1
|
Dinsdale RL, Meredith AL. Evaluation of four KCNMA1 channelopathy variants on BK channel current under Ca V1.2 activation. Channels (Austin) 2024; 18:2396346. [PMID: 39217512 PMCID: PMC11370921 DOI: 10.1080/19336950.2024.2396346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Variants in KCNMA1, encoding the voltage- and calcium-activated K+ (BK) channel, are associated with human neurological disease. The effects of gain-of-function (GOF) and loss-of-function (LOF) variants have been predominantly studied on BK channel currents evoked under steady-state voltage and Ca2+ conditions. However, in their physiological context, BK channels exist in partnership with voltage-gated Ca2+ channels and respond to dynamic changes in intracellular Ca2+ (Ca2+i). In this study, an L-type voltage-gated Ca2+ channel present in the brain, CaV1.2, was co-expressed with wild type and mutant BK channels containing GOF (D434G, N999S) and LOF (H444Q, D965V) patient-associated variants in HEK-293T cells. Whole-cell BK currents were recorded under CaV1.2 activation using buffering conditions that restrict Ca2+i to nano- or micro-domains. Both conditions permitted wild type BK current activation in response to CaV1.2 Ca2+ influx, but differences in behavior between wild type and mutant BK channels were reduced compared to prior studies in clamped Ca2+i. Only the N999S mutation produced an increase in BK current in both micro- and nano-domains using square voltage commands and was also detectable in BK current evoked by a neuronal action potential within a microdomain. These data corroborate the GOF effect of N999S on BK channel activity under dynamic voltage and Ca2+ stimuli, consistent with its pathogenicity in neurological disease. However, the patient-associated mutations D434G, H444Q, and D965V did not exhibit significant effects on BK current under CaV1.2-mediated Ca2+ influx, in contrast with prior steady-state protocols. These results demonstrate a differential potential for KCNMA1 variant pathogenicity compared under diverse voltage and Ca2+ conditions.
Collapse
Affiliation(s)
- Ria L. Dinsdale
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Chen Y, Markov N, Gigon L, Hosseini A, Yousefi S, Stojkov D, Simon HU. The BK Channel Limits the Pro-Inflammatory Activity of Macrophages. Cells 2024; 13:322. [PMID: 38391935 PMCID: PMC10886595 DOI: 10.3390/cells13040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Macrophages play a crucial role in the innate immune response, serving as key effector cells in the defense against pathogens. Although the role of the large-conductance voltage and calcium-activated potassium channel, also known as the KCa1.1 or BK channel, in regulating neurotransmitter release and smooth muscle contraction is well known, its potential involvement in immune regulation remains unclear. We employed BK-knockout macrophages and noted that the absence of a BK channel promotes the polarization of macrophages towards a pro-inflammatory phenotype known as M1 macrophages. Specifically, the absence of the BK channel resulted in a significant increase in the secretion of the pro-inflammatory cytokine IL-6 and enhanced the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2 kinases), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the transcription factor ATF-1 within M1 macrophages. Additionally, the lack of the BK channel promoted the activation of the AIM2 inflammasome without affecting the activation of the NLRC4 and NLRP3 inflammasomes. To further investigate the role of the BK channel in regulating AIM2 inflammasome activation, we utilized BK channel inhibitors, such as paxilline and iberiotoxin, along with the BK channel activator NS-11021. Pharmacological inactivation of the BK channel increased, and its stimulation inhibited IL-1β production following AIM2 inflammasome activation in wild-type macrophages. Moreover, wild-type macrophages displayed increased calcium influx when activated with the AIM2 inflammasome, whereas BK-knockout macrophages did not due to the impaired extracellular calcium influx upon activation. Furthermore, under conditions of a calcium-free medium, IL-1β production following AIM2 inflammasome activation was increased in both wild-type and BK-knockout macrophages. This suggests that the BK channel is required for the influx of extracellular calcium in macrophages, thus limiting AIM2 inflammasome activation. In summary, our study reveals a regulatory role of the BK channel in macrophages under inflammatory conditions.
