetochore regions have been shown to have different distributions during metaphase in live budding yeast and therefore act as a test case for our forward modeling technique. We find that a simple convolutional neural net (CNN) can correctly classify fluorescent images of inner and outer kinetochore proteins and show a CNN trained on simulated, fluorescent images can detect difference in experimental images. A polymer model of the ribosomal DNA locus serves as a second test for the method. The nucleolus surrounds the ribosomal DNA locus and appears amorphous in live-cell, fluorescent microscopy experiments in budding yeast, making detection of morphological changes challenging. We show a simple CNN can detect subtle differences in simulated images of the ribosomal DNA locus, demonstrating our CNN-based classification technique can be used on a variety of biological structures.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ayush Doshi
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin Walker
- Department of Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kerry Bloom
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
16
|
Yan K, Yang J, Zhang Z, McLaughlin SH, Chang L, Fasci D, Ehrenhofer-Murray AE, Heck AJR, Barford D. Structure of the inner kinetochore CCAN complex assembled onto a centromeric nucleosome. Nature 2019; 574:278-282. [PMID: 31578520 PMCID: PMC6859074 DOI: 10.1038/s41586-019-1609-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
In eukaryotes, accurate chromosome segregation in mitosis and meiosis maintains genome stability and prevents aneuploidy. Kinetochores are large protein complexes that, by assembling onto specialized Cenp-A nucleosomes1,2, function to connect centromeric chromatin to microtubules of the mitotic spindle3,4. Whereas the centromeres of vertebrate chromosomes comprise millions of DNA base pairs and attach to multiple microtubules, the simple point centromeres of budding yeast are connected to individual microtubules5,6. All 16 budding yeast chromosomes assemble complete kinetochores using a single Cenp-A nucleosome (Cenp-ANuc), each of which is perfectly centred on its cognate centromere7-9. The inner and outer kinetochore modules are responsible for interacting with centromeric chromatin and microtubules, respectively. Here we describe the cryo-electron microscopy structure of the Saccharomyces cerevisiae inner kinetochore module, the constitutive centromere associated network (CCAN) complex, assembled onto a Cenp-A nucleosome (CCAN-Cenp-ANuc). The structure explains the interdependency of the constituent subcomplexes of CCAN and shows how the Y-shaped opening of CCAN accommodates Cenp-ANuc to enable specific CCAN subunits to contact the nucleosomal DNA and histone subunits. Interactions with the unwrapped DNA duplex at the two termini of Cenp-ANuc are mediated predominantly by a DNA-binding groove in the Cenp-L-Cenp-N subcomplex. Disruption of these interactions impairs assembly of CCAN onto Cenp-ANuc. Our data indicate a mechanism of Cenp-A nucleosome recognition by CCAN and how CCAN acts as a platform for assembly of the outer kinetochore to link centromeres to the mitotic spindle for chromosome segregation.
Collapse
Affiliation(s)
- Kaige Yan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Leifu Chang
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Domenico Fasci
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | | | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
17
|
Hinshaw SM, Dates AN, Harrison SC. The structure of the yeast Ctf3 complex. eLife 2019; 8:e48215. [PMID: 31194673 PMCID: PMC6602579 DOI: 10.7554/elife.48215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 01/07/2023] Open
Abstract
Kinetochores are the chromosomal attachment points for spindle microtubules. They are also signaling hubs that control major cell cycle transitions and coordinate chromosome folding. Most well-studied eukaryotes rely on a conserved set of factors, which are divided among two loosely-defined groups, for these functions. Outer kinetochore proteins contact microtubules or regulate this contact directly. Inner kinetochore proteins designate the kinetochore assembly site by recognizing a specialized nucleosome containing the H3 variant Cse4/CENP-A. We previously determined the structure, resolved by cryo-electron microscopy (cryo-EM), of the yeast Ctf19 complex (Ctf19c, homologous to the vertebrate CCAN), providing a high-resolution view of inner kinetochore architecture (Hinshaw and Harrison, 2019). We now extend these observations by reporting a near-atomic model of the Ctf3 complex, the outermost Ctf19c sub-assembly seen in our original cryo-EM density. The model is sufficiently well-determined by the new data to enable molecular interpretation of Ctf3 recruitment and function.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School, Howard Hughes Medical InstituteBostonUnited States
