1
|
Hellsberg E, Boytsov D, Chen Q, Niello M, Freissmuth M, Rudnick G, Zhang YW, Sandtner W, Forrest LR. Identification of the potassium-binding site in serotonin transporter. Proc Natl Acad Sci U S A 2024; 121:e2319384121. [PMID: 38652746 PMCID: PMC11067047 DOI: 10.1073/pnas.2319384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Clearance of serotonin (5-hydroxytryptamine, 5-HT) from the synaptic cleft after neuronal signaling is mediated by serotonin transporter (SERT), which couples this process to the movement of a Na+ ion down its chemical gradient. After release of 5-HT and Na+ into the cytoplasm, the transporter faces a rate-limiting challenge of resetting its conformation to be primed again for 5-HT and Na+ binding. Early studies of vesicles containing native SERT revealed that K+ gradients can provide an additional driving force, via K+ antiport. Moreover, under appropriate conditions, a H+ ion can replace K+. Intracellular K+ accelerates the resetting step. Structural studies of SERT have identified two binding sites for Na+ ions, but the K+ site remains enigmatic. Here, we show that K+ antiport can drive substrate accumulation into vesicles containing SERT extracted from a heterologous expression system, allowing us to study the residues responsible for K+ binding. To identify candidate binding residues, we examine many cation binding configurations using molecular dynamics simulations, predicting that K+ binds to the so-called Na2 site. Site-directed mutagenesis of residues in this site can eliminate the ability of both K+ and H+ to drive 5-HT accumulation into vesicles and, in patch clamp recordings, prevent the acceleration of turnover rates and the formation of a channel-like state by K+ or H+. In conclusion, the Na2 site plays a pivotal role in orchestrating the sequential binding of Na+ and then K+ (or H+) ions to facilitate 5-HT uptake in SERT.
Collapse
Affiliation(s)
- Eva Hellsberg
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Danila Boytsov
- Center of Physiology and Pharmacology, Department of Pharmacology, Medical University of Vienna, Vienna1090, Austria
| | - Qingyang Chen
- School of Life Sciences, Higher Education Mega Center, Guangzhou University, Guangzhou510006, China
| | - Marco Niello
- Center of Physiology and Pharmacology, Department of Pharmacology, Medical University of Vienna, Vienna1090, Austria
| | - Michael Freissmuth
- Center of Physiology and Pharmacology, Department of Pharmacology, Medical University of Vienna, Vienna1090, Austria
| | - Gary Rudnick
- Department of Pharmacology, Yale University, New Haven, CT06510
| | - Yuan-Wei Zhang
- School of Life Sciences, Higher Education Mega Center, Guangzhou University, Guangzhou510006, China
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Department of Pharmacology, Medical University of Vienna, Vienna1090, Austria
| | - Lucy R. Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| |
Collapse
|
2
|
Gorostiola González M, Sijben HJ, Dall’ Acqua L, Liu R, IJzerman AP, Heitman LH, van Westen GJP. Molecular insights into disease-associated glutamate transporter (EAAT1 / SLC1A3) variants using in silico and in vitro approaches. Front Mol Biosci 2023; 10:1286673. [PMID: 38074092 PMCID: PMC10702391 DOI: 10.3389/fmolb.2023.1286673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/26/2023] [Indexed: 03/15/2025] Open
Abstract
Glutamate is an essential excitatory neurotransmitter and an intermediate for energy metabolism. Depending on the tumor site, cancer cells have increased or decreased expression of excitatory amino acid transporter 1 or 2 (EAAT1/2, SLC1A3/2) to regulate glutamate uptake for the benefit of tumor growth. Thus, EAAT1/2 may be an attractive target for therapeutic intervention in oncology. Genetic variation of EAAT1 has been associated with rare cases of episodic ataxia, but the occurrence and functional contribution of EAAT1 mutants in other diseases, such as cancer, is poorly understood. Here, 105 unique somatic EAAT1 mutations were identified in cancer patients from the Genomic Data Commons dataset. Using EAAT1 crystal structures and in silico studies, eight mutations were selected based on their close proximity to the orthosteric or allosteric ligand binding sites and the predicted change in ligand binding affinity. In vitro functional assessment in a live-cell, impedance-based phenotypic assay demonstrated that these mutants differentially affect L-glutamate and L-aspartate transport, as well as the inhibitory potency of an orthosteric (TFB-TBOA) and allosteric (UCPH-101) inhibitor. Moreover, two episodic ataxia-related mutants displayed functional responses that were in line with literature, which confirmed the validity of our assay. Of note, ataxia-related mutant M128R displayed inhibitor-induced functional responses never described before. Finally, molecular dynamics (MD) simulations were performed to gain mechanistic insights into the observed functional effects. Taken together, the results in this work demonstrate 1) the suitability of the label-free phenotypic method to assess functional variation of EAAT1 mutants and 2) the opportunity and challenges of using in silico techniques to rationalize the in vitro phenotype of disease-relevant mutants.
Collapse
Affiliation(s)
- Marina Gorostiola González
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Oncode Institute, Leiden, Netherlands
| | - Hubert J. Sijben
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Laura Dall’ Acqua
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Rongfang Liu
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Oncode Institute, Leiden, Netherlands
| | - Gerard J. P. van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
3
|
Suslova M, Kortzak D, Machtens JP, Kovermann P, Fahlke C. Apo state pore opening as functional basis of increased EAAT anion channel activity in episodic ataxia 6. Front Physiol 2023; 14:1147216. [PMID: 37538371 PMCID: PMC10394623 DOI: 10.3389/fphys.2023.1147216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
SLC1A2 and SLC1A3 encode the glial glutamate transporters EAAT2 and EAAT1, which are not only the predominant glutamate uptake carriers in our brain, but also function as anion channels. Two homologous mutations, which predict substitutions of prolines in the center of the fifth transmembrane helix by arginine (P289R EAAT2, P290R EAAT1), have been identified in patients with epileptic encephalopathy (SLC1A2) or with episodic ataxia type 6 (SLC1A3). Both mutations have been shown to impair glutamate uptake and to increase anion conduction. The molecular processes that link the disease-causing mutations to two major alterations of glutamate transporter function remain insufficiently understood. The mutated proline is conserved in every EAAT. Since the pathogenic changes mainly affect the anion channel function, we here study the functional consequences of the homologous P312R mutation in the neuronal glutamate transporter EAAT4, a low capacity glutamate transporter with predominant anion channel function. To assess the impact of charge and structure of the inserted amino acid for the observed functional changes, we generated and functionally evaluated not only P312R, but also substitutions of P312 with all other amino acids. However, only exchange of proline by arginine, lysine, histidine and asparagine were functionally tolerated. We compared WT, P312R and P312N EAAT4 using a combination of cellular electrophysiology, fast substrate application and kinetic modelling. We found that WT and mutant EAAT4 anion currents can be described with a 11-state model of the transport cycle, in which several states are connected to branching anion channel states to account for the EAAT anion channel function. Substitutions of P312 modify various transitions describing substrate binding/unbinding, translocation or anion channel opening. Most importantly, P312R generates a new anion conducting state that is accessible in the outward facing apo state and that is the main determinant of the increased anion conduction of EAAT transporters carrying this mutation. Our work provides a quantitative description how a naturally occurring mutation changes glutamate uptake and anion currents in two genetic diseases.
Collapse
|
4
|
Qiu B, Boudker O. Symport and antiport mechanisms of human glutamate transporters. Nat Commun 2023; 14:2579. [PMID: 37142617 PMCID: PMC10160106 DOI: 10.1038/s41467-023-38120-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) uptake glutamate into glial cells and neurons. EAATs achieve million-fold transmitter gradients by symporting it with three sodium ions and a proton, and countertransporting a potassium ion via an elevator mechanism. Despite the availability of structures, the symport and antiport mechanisms still need to be clarified. We report high-resolution cryo-EM structures of human EAAT3 bound to the neurotransmitter glutamate with symported ions, potassium ions, sodium ions alone, or without ligands. We show that an evolutionarily conserved occluded translocation intermediate has a dramatically higher affinity for the neurotransmitter and the countertransported potassium ion than outward- or inward-facing transporters and plays a crucial role in ion coupling. We propose a comprehensive ion coupling mechanism involving a choreographed interplay between bound solutes, conformations of conserved amino acid motifs, and movements of the gating hairpin and the substrate-binding domain.
Collapse
Affiliation(s)
- Biao Qiu
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10021, USA.
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10021, USA.
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10021, USA.
| |
Collapse
|
5
|
Leucine 434 is essential for docosahexaenoic acid-induced augmentation of L-glutamate transporter current. J Biol Chem 2022; 299:102793. [PMID: 36509140 PMCID: PMC9823230 DOI: 10.1016/j.jbc.2022.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytic excitatory amino acid transporter 2 (EAAT2) plays a major role in removing the excitatory neurotransmitter L-glutamate (L-Glu) from synaptic clefts in the forebrain to prevent excitotoxicity. Polyunsaturated fatty acids such as docosahexaenoic acid (DHA, 22:6 n-3) enhance synaptic transmission, and their target molecules include EAATs. Here, we aimed to investigate the effect of DHA on EAAT2 and identify the key amino acid for DHA/EAAT2 interaction by electrophysiological recording of L-Glu-induced current in Xenopus oocytes transfected with EAATs, their chimeras, and single mutants. DHA transiently increased the amplitude of EAAT2 but tended to decrease that of excitatory amino acid transporter subtype 1 (EAAT1), another astrocytic EAAT. Single mutation of leucine (Leu) 434 to alanine (Ala) completely suppressed the augmentation by DHA, while mutation of EAAT1 Ala 435 (corresponding to EAAT2 Leu434) to Leu changed the effect from suppression to augmentation. Other polyunsaturated fatty acids (docosapentaenoic acid, eicosapentaenoic acid, arachidonic acid, and α-linolenic acid) similarly augmented the EAAT2 current and suppressed the EAAT1 current. Finally, our docking analysis suggested the most stable docking site is the lipid crevice of EAAT2, in close proximity to the L-Glu and sodium binding sites, suggesting that the DHA/Leu434 interaction might affect the elevator-like slide and/or the shapes of the other binding sites. Collectively, our results highlight a key molecular detail in the DHA-induced regulation of synaptic transmission involving EAATs.
Collapse
|
6
|
Matthews EA, Sun W, McMahon SM, Doengi M, Halka L, Anders S, Müller JA, Steinlein P, Vana NS, van Dyk G, Pitsch J, Becker AJ, Pfeifer A, Kavalali ET, Lamprecht A, Henneberger C, Stein V, Schoch S, Dietrich D. Optical analysis of glutamate spread in the neuropil. Cereb Cortex 2022; 32:3669-3689. [PMID: 35059716 PMCID: PMC9433421 DOI: 10.1093/cercor/bhab440] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Fast synaptic communication uses diffusible transmitters whose spread is limited by uptake mechanisms. However, on the submicron-scale, the distance between two synapses, the extent of glutamate spread has so far remained difficult to measure. Here, we show that quantal glutamate release from individual hippocampal synapses activates extracellular iGluSnFr molecules at a distance of >1.5 μm. 2P-glutamate uncaging near spines further showed that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-Rs and N-methyl-D-aspartate (NMDA)-Rs respond to distant uncaging spots at approximately 800 and 2000 nm, respectively, when releasing the amount of glutamate contained in approximately five synaptic vesicles. The uncaging-induced remote activation of AMPA-Rs was facilitated by blocking glutamate transporters but only modestly decreased by elevating the recording temperature. When mimicking release from neighboring synapses by three simultaneous uncaging spots in the microenvironment of a spine, AMPA-R-mediated responses increased supra-additively. Interfering with extracellular glutamate diffusion through a glutamate scavenger system weakly reduced field synaptic responses but not the quantal amplitude. Together, our data suggest that the neuropil is more permissive to short-range spread of transmitter than suggested by theory, that multivesicular release could regularly coactivate nearest neighbor synapses and that on this scale glutamate buffering by transporters primarily limits the spread of transmitter and allows for cooperative glutamate signaling in extracellular microdomains.
Collapse
Affiliation(s)
| | | | | | - M Doengi
- Institute of Physiology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - L Halka
- Institute of Physiology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - S Anders
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - J A Müller
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - P Steinlein
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany,Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - N S Vana
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - G van Dyk
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - J Pitsch
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany,Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - A J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany,Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - A Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - E T Kavalali
- Department of Pharmacology, The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - A Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - C Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany,Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - V Stein
- Institute of Physiology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - S Schoch
- Address correspondence to Prof. Dr Dirk Dietrich, Department of Neurosurgery, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany. ; and Prof. Dr Susanne Schoch, Institute of Neuropathology, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany.
| | - D Dietrich
- Address correspondence to Prof. Dr Dirk Dietrich, Department of Neurosurgery, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany. ; and Prof. Dr Susanne Schoch, Institute of Neuropathology, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany.
| |
Collapse
|
7
|
Kovermann P, Engels M, Müller F, Fahlke C. Cellular Physiology and Pathophysiology of EAAT Anion Channels. Front Cell Neurosci 2022; 15:815279. [PMID: 35087380 PMCID: PMC8787812 DOI: 10.3389/fncel.2021.815279] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) optimize the temporal resolution and energy demand of mammalian excitatory synapses by quickly removing glutamate from the synaptic cleft into surrounding neuronal and glial cells and ensuring low resting glutamate concentrations. In addition to secondary active glutamate transport, EAATs also function as anion channels. The channel function of these transporters is conserved in all homologs ranging from archaebacteria to mammals; however, its physiological roles are insufficiently understood. There are five human EAATs, which differ in their glutamate transport rates. Until recently the high-capacity transporters EAAT1, EAAT2, and EAAT3 were believed to conduct only negligible anion currents, with no obvious function in cell physiology. In contrast, the low-capacity glutamate transporters EAAT4 and EAAT5 are thought to regulate neuronal signaling as glutamate-gated channels. In recent years, new experimental approaches and novel animal models, together with the discovery of a human genetic disease caused by gain-of-function mutations in EAAT anion channels have enabled identification of the first physiological and pathophysiological roles of EAAT anion channels.
Collapse
|
8
|
Canul‐Tec JC, Kumar A, Dhenin J, Assal R, Legrand P, Rey M, Chamot‐Rooke J, Reyes N. The ion-coupling mechanism of human excitatory amino acid transporters. EMBO J 2022; 41:e108341. [PMID: 34747040 PMCID: PMC8724772 DOI: 10.15252/embj.2021108341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) maintain glutamate gradients in the brain essential for neurotransmission and to prevent neuronal death. They use ionic gradients as energy source and co-transport transmitter into the cytoplasm with Na+ and H+ , while counter-transporting K+ to re-initiate the transport cycle. However, the molecular mechanisms underlying ion-coupled transport remain incompletely understood. Here, we present 3D X-ray crystallographic and cryo-EM structures, as well as thermodynamic analysis of human EAAT1 in different ion bound conformations, including elusive counter-transport ion bound states. Binding energies of Na+ and H+ , and unexpectedly Ca2+ , are coupled to neurotransmitter binding. Ca2+ competes for a conserved Na+ site, suggesting a regulatory role for Ca2+ in glutamate transport at the synapse, while H+ binds to a conserved glutamate residue stabilizing substrate occlusion. The counter-transported ion binding site overlaps with that of glutamate, revealing the K+ -based mechanism to exclude the transmitter during the transport cycle and to prevent its neurotoxic release on the extracellular side.
Collapse
Affiliation(s)
- Juan C Canul‐Tec
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| | - Anand Kumar
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| | - Jonathan Dhenin
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Reda Assal
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
| | - Pierre Legrand
- Synchrotron SOLEILL'Orme des MerisiersGif‐sur‐YvetteFrance
| | - Martial Rey
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Julia Chamot‐Rooke
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Nicolas Reyes
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| |
Collapse
|
9
|
Kovermann P, Kolobkova Y, Franzen A, Fahlke C. Mutations associated with epileptic encephalopathy modify EAAT2 anion channel function. Epilepsia 2021; 63:388-401. [PMID: 34961934 DOI: 10.1111/epi.17154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Mutations in the gene solute carrier family member 1A2 (SLC1A2) encoding the excitatory amino acid transporter 2 (EAAT2) are associated with severe forms of epileptic encephalopathy. EAAT2 is expressed in glial cells and presynaptic nerve terminals and represents the main l-glutamate uptake carrier in the mammalian brain. It does not only function as a secondary active glutamate transporter, but also as an anion channel. How naturally occurring mutations affect these two transport functions of EAAT2 and how such alterations cause epilepsy is insufficiently understood. METHODS Here we studied the functional consequences of three disease-associated mutations, which predict amino acid exchanges p.Gly82Arg (G82R), p.Leu85Pro (L85P), and p.Pro289Arg (P289R), by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings of EAAT2 l-glutamate transport and anion current. RESULTS G82R and L85P exchange amino acid residues contribute to the formation of the EAAT anion pore. They enlarge the pore diameter sufficiently to permit the passage of l-glutamate and thus function as l-glutamate efflux pathways. The mutation P289R decreases l-glutamate uptake, but increases anion currents despite a lower membrane expression. SIGNIFICANCE l-glutamate permeability of the EAAT anion pore is an unexpected functional consequence of naturally occurring single amino acid substitutions. l-glutamate efflux through mutant EAAT2 anion channels will cause glutamate excitotoxicity and neuronal hyperexcitability in affected patients. Antagonists that selectively suppress the EAAT anion channel function could serve as therapeutic agents in the future.
Collapse
Affiliation(s)
- Peter Kovermann
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Yulia Kolobkova
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Arne Franzen
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Christoph Fahlke
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| |
Collapse
|
10
|
Ciftci D, Martens C, Ghani VG, Blanchard SC, Politis A, Huysmans GHM, Boudker O. Linking function to global and local dynamics in an elevator-type transporter. Proc Natl Acad Sci U S A 2021; 118:e2025520118. [PMID: 34873050 PMCID: PMC8670510 DOI: 10.1073/pnas.2025520118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
Transporters cycle through large structural changes to translocate molecules across biological membranes. The temporal relationships between these changes and function, and the molecular properties setting their rates, determine transport efficiency-yet remain mostly unknown. Using single-molecule fluorescence microscopy, we compare the timing of conformational transitions and substrate uptake in the elevator-type transporter GltPh We show that the elevator-like movements of the substrate-loaded transport domain across membranes and substrate release are kinetically heterogeneous, with rates varying by orders of magnitude between individual molecules. Mutations increasing the frequency of elevator transitions and reducing substrate affinity diminish transport rate heterogeneities and boost transport efficiency. Hydrogen deuterium exchange coupled to mass spectrometry reveals destabilization of secondary structure around the substrate-binding site, suggesting that increased local dynamics leads to faster rates of global conformational changes and confers gain-of-function properties that set transport rates.
Collapse
Affiliation(s)
- Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, New York, NY 10065
| | - Chloe Martens
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Vishnu G Ghani
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Argyris Politis
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Gerard H M Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065;
- Tri-Institutional Training Program in Chemical Biology, New York, NY 10065
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
11
|
Wang J, Zhang K, Goyal P, Grewer C. Mechanism and potential sites of potassium interaction with glutamate transporters. J Gen Physiol 2021; 152:152037. [PMID: 32835376 PMCID: PMC7537348 DOI: 10.1085/jgp.202012577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
In the mammalian glutamate transporters, countertransported intracellular K+ is essential for relocating the glutamate binding site to the extracellular side of the membrane. This K+-dependent process is believed to be rate limiting for the transport cycle. In contrast, extracellular K+ induces glutamate release upon transporter reversal. Here, we analyzed potential K+ binding sites using molecular dynamics (MD) simulations and site-directed mutagenesis. Two candidate sites were identified by spontaneous K+ binding in MD simulations, one site (K1 site) overlapping with the Na1 Na+ binding site and the K2 site being localized under hairpin loop 2 (HP2). Mutations to conserved amino acid residues in these sites resulted in several transporters that were defective in K+-induced reverse transport and which bound K+ with reduced apparent affinity compared with the wild-type transporter. However, external K+ interaction was abolished in only one mutant transporter EAAC1D454A in the K1 site. Our results, for the first time, directly demonstrate effects of K1-site mutations on K+ binding, in contrast to previous reports on K+ binding sites based on indirect evidence. We propose that K+ binding to the K1 site is responsible for catalyzing the relocation step, whereas binding to the K2 site may have an as-of-yet unidentified regulatory function.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry, Binghamton University, Binghamton, NY
| | - Kaiqi Zhang
- Department of Chemistry, Binghamton University, Binghamton, NY
| | - Puja Goyal
- Department of Chemistry, Binghamton University, Binghamton, NY
| | - Christof Grewer
- Department of Chemistry, Binghamton University, Binghamton, NY
| |
Collapse
|
12
|
Scalise M, Console L, Cosco J, Pochini L, Galluccio M, Indiveri C. ASCT1 and ASCT2: Brother and Sister? SLAS DISCOVERY 2021; 26:1148-1163. [PMID: 34269129 DOI: 10.1177/24725552211030288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SLC1 family includes seven members divided into two groups, namely, EAATs and ASCTs, that share similar 3D architecture; the first one includes high-affinity glutamate transporters, and the second one includes SLC1A4 and SLC1A5, known as ASCT1 and ASCT2, respectively, responsible for the traffic of neutral amino acids across the cell plasma membrane. The physiological role of ASCT1 and ASCT2 has been investigated over the years, revealing different properties in terms of substrate specificities, affinities, and regulation by physiological effectors and posttranslational modifications. Furthermore, ASCT1 and ASCT2 are involved in pathological conditions, such as neurodegenerative disorders and cancer. This has driven research in the pharmaceutical field aimed to find drugs able to target the two proteins.This review focuses on structural, functional, and regulatory aspects of ASCT1 and ASCT2, highlighting similarities and differences.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Jessica Cosco
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| |
Collapse
|
13
|
Kinetic mechanism of Na +-coupled aspartate transport catalyzed by Glt Tk. Commun Biol 2021; 4:751. [PMID: 34140623 PMCID: PMC8211817 DOI: 10.1038/s42003-021-02267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
It is well-established that the secondary active transporters GltTk and GltPh catalyze coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified GltTk, and derived the rate equation for a mechanism in which two sodium ions bind before and another after aspartate. Re-analysis of existing data on GltPh using this equation allowed for determination of the turnover number (0.14 s−1), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented GltTk proteins showed the same transport kinetics, consistent with the use of an identical gating element on both sides of the membrane. Our work underlines the value of bona fide transport experiments to reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution. Combined with previous pre-equilibrium binding studies, a full kinetic mechanism of structurally characterized aspartate transporters of the SLC1A family is now emerging. Trinco et al. measure aspartate uptake rates in proteoliposomes containing purified prokaryotic Na+-coupled aspartate transporter GltTk. To overcome limitation of protein orientation, they use synthetic nanobody that blocks transporters from outside and reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution.
Collapse
|
14
|
Bhat S, Niello M, Schicker K, Pifl C, Sitte HH, Freissmuth M, Sandtner W. Handling of intracellular K + determines voltage dependence of plasmalemmal monoamine transporter function. eLife 2021; 10:67996. [PMID: 34061030 PMCID: PMC8192120 DOI: 10.7554/elife.67996] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/30/2021] [Indexed: 12/16/2022] Open
Abstract
The concentrative power of the transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT) is thought to be fueled by the transmembrane Na+ gradient, but it is conceivable that they can also tap other energy sources, for example, membrane voltage and/or the transmembrane K+ gradient. We have addressed this by recording uptake of endogenous substrates or the fluorescent substrate APP+(4-(4-dimethylamino)phenyl-1-methylpyridinium) under voltage control in cells expressing DAT, NET, or SERT. We have shown that DAT and NET differ from SERT in intracellular handling of K+. In DAT and NET, substrate uptake was voltage-dependent due to the transient nature of intracellular K+ binding, which precluded K+ antiport. SERT, however, antiports K+ and achieves voltage-independent transport. Thus, there is a trade-off between maintaining constant uptake and harvesting membrane potential for concentrative power, which we conclude to occur due to subtle differences in the kinetics of co-substrate ion binding in closely related transporters.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Niello
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schicker
- Division of Neurophysiology and Neuropharmacology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian Pifl
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Evolution of biophysical tools for quantitative protein interactions and drug discovery. Emerg Top Life Sci 2021; 5:1-12. [PMID: 33739398 DOI: 10.1042/etls20200258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
With millions of signalling events occurring simultaneously, cells process a continuous flux of information. The genesis, processing, and regulation of information are dictated by a huge network of protein interactions. This is proven by the fact that alterations in the levels of proteins, single amino acid changes, post-translational modifications, protein products arising out of gene fusions alter the interaction landscape leading to diseases such as congenital disorders, deleterious syndromes like cancer, and crippling diseases like the neurodegenerative disorders which are often fatal. Needless to say, there is an immense effort to understand the biophysical basis of such direct interactions between any two proteins, the structure, domains, and sequence motifs involved in tethering them, their spatio-temporal regulation in cells, the structure of the network, and their eventual manipulation for intervention in diseases. In this chapter, we will deliberate on a few techniques that allow us to dissect the thermodynamic and kinetic aspects of protein interaction, how innovation has rendered some of the traditional techniques applicable for rapid analysis of multiple samples using small amounts of material. These advances coupled with automation are catching up with the genome-wide or proteome-wide studies aimed at identifying new therapeutic targets. The chapter will also summarize how some of these techniques are suited either in the standalone mode or in combination with other biophysical techniques for the drug discovery process.
Collapse
|
16
|
Kostritskii AY, Alleva C, Cönen S, Machtens JP. g_elpot: A Tool for Quantifying Biomolecular Electrostatics from Molecular Dynamics Trajectories. J Chem Theory Comput 2021; 17:3157-3167. [PMID: 33914551 DOI: 10.1021/acs.jctc.0c01246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrostatic forces drive a wide variety of biomolecular processes by defining the energetics of the interaction between biomolecules and charged substances. Molecular dynamics (MD) simulations provide trajectories that contain ensembles of structural configurations sampled by biomolecules and their environment. Although this information can be used for high-resolution characterization of biomolecular electrostatics, it has not yet been possible to calculate electrostatic potentials from MD trajectories in a way allowing for quantitative connection to energetics. Here, we present g_elpot, a GROMACS-based tool that utilizes the smooth particle mesh Ewald method to quantify the electrostatics of biomolecules by calculating potential within water molecules that are explicitly present in biomolecular MD simulations. g_elpot can extract the global distribution of the electrostatic potential from MD trajectories and measure its time course in functionally important regions of a biomolecule. To demonstrate that g_elpot can be used to gain biophysical insights into various biomolecular processes, we applied the tool to MD trajectories of the P2X3 receptor, TMEM16 lipid scramblases, the secondary-active transporter GltPh, and DNA complexed with cationic polymers. Our results indicate that g_elpot is well suited for quantifying electrostatics in biomolecular systems to provide a deeper understanding of its role in biomolecular processes.
Collapse
Affiliation(s)
- Andrei Y Kostritskii
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Physics, RWTH Aachen University, 52062 Aachen, Germany.,Institute of Clinical Pharmacology, RWTH Aachen University, 52062 Aachen, Germany
| | - Claudia Alleva
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Saskia Cönen
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Clinical Pharmacology, RWTH Aachen University, 52062 Aachen, Germany
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Clinical Pharmacology, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
17
|
Qiu B, Matthies D, Fortea E, Yu Z, Boudker O. Cryo-EM structures of excitatory amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and transport. SCIENCE ADVANCES 2021; 7:7/10/eabf5814. [PMID: 33658209 PMCID: PMC7929514 DOI: 10.1126/sciadv.abf5814] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/19/2021] [Indexed: 05/16/2023]
Abstract
Human excitatory amino acid transporter 3 (hEAAT3) mediates glutamate uptake in neurons, intestine, and kidney. Here, we report cryo-EM structures of hEAAT3 in several functional states where the transporter is empty, bound to coupled sodium ions only, or fully loaded with three sodium ions, a proton, and the substrate aspartate. The structures suggest that hEAAT3 operates by an elevator mechanism involving three functionally independent subunits. When the substrate-binding site is near the cytoplasm, it has a remarkably low affinity for the substrate, perhaps facilitating its release and allowing the rapid transport turnover. The mechanism of the coupled uptake of the sodium ions and the substrate is conserved across evolutionarily distant families and is augmented by coupling to protons in EAATs. The structures further suggest a mechanism by which a conserved glutamate residue mediates proton symport.
Collapse
Affiliation(s)
- Biao Qiu
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| | - Doreen Matthies
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Eva Fortea
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA.
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
18
|
Alleva C, Machtens JP, Kortzak D, Weyand I, Fahlke C. Molecular Basis of Coupled Transport and Anion Conduction in Excitatory Amino Acid Transporters. Neurochem Res 2021; 47:9-22. [PMID: 33587237 PMCID: PMC8763778 DOI: 10.1007/s11064-021-03252-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After its release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by excitatory amino acid transporters (EAATs) 1–5, a subfamily of glutamate transporters. The five proteins utilize a complex transport stoichiometry that couples glutamate transport to the symport of three Na+ ions and one H+ in exchange with one K+ to accumulate glutamate against up to 106-fold concentration gradients. They are also anion-selective channels that open and close during transitions along the glutamate transport cycle. EAATs belong to a larger family of secondary-active transporters, the SLC1 family, which also includes purely Na+- or H+-coupled prokaryotic transporters and Na+-dependent neutral amino acid exchangers. In recent years, molecular cloning, heterologous expression, cellular electrophysiology, fluorescence spectroscopy, structural approaches, and molecular simulations have uncovered the molecular mechanisms of coupled transport, substrate selectivity, and anion conduction in EAAT glutamate transporters. Here we review recent findings on EAAT transport mechanisms, with special emphasis on the highly conserved hairpin 2 gate, which has emerged as the central processing unit in many of these functions.
Collapse
Affiliation(s)
- Claudia Alleva
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany.,Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Ingo Weyand
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
19
|
Zhou W, Trinco G, Slotboom DJ, Forrest LR, Faraldo-Gómez JD. On the Role of a Conserved Methionine in the Na +-Coupling Mechanism of a Neurotransmitter Transporter Homolog. Neurochem Res 2021; 47:163-175. [PMID: 33565025 PMCID: PMC8431971 DOI: 10.1007/s11064-021-03253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
Excitatory amino acid transporters (EAAT) play a key role in glutamatergic synaptic communication. Driven by transmembrane cation gradients, these transporters catalyze the reuptake of glutamate from the synaptic cleft once this neurotransmitter has been utilized for signaling. Two decades ago, pioneering studies in the Kanner lab identified a conserved methionine within the transmembrane domain as key for substrate turnover rate and specificity; later structural work, particularly for the prokaryotic homologs GltPh and GltTk, revealed that this methionine is involved in the coordination of one of the three Na+ ions that are co-transported with the substrate. Albeit extremely atypical, the existence of this interaction is consistent with biophysical analyses of GltPh showing that mutations of this methionine diminish the binding cooperativity between substrates and Na+. It has been unclear, however, whether this intriguing methionine influences the thermodynamics of the transport reaction, i.e., its substrate:ion stoichiometry, or whether it simply fosters a specific kinetics in the binding reaction, which, while influential for the turnover rate, do not fundamentally explain the ion-coupling mechanism of this class of transporters. Here, studies of GltTk using experimental and computational methods independently arrive at the conclusion that the latter hypothesis is the most plausible, and lay the groundwork for future efforts to uncover the underlying mechanism.
Collapse
Affiliation(s)
- Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gianluca Trinco
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Huysmans GHM, Ciftci D, Wang X, Blanchard SC, Boudker O. The high-energy transition state of the glutamate transporter homologue GltPh. EMBO J 2021; 40:e105415. [PMID: 33185289 PMCID: PMC7780239 DOI: 10.15252/embj.2020105415] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward- to the inward-facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high-energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain-of-function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward-facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Mass Spectrometry for Biology Unit, USR 2000CNRSInstitut PasteurParisFrance
| | - Didar Ciftci
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
| | - Xiaoyu Wang
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - Scott C Blanchard
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- St. Jude Children’s Research HospitalMemphisTNUSA
| | - Olga Boudker
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
21
|
Todd AC, Hardingham GE. The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E9607. [PMID: 33348528 PMCID: PMC7766851 DOI: 10.3390/ijms21249607] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
The astrocytic glutamate transporters excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2) play a key role in nervous system function to maintain extracellular glutamate levels at low levels. In physiology, this is essential for the rapid uptake of synaptically released glutamate, maintaining the temporal fidelity of synaptic transmission. However, EAAT1/2 hypo-expression or hypo-function are implicated in several disorders, including epilepsy and neurodegenerative diseases, as well as being observed naturally with aging. This not only disrupts synaptic information transmission, but in extremis leads to extracellular glutamate accumulation and excitotoxicity. A key facet of EAAT1/2 expression in astrocytes is a requirement for signals from other brain cell types in order to maintain their expression. Recent evidence has shown a prominent role for contact-dependent neuron-to-astrocyte and/or endothelial cell-to-astrocyte Notch signalling for inducing and maintaining the expression of these astrocytic glutamate transporters. The relevance of this non-cell-autonomous dependence to age- and neurodegenerative disease-associated decline in astrocytic EAAT expression is discussed, plus the implications for disease progression and putative therapeutic strategies.
Collapse
Affiliation(s)
- Alison C. Todd
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
22
|
Alleva C, Kovalev K, Astashkin R, Berndt MI, Baeken C, Balandin T, Gordeliy V, Fahlke C, Machtens JP. Na +-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters. SCIENCE ADVANCES 2020; 6:6/47/eaba9854. [PMID: 33208356 PMCID: PMC7673805 DOI: 10.1126/sciadv.aba9854] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/02/2020] [Indexed: 05/22/2023]
Abstract
Excitatory amino acid transporters (EAATs) harness [Na+], [K+], and [H+] gradients for fast and efficient glutamate removal from the synaptic cleft. Since each glutamate is cotransported with three Na+ ions, [Na+] gradients are the predominant driving force for glutamate uptake. We combined all-atom molecular dynamics simulations, fluorescence spectroscopy, and x-ray crystallography to study Na+:substrate coupling in the EAAT homolog GltPh A lipidic cubic phase x-ray crystal structure of wild-type, Na+-only bound GltPh at 2.5-Å resolution revealed the fully open, outward-facing state primed for subsequent substrate binding. Simulations and kinetic experiments established that only the binding of two Na+ ions to the Na1 and Na3 sites ensures complete HP2 gate opening via a conformational selection-like mechanism and enables high-affinity substrate binding via electrostatic attraction. The combination of Na+-stabilized gate opening and electrostatic coupling of aspartate to Na+ binding provides a constant Na+:substrate transport stoichiometry over a broad range of neurotransmitter concentrations.
Collapse
Affiliation(s)
- C Alleva
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - K Kovalev
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - R Astashkin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - M I Berndt
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - C Baeken
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - T Balandin
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - V Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ch Fahlke
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - J-P Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Chivukula AS, Suslova M, Kortzak D, Kovermann P, Fahlke C. Functional consequences of SLC1A3 mutations associated with episodic ataxia 6. Hum Mutat 2020; 41:1892-1905. [PMID: 32741053 DOI: 10.1002/humu.24089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022]
Abstract
The episodic ataxias (EA) are a group of inherited neurological diseases characterized by paroxysmal cerebellar incoordination. There exist nine forms of episodic ataxia with distinct neurological symptoms and genetic origins. Episodic ataxia type 6 (EA6) differs from other EA forms in long attack duration, epilepsy and absent myokymia, nystagmus, and tinnitus. It has been described in seven families, and mutations in SLC1A3, the gene encoding the glial glutamate transporter EAAT1, were reported in each family. How these mutations affect EAAT1 expression, subcellular localization, and function, and how such alterations result in the complex neurological phenotype of EA6 is insufficiently understood. We here compare the functional consequences of all currently known mutations by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch clamp recordings of EAAT1 transport and anion currents. We observed impairments of multiple EAAT1 properties ranging from changes in transport function, impaired trafficking to increased protein expression. Many mutations caused only slight changes illustrating how sensitively the cerebellum reacts on impaired EAAT1 functions.
Collapse
Affiliation(s)
- Aparna S Chivukula
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Mariia Suslova
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Peter Kovermann
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
24
|
Kolen B, Kortzak D, Franzen A, Fahlke C. An amino-terminal point mutation increases EAAT2 anion currents without affecting glutamate transport rates. J Biol Chem 2020; 295:14936-14947. [PMID: 32820048 DOI: 10.1074/jbc.ra120.013704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are prototypical dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: Secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfills this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Rapid l-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. In contrast, changes in selectivity made gluconate permeant in L46P EAAT2, and nonstationary noise analysis revealed slightly increased unitary current amplitudes in mutant EAAT2 anion channels. We used unitary current amplitudes and individual transport rates to quantify absolute open probabilities of EAAT2 anion channels from ratios of anion currents by glutamate uptake currents. This analysis revealed up to 7-fold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.
Collapse
Affiliation(s)
- Bettina Kolen
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Arne Franzen
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
25
|
Kortzak D, Alleva C, Weyand I, Ewers D, Zimmermann MI, Franzen A, Machtens JP, Fahlke C. Allosteric gate modulation confers K + coupling in glutamate transporters. EMBO J 2019; 38:e101468. [PMID: 31506973 PMCID: PMC6769379 DOI: 10.15252/embj.2019101468] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/29/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) mediate glial and neuronal glutamate uptake to terminate synaptic transmission and to ensure low resting glutamate concentrations. Effective glutamate uptake is achieved by cotransport with 3 Na+ and 1 H+, in exchange with 1 K+. The underlying principles of this complex transport stoichiometry remain poorly understood. We use molecular dynamics simulations and electrophysiological experiments to elucidate how mammalian EAATs harness K+ gradients, unlike their K+‐independent prokaryotic homologues. Glutamate transport is achieved via elevator‐like translocation of the transport domain. In EAATs, glutamate‐free re‐translocation is prevented by an external gate remaining open until K+ binding closes and locks the gate. Prokaryotic GltPh contains the same K+‐binding site, but the gate can close without K+. Our study provides a comprehensive description of K+‐dependent glutamate transport and reveals a hitherto unknown allosteric coupling mechanism that permits adaptions of the transport stoichiometry without affecting ion or substrate binding.
Collapse
Affiliation(s)
- Daniel Kortzak
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - Claudia Alleva
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - Ingo Weyand
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - David Ewers
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.,Klinik für klinische Neurophysiologie, Universitätsmedizin Göttingen, Göttingen, Germany.,Abteilung für Neurogenetik, Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | - Meike I Zimmermann
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - Arne Franzen
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - Jan-Philipp Machtens
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.,Department of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|