Collapse
Affiliation(s)
- Yihe Chen
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Aref Hosseini
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| |
Collapse
|
3
|
Mochida S. Calcium Channels and Calcium-Binding Proteins. Int J Mol Sci 2023; 24:14257. [PMID: 37762560 PMCID: PMC10532058 DOI: 10.3390/ijms241814257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Signals of nerve impulses are transmitted to excitatory cells to induce the action of organs via the activation of Ca2+ entry through voltage-gated Ca2+ channels (VGCC), which are classified based on their activation threshold into high- and low-voltage activated channels, expressed specifically for each organ [...].
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
4
|
Alekseeva MG, Dyakov IN, Bushkova KK, Mavletova DA, Yunes RA, Chernyshova IN, Masalitin IA, Koshenko TA, Nezametdinova VZ, Danilenko VN. Study of the binding of ΔFN3.1 fragments of the Bifidobacterium longum GT15 with TNFα and prevalence of domain-containing proteins in groups of bacteria of the human gut microbiota. MICROBIOME RESEARCH REPORTS 2023; 2:10. [PMID: 38047275 PMCID: PMC10688814 DOI: 10.20517/mrr.2023.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 12/05/2023]
Abstract
Aim: This study is mainly devoted to determining the ability of ∆FN3.1 protein fragments of Bifidobacterium (B.) longum subsp. longum GT15, namely two FN3 domains (2D FN3) and a C-terminal domain (CD FN3), to bind to tumor necrosis factor-alpha (TNF-α). Methods: Fragments of the fn3 gene encoding the 2D FN3 and CD FN3 were cloned in Escherichia (E.) coli. In order to assess the binding specificity between 2D FN3 and CD FN3 to TNFα, we employed the previously developed sandwich ELISA system to detect any specific interactions between the purified protein and any of the studied cytokines. The trRosetta software was used to build 3D models of the ∆FN3.1, 2D FN3, and CD FN3 proteins. The detection of polymorphism in the amino acid sequences of the studied proteins and the analysis of human gut-derived bacterial proteins carrying FN3 domains were performed in silico. Results: We experimentally showed that neither 2D FN3 nor CD FN3 alone can bind to TNFα. Prediction of the 3D structures of ΔFN3.1, 2D FN3, and CD FN3 suggested that only ΔFN3.1 can form a pocket allowing binding with TNFα to occur. Polymorphism analysis of amino acid sequences of ΔFN3.1 proteins in B. longum strains uncovered substitutions that can alter the conformation of the spatial structure of the ΔFN3.1 protein. We also analyzed human gut-derived bacterial proteins harboring FN3 domains which allowed us to differentiate between those containing motifs of cytokine receptors (MCRs) in their FN3 domains and those lacking them. Conclusion: Only the complete ∆FN3.1 protein can selectively bind to TNFα. Analysis of 3D models of the 2D FN3, CD FN3, and ΔFN3.1 proteins showed that only the ΔFN3.1 protein is potentially capable of forming a pocket allowing TNFα binding to occur. Only FN3 domains containing MCRs exhibited sequence homology with FN3 domains of human proteins.
Collapse
Affiliation(s)
- Maria G. Alekseeva
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ilya N. Dyakov
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Kristina K. Bushkova
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Dilara A. Mavletova
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Roman A. Yunes
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Irina N. Chernyshova
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Ilya A. Masalitin
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Tatiana A. Koshenko
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Venera Z. Nezametdinova
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Valery N. Danilenko
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- Caspian International School of Medicine, Caspian University, Almaty 050000, Kazakhstan
| |
Collapse
|
5
|
Ancatén-González C, Segura I, Alvarado-Sánchez R, Chávez AE, Latorre R. Ca 2+- and Voltage-Activated K + (BK) Channels in the Nervous System: One Gene, a Myriad of Physiological Functions. Int J Mol Sci 2023; 24:3407. [PMID: 36834817 PMCID: PMC9967218 DOI: 10.3390/ijms24043407] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.
Collapse
Affiliation(s)
- Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Segura
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rosangelina Alvarado-Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Doctorado en Ciencias Mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
6
|
Wang ZW, Trussell LO, Vedantham K. Regulation of Neurotransmitter Release by K + Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:305-331. [PMID: 37615872 DOI: 10.1007/978-3-031-34229-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
K+ channels play potent roles in the process of neurotransmitter release by influencing the action potential waveform and modulating neuronal excitability and release probability. These diverse effects of K+ channel activation are ensured by the wide variety of K+ channel genes and their differential expression in different cell types. Accordingly, a variety of K+ channels have been implicated in regulating neurotransmitter release, including the Ca2+- and voltage-gated K+ channel Slo1 (also known as BK channel), voltage-gated K+ channels of the Kv3 (Shaw-type), Kv1 (Shaker-type), and Kv7 (KCNQ) families, G-protein-gated inwardly rectifying K+ (GIRK) channels, and SLO-2 (a Ca2+-. Cl-, and voltage-gated K+ channel in C. elegans). These channels vary in their expression patterns, subcellular localization, and biophysical properties. Their roles in neurotransmitter release may also vary depending on the synapse and physiological or experimental conditions. This chapter summarizes key findings about the roles of K+ channels in regulating neurotransmitter release.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Laurence O Trussell
- Oregon Hearing Research Center & Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kiranmayi Vedantham
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
7
|
Shah KR, Guan X, Yan J. Structural and Functional Coupling of Calcium-Activated BK Channels and Calcium-Permeable Channels Within Nanodomain Signaling Complexes. Front Physiol 2022; 12:796540. [PMID: 35095560 PMCID: PMC8795833 DOI: 10.3389/fphys.2021.796540] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Biochemical and functional studies of ion channels have shown that many of these integral membrane proteins form macromolecular signaling complexes by physically associating with many other proteins. These macromolecular signaling complexes ensure specificity and proper rates of signal transduction. The large-conductance, Ca2+-activated K+ (BK) channel is dually activated by membrane depolarization and increases in intracellular free Ca2+ ([Ca2+]i). The activation of BK channels results in a large K+ efflux and, consequently, rapid membrane repolarization and closing of the voltage-dependent Ca2+-permeable channels to limit further increases in [Ca2+]i. Therefore, BK channel-mediated K+ signaling is a negative feedback regulator of both membrane potential and [Ca2+]i and plays important roles in many physiological processes and diseases. However, the BK channel formed by the pore-forming and voltage- and Ca2+-sensing α subunit alone requires high [Ca2+]i levels for channel activation under physiological voltage conditions. Thus, most native BK channels are believed to co-localize with Ca2+-permeable channels within nanodomains (a few tens of nanometers in distance) to detect high levels of [Ca2+]i around the open pores of Ca2+-permeable channels. Over the last two decades, advancement in research on the BK channel’s coupling with Ca2+-permeable channels including recent reports involving NMDA receptors demonstrate exemplary models of nanodomain structural and functional coupling among ion channels for efficient signal transduction and negative feedback regulation. We hereby review our current understanding regarding the structural and functional coupling of BK channels with different Ca2+-permeable channels.
Collapse
Affiliation(s)
- Kunal R. Shah
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xin Guan
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jiusheng Yan
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Neuroscience Program, Graduate School of Biomedical Sciences, UT Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Biochemistry and Cell Biology Program, Graduate School of Biomedical Sciences, UT Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jiusheng Yan,
| |
Collapse
|
8
|
Mencacci NE, Brockmann MM, Dai J, Pajusalu S, Atasu B, Campos J, Pino G, Gonzalez-Latapi P, Patzke C, Schwake M, Tucci A, Pittman A, Simon-Sanchez J, Carvill GL, Balint B, Wiethoff S, Warner TT, Papandreou A, Soo A, Rein R, Kadastik-Eerme L, Puusepp S, Reinson K, Tomberg T, Hanagasi H, Gasser T, Bhatia KP, Kurian MA, Lohmann E, Õunap K, Rosenmund C, Südhof TC, Wood NW, Krainc D, Acuna C. Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia. J Clin Invest 2021; 131:140625. [PMID: 33539324 DOI: 10.1172/jci140625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.
