1
|
Do LK, Lee HM, Ha YS, Lee CH, Kim J. Amino acids in cancer: Understanding metabolic plasticity and divergence for better therapeutic approaches. Cell Rep 2025; 44:115529. [PMID: 40193251 PMCID: PMC12038367 DOI: 10.1016/j.celrep.2025.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
Metabolic reprogramming is a hallmark of malignant transformation. While initial studies in the field of cancer metabolism focused on central carbon metabolism, the field has expanded to metabolism beyond glucose and glutamine and uncovered the important role of amino acids in tumorigenesis and tumor immunity as energy sources, signaling molecules, and precursors for (epi)genetic modification. As a result of the development and application of new technologies, a multifaceted picture has emerged, showing that context-dependent heterogeneity in amino acid metabolism exists between tumors and even within distinct regions of solid tumors. Understanding the complexity and flexibility of amino acid metabolism in cancer is critical because it can influence therapeutic responses and predict clinical outcomes. This overview discusses the current findings on the heterogeneity in amino acid metabolism in cancer and how understanding the metabolic diversity of amino acids can be translated into more clinically relevant therapeutic interventions.
Collapse
Affiliation(s)
- Linda K Do
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Hyun Min Lee
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Chan-Hyeong Lee
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Jiyeon Kim
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
2
|
Crawford CEW, Burslem GM. Acetylation: a new target for protein degradation in cancer. Trends Cancer 2025; 11:403-420. [PMID: 40055119 PMCID: PMC11981854 DOI: 10.1016/j.trecan.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 04/11/2025]
Abstract
Acetylation is an increasing area of focus for cancer research as it is closely related to a variety of cellular processes through modulation of histone and non-histone proteins. However, broadly targeting acetylation threatens to yield nonselective toxic effects owing to the vital role of acetylation in cellular function. There is thus a pressing need to elucidate and characterize the specific cancer-relevant roles of acetylation for future therapeutic design. Acetylation-mediated protein homeostasis is an example of selective acetylation that affects a myriad of proteins as well as their correlated functions. We review recent examples of acetylation-mediated protein homeostasis that have emerged as key contributors to tumorigenesis, tumor proliferation, metastasis, and/or drug resistance, and we discuss their implications for future exploration of this intriguing phenomenon.
Collapse
Affiliation(s)
- Callie E W Crawford
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
3
|
Richiardone E, Giolito MV, Al Roumi R, Ambroise J, Boidot R, Drotleff B, Ghesquière B, Lupo B, Trusolino L, Bardelli A, Arena S, Feron O, Corbet C. Acidosis overrides molecular heterogeneity to shape therapeutically targetable metabolic phenotypes in colon cancers. Cancer Lett 2025; 613:217512. [PMID: 39900217 DOI: 10.1016/j.canlet.2025.217512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Colorectal cancer (CRC) represents a prototypical example of a cancer type for which inter- and intra-tumor heterogeneities remain major challenges for the clinical management of patients. Besides genotype-mediated phenotypic alterations, tumor microenvironment (TME) conditions are increasingly recognized to promote intrinsic diversity and phenotypic plasticity and sustain disease progression. In particular, acidosis is a common hallmark of solid tumors, including CRC, and it is known to induce aggressive cancer cell phenotypes. In this study, we report that long-term adaptation to acidic pH conditions is associated with common metabolic alterations, including a glycolysis-to-respiration switch and a higher reliance on the activity of phosphoglycerate dehydrogenase (PHGDH), in CRC cells initially displaying molecularly heterogeneous backgrounds. Pharmacological inhibition of PHGDH activity or mitochondrial respiration induces greater growth-inhibitory effects in acidosis-exposed CRC cells in 2D and 3D culture conditions, and in patient-derived CRC organoids. These data pave the way for drugs targeting the acidic tumor compartment as a "one-size-fits-all" therapeutic approach to delay CRC progression.