| | - Andrew N Dates
- Harvard Chemical Biology PhD ProgramHarvard UniversityBostonUnited States
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School, Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
18
|
Fischböck-Halwachs J, Singh S, Potocnjak M, Hagemann G, Solis-Mezarino V, Woike S, Ghodgaonkar-Steger M, Weissmann F, Gallego LD, Rojas J, Andreani J, Köhler A, Herzog F. The COMA complex interacts with Cse4 and positions Sli15/Ipl1 at the budding yeast inner kinetochore. eLife 2019; 8:42879. [PMID: 31112132 PMCID: PMC6546395 DOI: 10.7554/elife.42879] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/20/2019] [Indexed: 01/14/2023] Open
Abstract
Kinetochores are macromolecular protein complexes at centromeres that ensure accurate chromosome segregation by attaching chromosomes to spindle microtubules and integrating safeguard mechanisms. The inner kinetochore is assembled on CENP-A nucleosomes and has been implicated in establishing a kinetochore-associated pool of Aurora B kinase, a chromosomal passenger complex (CPC) subunit, which is essential for chromosome biorientation. By performing crosslink-guided in vitro reconstitution of budding yeast kinetochore complexes we showed that the Ame1/Okp1CENP-U/Q heterodimer, which forms the COMA complex with Ctf19/Mcm21CENP-P/O, selectively bound Cse4CENP-A nucleosomes through the Cse4 N-terminus. The Sli15/Ipl1INCENP/Aurora-B core-CPC interacted with COMA in vitro through the Ctf19 C-terminus whose deletion affected chromosome segregation fidelity in Sli15 wild-type cells. Tethering Sli15 to Ame1/Okp1 rescued synthetic lethality upon Ctf19 depletion in a Sli15 centromere-targeting deficient mutant. This study shows molecular characteristics of the point-centromere kinetochore architecture and suggests a role for the Ctf19 C-terminus in mediating CPC-binding and accurate chromosome segregation.
Collapse
Affiliation(s)
- Josef Fischböck-Halwachs
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sylvia Singh
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mia Potocnjak
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Götz Hagemann
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Victor Solis-Mezarino
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Woike
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Medini Ghodgaonkar-Steger
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Weissmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Laura D Gallego
- Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Julie Rojas
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alwin Köhler
- Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Franz Herzog
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
19
|
Hamilton G, Dimitrova Y, Davis TN. Seeing is believing: our evolving view of kinetochore structure, composition, and assembly. Curr Opin Cell Biol 2019; 60:44-52. [PMID: 31078123 DOI: 10.1016/j.ceb.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 11/26/2022]
Abstract
This review highlights three recent trends in the field of kinetochore biology: the proliferation of structural data for kinetochore protein complexes (including CBF3, Dam1c, Mis12cMIND, and CENP-NLChl4/Iml3); the growing consensus that the kinetochore is a dynamic structure whose composition changes as the cell cycle progresses; and the mounting evidence of multiple pathways whereby the microtubule-binding elements of the outer kinetochore may be recruited by inner kinetochore proteins. Our focus is on the two best-studied systems in the field: human and budding yeast kinetochores. This review will demonstrate the remarkable similarity of these two systems, as well as their intriguing differences.
Collapse
Affiliation(s)
- Grace Hamilton
- Department of Biochemistry, University of Washington Box 357350, 1705 NE Pacific St., Seattle, WA 98195-7350, USA
| | - Yoana Dimitrova
- Genentech, Inc., 1 DNA Way, MS: 27, South San Francisco, CA 94080, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington Box 357350, 1705 NE Pacific St., Seattle, WA 98195-7350, USA.
| |
Collapse
|
20
|
García-Rodríguez LJ, Kasciukovic T, Denninger V, Tanaka TU. Aurora B-INCENP Localization at Centromeres/Inner Kinetochores Is Required for Chromosome Bi-orientation in Budding Yeast. Curr Biol 2019; 29:1536-1544.e4. [PMID: 31006569 PMCID: PMC6509284 DOI: 10.1016/j.cub.2019.03.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
Abstract
For proper chromosome segregation in mitosis, sister kinetochores must interact with microtubules from opposite spindle poles (chromosome bi-orientation) [1, 2]. To promote bi-orientation, Aurora B kinase disrupts aberrant kinetochore-microtubule interactions [3, 4, 5, 6]. It has long been debated how Aurora B halts this action when bi-orientation is established and tension is applied across sister kinetochores. A popular explanation for it is that, upon bi-orientation, sister kinetochores are pulled in opposite directions, stretching the outer kinetochores [7, 8] and moving Aurora B substrates away from Aurora-B-localizing sites at centromeres (spatial separation model) [3, 5, 9]. This model predicts that Aurora B localization at centromeres is required for bi-orientation. However, this notion was challenged by the observation that Bir1 (yeast survivin), which recruits Ipl1-Sli15 (yeast Aurora B-INCENP) to centromeres, can become dispensable for bi-orientation [10]. This raised the possibility that Aurora B localization at centromeres is dispensable for bi-orientation. Alternatively, there might be a Bir1-independent mechanism for recruiting Ipl1-Sli15 to centromeres or inner kinetochores [5, 9]. Here, we show that the COMA inner kinetochore sub-complex physically interacts with Sli15, recruits Ipl1-Sli15 to the inner kinetochore, and promotes chromosome bi-orientation, independently of Bir1, in budding yeast. Moreover, using an engineered recruitment of Ipl1-Sli15 to the inner kinetochore when both Bir1 and COMA are defective, we show that localization of Ipl1-Sli15 at centromeres or inner kinetochores is required for bi-orientation. Our results give important insight into how Aurora B disrupts kinetochore-microtubule interaction in a tension-dependent manner to promote chromosome bi-orientation. The COMA inner kinetochore sub-complex facilitates chromosome bi-orientation COMA physically interacts with Sli15 and recruits Ipl1-Sli15 to the inner kinetochore This function of COMA is independent of Bir1 and its role supporting robust cohesion Localizing Ipl1-Sli15 at centromeres/inner kinetochores is crucial for bi-orientation
Collapse
Affiliation(s)
- Luis J García-Rodríguez
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Taciana Kasciukovic
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Viola Denninger
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
21
|
Hinshaw SM, Harrison SC. The structure of the Ctf19c/CCAN from budding yeast. eLife 2019; 8:44239. [PMID: 30762520 PMCID: PMC6407923 DOI: 10.7554/elife.44239] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic kinetochores connect spindlemicrotubules to chromosomal centromeres. A group of proteins called the Ctf19 complex (Ctf19c) in yeast and the constitutive centromere associated network (CCAN) in other organisms creates the foundation of a kinetochore. The Ctf19c/CCAN influences the timing of kinetochore assembly, sets its location by associating with a specialized nucleosome containing the histone H3 variant Cse4/CENP-A, and determines the organization of the microtubule attachment apparatus. We present here the structure of a reconstituted 13-subunit Ctf19c determined by cryo-electron microscopy at ~4 Å resolution. The structure accounts for known and inferred contacts with the Cse4 nucleosome and for an observed assembly hierarchy. We describe its implications for establishment of kinetochores and for their regulation by kinases throughout the cell cycle.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
22
|
Anedchenko EA, Samel-Pommerencke A, Tran Nguyen TM, Shahnejat-Bushehri S, Pöpsel J, Lauster D, Herrmann A, Rappsilber J, Cuomo A, Bonaldi T, Ehrenhofer-Murray AE. The kinetochore module Okp1 CENP-Q/Ame1 CENP-U is a reader for N-terminal modifications on the centromeric histone Cse4 CENP-A. EMBO J 2018; 38:embj.201898991. [PMID: 30389668 DOI: 10.15252/embj.201898991] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/09/2022] Open
Abstract
Kinetochores are supramolecular assemblies that link centromeres to microtubules for sister chromatid segregation in mitosis. For this, the inner kinetochore CCAN/Ctf19 complex binds to centromeric chromatin containing the histone variant CENP-A, but whether the interaction of kinetochore components to centromeric nucleosomes is regulated by posttranslational modifications is unknown. Here, we investigated how methylation of arginine 37 (R37Me) and acetylation of lysine 49 (K49Ac) on the CENP-A homolog Cse4 from Saccharomyces cerevisiae regulate molecular interactions at the inner kinetochore. Importantly, we found that the Cse4 N-terminus binds with high affinity to the Ctf19 complex subassembly Okp1/Ame1 (CENP-Q/CENP-U in higher eukaryotes), and that this interaction is inhibited by R37Me and K49Ac modification on Cse4. In vivo defects in cse4-R37A were suppressed by mutations in OKP1 and AME1, and biochemical analysis of a mutant version of Okp1 showed increased affinity for Cse4. Altogether, our results demonstrate that the Okp1/Ame1 heterodimer is a reader module for posttranslational modifications on Cse4, thereby targeting the yeast CCAN complex to centromeric chromatin.
Collapse
Affiliation(s)
- Ekaterina A Anedchenko
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anke Samel-Pommerencke
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tra My Tran Nguyen
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Shahnejat-Bushehri
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juliane Pöpsel
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Lauster
- Department of Experimental Biophysics, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Herrmann
- Department of Experimental Biophysics, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Ann E Ehrenhofer-Murray
- Department of Molecular Cell Biology, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
23
|
Reconstitution of a 26-Subunit Human Kinetochore Reveals Cooperative Microtubule Binding by CENP-OPQUR and NDC80. Mol Cell 2018; 71:923-939.e10. [PMID: 30174292 PMCID: PMC6162344 DOI: 10.1016/j.molcel.2018.07.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/04/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
The approximately thirty core subunits of kinetochores assemble on centromeric chromatin containing the histone H3 variant CENP-A and connect chromosomes with spindle microtubules. The chromatin proximal 16-subunit CCAN (constitutive centromere associated network) creates a mechanically stable bridge between CENP-A and the kinetochore’s microtubule-binding machinery, the 10-subunit KMN assembly. Here, we reconstituted a stoichiometric 11-subunit human CCAN core that forms when the CENP-OPQUR complex binds to a joint interface on the CENP-HIKM and CENP-LN complexes. The resulting CCAN particle is globular and connects KMN and CENP-A in a 26-subunit recombinant particle. The disordered, basic N-terminal tail of CENP-Q binds microtubules and promotes accurate chromosome alignment, cooperating with KMN in microtubule binding. The N-terminal basic tail of the NDC80 complex, the microtubule-binding subunit of KMN, can functionally replace the CENP-Q tail. Our work dissects the connectivity and architecture of CCAN and reveals unexpected functional similarities between CENP-OPQUR and the NDC80 complex. The kinetochore CENP-OPQUR complex is reconstituted and functionally dissected A kinetochore particle with 26 subunits and defined stoichiometry is reconstituted EM structure of an 11-subunit inner kinetochore complex reveals globular shape CENP-Q and the Ndc80 complex bind microtubules cooperatively
Collapse
|
24
|
Lang J, Barber A, Biggins S. An assay for de novo kinetochore assembly reveals a key role for the CENP-T pathway in budding yeast. eLife 2018; 7:37819. [PMID: 30117803 PMCID: PMC6097842 DOI: 10.7554/elife.37819] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/06/2018] [Indexed: 01/25/2023] Open
Abstract
Chromosome segregation depends on the kinetochore, the machine that establishes force-bearing attachments between DNA and spindle microtubules. Kinetochores are formed every cell cycle via a highly regulated process that requires coordinated assembly of multiple subcomplexes on specialized chromatin. To elucidate the underlying mechanisms, we developed an assay to assemble kinetochores de novo using centromeric DNA and budding yeast extracts. Assembly is enhanced by mitotic phosphorylation of the Dsn1 kinetochore protein and generates kinetochores capable of binding microtubules. We used this assay to investigate why kinetochores recruit the microtubule-binding Ndc80 complex via two receptors: the Mis12 complex and CENP-T. Although the CENP-T pathway is non-essential in yeast, we demonstrate that it becomes essential for viability and Ndc80c recruitment when the Mis12 pathway is crippled by defects in Dsn1 phosphorylation. Assembling kinetochores de novo in yeast extracts provides a powerful and genetically tractable method to elucidate critical regulatory events in the future.
Collapse
Affiliation(s)
- Jackie Lang
- Division of Basic Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Adrienne Barber
- Division of Basic Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Sue Biggins
- Division of Basic Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|