Collapse
Affiliation(s)
- Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité Universitätsmedizin, Berlin, Germany
| | - Jinye Dai
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Burcu Atasu
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christopher Patzke
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Schwake
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arianna Tucci
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alan Pittman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Javier Simon-Sanchez
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Wiethoff
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Klinik für Neurologie mit Institut für Translationale Neurologie, Albert Schweitzer Campus 1, Gebäude A1, Münster, Germany
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Audrey Soo
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | | | | | - Sanna Puusepp
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Tiiu Tomberg
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Manju A Kurian
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom.,Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom
| | - Ebba Lohmann
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | | | - Thomas C Südhof
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Claudio Acuna
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA.,Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| |
Collapse
|
9
|
Petzoldt AG, Götz TWB, Driller JH, Lützkendorf J, Reddy-Alla S, Matkovic-Rachid T, Liu S, Knoche E, Mertel S, Ugorets V, Lehmann M, Ramesh N, Beuschel CB, Kuropka B, Freund C, Stelzl U, Loll B, Liu F, Wahl MC, Sigrist SJ. RIM-binding protein couples synaptic vesicle recruitment to release sites. J Cell Biol 2021; 219:151735. [PMID: 32369542 PMCID: PMC7337501 DOI: 10.1083/jcb.201902059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
At presynaptic active zones, arrays of large conserved scaffold proteins mediate fast and temporally precise release of synaptic vesicles (SVs). SV release sites could be identified by clusters of Munc13, which allow SVs to dock in defined nanoscale relation to Ca2+ channels. We here show in Drosophila that RIM-binding protein (RIM-BP) connects release sites physically and functionally to the ELKS family Bruchpilot (BRP)-based scaffold engaged in SV recruitment. The RIM-BP N-terminal domain, while dispensable for SV release site organization, was crucial for proper nanoscale patterning of the BRP scaffold and needed for SV recruitment of SVs under strong stimulation. Structural analysis further showed that the RIM-BP fibronectin domains form a “hinge” in the protein center, while the C-terminal SH3 domain tandem binds RIM, Munc13, and Ca2+ channels release machinery collectively. RIM-BPs’ conserved domain architecture seemingly provides a relay to guide SVs from membrane far scaffolds into membrane close release sites.
Collapse
Affiliation(s)
- Astrid G Petzoldt
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Torsten W B Götz
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Jan Heiner Driller
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Janine Lützkendorf
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Suneel Reddy-Alla
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | | | - Sunbin Liu
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Elena Knoche
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Sara Mertel
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Vladimir Ugorets
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Niraja Ramesh
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | | | - Benno Kuropka
- Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Christian Freund
- Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Ulrich Stelzl
- Institut für Pharmazeutische Wissenschaften, Graz, Austria
| | - Bernhard Loll
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany.,NeuroCure, Charité, Berlin, Germany
| |
Collapse
|
10
|
Gandini MA, Zamponi GW. Voltage‐gated calcium channel nanodomains: molecular composition and function. FEBS J 2021; 289:614-633. [DOI: 10.1111/febs.15759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Maria A. Gandini
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| |
Collapse
|
11
|
Gao T, Zhang Z, Yang Y, Zhang H, Li N, Liu B. Impact of RIM-BPs in neuronal vesicles release. Brain Res Bull 2021; 170:129-136. [PMID: 33581313 DOI: 10.1016/j.brainresbull.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Accurate signal transmission between neurons is accomplished by vesicle release with high spatiotemporal resolution in the central nervous system. The vesicle release occurs mainly in the active zone (AZ), a unique area on the presynaptic membrane. Many structural proteins expressed in the AZ connect with other proteins nearby. They can also regulate the precise release of vesicles through protein-protein interactions. RIM-binding proteins (RIM-BPs) are one of the essential proteins in the AZ. This review summarizes the structures and functions of three subtypes of RIM-BPs, including the interaction between RIM-BPs and other proteins such as Bassoon and voltage-gated calcium channel, their significance in stabilizing the AZ structure in the presynaptic region and collecting ion channels, and ultimately regulating the fusion and release of neuronal vesicles.
Collapse
Affiliation(s)
- Tianyu Gao
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Panjin Campus of Dalian University of Technology, Panjin, 124221, China
| | - Yunong Yang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Na Li
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
12
|
Luo F, Sclip A, Jiang M, Südhof TC. Neurexins cluster Ca 2+ channels within the presynaptic active zone. EMBO J 2020; 39:e103208. [PMID: 32134527 PMCID: PMC7110102 DOI: 10.15252/embj.2019103208] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/05/2023] Open
Abstract
To achieve ultrafast neurotransmission, neurons assemble synapses with highly organized presynaptic and postsynaptic nanomachines that are aligned by synaptic adhesion molecules. How functional assembly of presynaptic active zones is controlled via trans-synaptic interactions remains unknown. Here, we conditionally deleted all three neurexin adhesion molecules from presynaptic neurons of the calyx of Held in the mouse auditory system, a model synapse that allows precise biophysical analyses of synaptic properties. The pan-neurexin deletion had no effect on synapse development or the basic release machinery, but dramatically impaired fast neurotransmitter release. The overall properties of presynaptic calcium ion channels appeared normal, as reflected by the similar characteristics of calcium currents recorded at the nerve terminals. However, the pan-neurexin deletion significantly impaired the tight coupling of calcium influx to exocytosis, thereby suppressing neurotransmitter release. Furthermore, the pan-neurexin deletion reduced the function of calcium-activated BK potassium channels, whose activation depends on their tight association with presynaptic calcium channels. Together, these results suggest that neurexins perform a major function at the calyx synapse in coupling presynaptic calcium channels to release sites.
Collapse
Affiliation(s)
- Fujun Luo
- Department of Molecular and Cellular PhysiologyHoward Hughes Medical InstituteStanford University Medical SchoolStanfordCAUSA
| | - Alessandra Sclip
- Department of Molecular and Cellular PhysiologyHoward Hughes Medical InstituteStanford University Medical SchoolStanfordCAUSA
| | - Man Jiang
- Department of Molecular and Cellular PhysiologyHoward Hughes Medical InstituteStanford University Medical SchoolStanfordCAUSA
| | - Thomas C Südhof
- Department of Molecular and Cellular PhysiologyHoward Hughes Medical InstituteStanford University Medical SchoolStanfordCAUSA
| |
Collapse
|
13
|
Alpizar SA, Cho IH, Hoppa MB. Subcellular control of membrane excitability in the axon. Curr Opin Neurobiol 2019; 57:117-125. [PMID: 30784979 DOI: 10.1016/j.conb.2019.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Ion channels are microscopic pore proteins in the membrane that open and close in response to chemical and electrical stimuli. This simple concept underlies rapid electrical signaling in the brain as well as several important aspects of neural plasticity. Although the soma accounts for less than 1% of many neurons by membrane area, it has been the major site of measuring ion channel function. However, the axon is one of the longest processes found in cellular biology and hosts a multitude of critical signaling functions in the brain. Not only does the axon initiate and rapidly propagate action potentials (APs) across the brain but it also forms the presynaptic terminals that convert these electrical inputs into chemical outputs. Here, we review recent advances in the physiological role of ion channels within the diverse landscape of the axon and presynaptic terminals.
Collapse
Affiliation(s)
- Scott A Alpizar
- Dartmouth College, Department of Biological Sciences, Hanover, NH, United States
| | - In Ha Cho
- Dartmouth College, Department of Biological Sciences, Hanover, NH, United States
| | - Michael B Hoppa
- Dartmouth College, Department of Biological Sciences, Hanover, NH, United States.
| |
Collapse
|
14
|
BK channel blocker paxilline attenuates thalidomide-caused synaptic and cognitive dysfunctions in mice. Sci Rep 2018; 8:17653. [PMID: 30518785 PMCID: PMC6281727 DOI: 10.1038/s41598-018-36367-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Thalidomide is a widely prescribed immunomodulatory drug (iMiD) for multiple myeloma, but causes reversible memory loss in humans. However, how thalidomide causes cognitive dysfunction at a cellular and molecular level has not been demonstrated. We studied the effect of thalidomide on synaptic functions and cognitive behaviors using a mouse model. Thalidomide led to cognitive deficits in learning behavior in a passive avoidance test and in a novel object recognition test, increased anxiety in an elevated plus maze test, and increased depressive behaviors in a tail suspension test. Interestingly, thalidomide elevated big- or large-conductance, calcium-activated K+ (BK) channel expression in the plasma membrane and BK channel activity in the hippocampus. Thalidomide also increased the paired pulse ratio of excitatory postsynaptic current (EPSC), which suggests a decreased probability of glutamate release. Furthermore, the changes in the paired pulse ratio and in BK channel activity were blocked by paxilline, a BK channel blocker. Finally, we found that thalidomide-induced cognitive dysfunctions were restored by paxilline treatment. These results suggest that thalidomide-mediated BK channel hyperfunction is responsible for the pathological mechanism of thalidomide-associated reversible memory loss.
Collapse
|