Collapse
Affiliation(s)
- Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Maria Virginia Giolito
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Rim Al Roumi
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Jérôme Ambroise
- Centre des Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 54, B-1200, Brussels, Belgium
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-François Leclerc Cancer Center-UNICANCER, 21079, Dijon, France
| | | | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Barbara Lupo
- Department of Oncology, University of Torino, Candiolo (TO), Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo (TO), Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Candiolo (TO), Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo (TO), Italy
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Sabrina Arena
- Department of Oncology, University of Torino, Candiolo (TO), Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo (TO), Italy
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium; WEL Research Institute, Avenue Pasteur 6, B-1300, Wavre, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium; WEL Research Institute, Avenue Pasteur 6, B-1300, Wavre, Belgium.
| |
Collapse
|
4
|
Wu X, Luo L, Wang M, Dong L, Fan J, Zeng Y, Li S, Wang K. PRDX6 Prevents NNMT Ubiquitination and Degradation as a Nonenzymatic Mechanism to Promote Ovarian Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416484. [PMID: 39887931 PMCID: PMC11948025 DOI: 10.1002/advs.202416484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Cancer cells cope with oxidative stress for their proliferation and metastasis by equipping antioxidant systems, among which the antioxidant enzymes peroxiredoxins (PRDXs) play crucial roles. However, whether PRDXs exhibit nonenzymatic functions remains unclear. Here, it is shown that the 1-cysteine PRDX (PRDX6) upregulates nicotinamide N-methyltransferase (NNMT) to promote the growth and metastasis of ovarian cancer cells, independently of PRDX6's enzymatic activities. Mechanistically, PRDX6 interacts with NNMT to prevent its binding to the E3 ubiquitin ligase tripartite-motif protein 56 (TRIM56), leading to the inhibition of NNMT ubiquitination at lysine 23 and 210 and suppression of subsequent proteasomal degradation. In addition, PRDX6-mediated NNMT upregulation activates mitogen-activated protein kinase (MAPK) signaling, thereby promoting the growth and metastasis of ovarian cancer cells. Notably, PRDX6 overexpression is associated with higher NNMT protein levels in human ovarian cancer tissues and is predictive of poor prognosis of ovarian cancer patients. Overall, the findings illustrate a critical oncogenic mechanism of the antioxidant enzyme PRDX6 in promoting ovarian cancer progression beyond its enzymatic mechanisms.
Collapse
Affiliation(s)
- Xingyun Wu
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Li Luo
- Center for Reproductive MedicineDepartment of Gynecology and ObstetricsWest China Second University HospitalSichuan UniversityChengdu610041P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengdu610041P. R. China
| | - Mao Wang
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Lixia Dong
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Jiawu Fan
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Sijia Li
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
5
|
Cheng B, Ma J, Tang N, Liu R, Peng P, Wang K. Non-canonical function of PHGDH promotes HCC metastasis by interacting with METTL3. Cell Oncol (Dordr) 2024; 47:2427-2438. [PMID: 39695045 DOI: 10.1007/s13402-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
PURPOSE Phosphoglycerate dehydrogenase (PHGDH), a pivotal enzyme in serine synthesis, plays a key role in the malignant progression of tumors through both its metabolic activity and moonlight functions. This study aims to elucidate the non-canonical function of PHGDH in promoting hepatocellular carcinoma (HCC) metastasis through its interaction with methyltransferase-like 3 (METTL3), potentially uncovering a novel therapeutic target. METHODS Western blot was used to study PHGDH expression changes under anoikis and cellular functional assays were employed to assess its role in HCC metastasis. PHGDH-METTL3 interactions were explored using GST pull-down, Co-immunoprecipitation and immunofluorescence assays. Protein stability and ubiquitination assays were performed to understand PHGDH's impact on METTL3. Flow cytometry, cellular assays and nude mice model were used to confirm PHGDH's effects on anoikis resistance and HCC metastasis in vitro and in vivo. RESULTS PHGDH is upregulated under anoikis conditions, thereby enhancing the metastatic potential of HCC cells. By interacting with METTL3, PHGDH prevents its ubiquitin-dependent degradation, resulting in higher METTL3 protein levels. This interaction upregulates epithelial-mesenchymal transition related genes, contributing to anoikis resistance and HCC metastasis. Nude mice model confirms that PHGDH's interaction with METTL3 is crucial for driving HCC metastasis. CONCLUSION Our research presents the first evidence that PHGDH promotes HCC metastasis by interacting with METTL3. The PHGDH-METTL3 axis may serve as a potential clinical therapeutic target, offering new insights into the multifaceted roles of PHGDH in HCC metastasis.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Ma
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Pai Peng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Kai Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Hao Y, Zhou Z, Liu R, Shen S, Liu H, Zhou Y, Sun Y, Mao Q, Zhang T, Li ST, Liu Z, Chu Y, Sun L, Gao P, Zhang H. Mitochondria-localized MBD2c facilitates mtDNA transcription and drug resistance. Nat Chem Biol 2024:10.1038/s41589-024-01776-1. [PMID: 39609546 DOI: 10.1038/s41589-024-01776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Mitochondria contain a 16-kb double stranded DNA genome encoding 13 proteins essential for respiration, but the mechanisms regulating transcription and their potential role in cancer remain elusive. Although methyl-CpG-binding domain (MBD) proteins are essential for nuclear transcription, their role in mitochondrial DNA (mtDNA) transcription is unknown. Here we report that the MBD2c splicing variant translocates into mitochondria to mediate mtDNA transcription and increase mitochondrial respiration in triple-negative breast cancer (TNBC) cells. In particular, MBD2c binds the noncoding region in mtDNA and interacts with SIRT3, which in turn deacetylates and activates TFAM, a primary mitochondrial transcription factor, leading to enhanced mtDNA transcription. Furthermore, MBD2c recovered the decreased mitochondrial gene expression caused by the DNA synthesis inhibitor cisplatin, preserving mitochondrial respiration and consequently enhancing drug resistance and proliferation in TNBC cells. These data collectively demonstrate that MBD2c positively regulates mtDNA transcription, thus connecting epigenetic regulation by deacetylation with cancer cell metabolism, suggesting druggable targets to overcome resistance.
Collapse
Affiliation(s)
- Yijie Hao
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Zilong Zhou
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Rui Liu
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haiying Liu
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingli Zhou
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuchen Sun
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiankun Mao
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Ting Li
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhaoji Liu
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiyang Chu
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Huafeng Zhang
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
7
|
Zhang S, He R, Zhang M, Zhang J, Wu M, Zhang G, Jiang T. Elucidation of the Role of SHMT2 in L-Serine Homeostasis in Hypoxic Hepa1-6 Cells. Int J Mol Sci 2024; 25:11786. [PMID: 39519335 PMCID: PMC11545941 DOI: 10.3390/ijms252111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Hypoxia is a characteristic feature of malignancy; however, its effect on metabolism remains unclear. In this study, Hepa1-6 cells were cultured under hypoxic conditions and their metabolites were analyzed. Elevated levels of L-serine along with increased glycolytic activity are prominent features of hypoxia. Transcriptome sequencing revealed the downregulation of genes involved in L-serine synthesis and metabolism, which was confirmed by PCR analysis and comparison with public databases. Further experimental evidence indicates that the accumulation of L-serine under hypoxic conditions is attributable not only to enhanced glycolysis but also to a reduction in the catabolism of L-serine mediated by serine hydroxymethyltransferase 2 (SHMT2).
Collapse
Affiliation(s)
- Shuo Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
| | - Ruoxu He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
| | - Mingsi Zhang
- Musculoskeletal Sport Science and Health, Loughborough University, Loughborough LE11 3TU, UK;
| | - Jingcheng Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
| | - Mengting Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (S.Z.); (R.H.); (J.Z.); (M.W.)
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
8
|
Li W, Ou Y, Ye F, Cheng Z, Chen Z, Zhou Q, Yan X, Jiang H. cirSIRT5 induces ferroptosis in bladder cancer by forming a ternary complex with SYVN1/PHGDH. Cell Death Discov 2024; 10:391. [PMID: 39223162 PMCID: PMC11369169 DOI: 10.1038/s41420-024-02163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Bladder cancer (BC) represents a prevalent and formidable malignancy necessitating innovative diagnostic and therapeutic strategies. Circular RNAs (circRNAs) have emerged as crucial regulators in cancer biology. In this study, we comprehensively evaluated ferroptosis levels in BC cells utilizing techniques encompassing lipid peroxidation assessment, transmission electron microscopy, and malondialdehyde (MDA) measurement. Additionally, we probed into the mechanistic intricacies by which circRNAs govern BC, employing RNA pull-down, RNA immunoprecipitation (RIP), and immunoprecipitation (IP) assays. Our investigation unveiled circSIRT5, which displayed significant downregulation in BC. Notably, circSIRT5 emerged as a promising prognostic marker, with diminished expression correlating with unfavorable clinical outcomes. Functionally, circSIRT5 was identified as an inhibitor of BC progression both in vitro and in vivo. Mechanistically, circSIRT5 exerted its tumor-suppressive activities through the formation of a ternary complex involving circSIRT5, SYVN1, and PHGDH. This complex enhanced the ubiquitination and subsequent degradation of PHGDH, ultimately promoting ferroptosis in BC cells. This ferroptotic process contributed significantly to the inhibition of tumor growth and metastasis in BC. In addition, FUS was found to accelerate the biogenesis of circSIRT5 in BC. These findings provide valuable insights into the pivotal role of circSIRT5 in BC pathogenesis, underscoring its potential as a diagnostic biomarker and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ziang Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Yan
- Department of Urology, Pediatric Urolith Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Pan T, Yang B, Yao S, Wang R, Zhu Y. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: A comprehensive review. Life Sci 2024; 351:122802. [PMID: 38857656 DOI: 10.1016/j.lfs.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Sheng Yao
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
10
|
Zhao R, Guo Y, Zhang L, Huang Z, Li X, Lan B, Zhong D, Chen H, Xuan C. CBX4 plays a bidirectional role in transcriptional regulation and lung adenocarcinoma progression. Cell Death Dis 2024; 15:378. [PMID: 38816356 PMCID: PMC11140001 DOI: 10.1038/s41419-024-06745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality worldwide. Understanding the dysregulated epigenetics governing LUAD progression is pivotal for identifying therapeutic targets. CBX4, a chromobox protein, is reported to be upregulated in LUAD. This study highlights the dual impact of CBX4 on LUAD proliferation and metastasis through a series of rigorous in vitro and in vivo experiments. Further investigation into the underlying mechanism through high-throughput ChIP-seq and RNA-seq reveals that CBX4 functions in promoting LUAD proliferation via upregulating PHGDH expression and subsequent serine biosynthesis, while concurrently suppressing LUAD metastasis by inhibiting ZEB2 transcription. CBX4 facilitates PHGDH transcription through the interaction with GCN5, inducing heightened histone acetylation on the PHGDH promoter. Simultaneously, the inhibition of ZEB2 transcription involves CBX4-mediated recruitment of canonical PRC1 (cPRC1), establishing H2K119ub on the ZEB2 promoter. These findings underscore CBX4's pivotal role as a regulator of LUAD progression, emphasizing its diverse transcriptional regulatory functions contingent upon interactions with specific epigenetic partners. Understanding the nuanced interplay between CBX4 and epigenetic factors sheds light on potential therapeutic avenues in LUAD.
Collapse
Affiliation(s)
- Ran Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanxuan Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhiyong