1
|
Sherry J, Pawar KI, Dolat L, Smith E, Chang IC, Pha K, Kaake R, Swaney DL, Herrera C, McMahon E, Bastidas RJ, Johnson JR, Valdivia RH, Krogan NJ, Elwell CA, Verba K, Engel JN. The Chlamydia effector Dre1 binds dynactin to reposition host organelles during infection. Cell Rep 2025; 44:115509. [PMID: 40186871 DOI: 10.1016/j.celrep.2025.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis replicates in a specialized membrane-bound compartment where it repositions host organelles during infection to acquire nutrients and evade host surveillance. We describe a bacterial effector, Dre1, that binds specifically to dynactin associated with host microtubule organizing centers without globally impeding dynactin function. Dre1 is required to reposition the centrosome, mitotic spindle, Golgi apparatus, and primary cilia around the inclusion and contributes to pathogen fitness in cell-based and mouse models of infection. We utilized Dre1 to affinity purify the megadalton dynactin protein complex and determined the first cryoelectron microscopy (cryo-EM) structure of human dynactin. Our results suggest that Dre1 binds to the pointed end of dynactin and uncovers the first bacterial effector that modulates dynactin function. Our work highlights how a pathogen employs a single effector to evoke targeted, large-scale changes in host cell organization that facilitate pathogen growth without inhibiting host viability.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Komal Ishwar Pawar
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin Smith
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - I-Chang Chang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Khavong Pha
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robyn Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clara Herrera
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eleanor McMahon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Kliment Verba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Xue P, Zheng J, Li R, Yan L, Wang Z, Jia Q, Zhang L, Li X. High Expression of KIFC1 in Glioma Correlates with Poor Prognosis. J Korean Neurosurg Soc 2024; 67:364-375. [PMID: 38720546 PMCID: PMC11079566 DOI: 10.3340/jkns.2023.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Kinesin family member C1 (KIFC1), a non-essential kinesin-like motor protein, has been found to serve a crucial role in supernumerary centrosome clustering and the progression of several human cancer types. However, the role of KIFC1 in glioma has been rarely reported. Thus, the present study aimed to investigate the role of KIFC1 in glioma progression. METHODS Online bioinformatics analysis was performed to determine the association between KIFC1 expression and clinical outcomes in glioma. Immunohistochemical staining was conducted to analyze the expression levels of KIFC1 in glioma and normal brain tissues. Furthermore, KIFC1 expression was knocked in the glioma cell lines, U251 and U87MG, and the functional roles of KIFC1 in cell proliferation, invasion and migration were analyzed using cell multiplication, wound healing and Transwell invasion assays, respectively. The autophagic flux and expression levels matrix metalloproteinase-2 (MMP2) were also determined using imaging flow cytometry, western blotting and a gelation zymography assay. RESULTS The results revealed that KIFC1 expression levels were significantly upregulated in glioma tissues compared with normal brain tissues, and the expression levels were positively associated with tumor grade. Patients with glioma with low KIFC1 expression levels had a more favorable prognosis compared with patients with high KIFC1 expression levels. In vitro, KIFC1 knockdown not only inhibited the proliferation, migration and invasion of glioma cells, but also increased the autophagic flux and downregulated the expression levels of MMP2. CONCLUSION Upregulation of KIFC1 expression may promote glioma progression and KIFC1 may serve as a potential prognostic biomarker and possible therapeutic target for glioma.
Collapse
Affiliation(s)
- Pengfei Xue
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Rongrong Li
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Lili Yan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Zhaohao Wang
- Department of Neurosurgery, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, China
| | - Qingbin Jia
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Lianqun Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Xin Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|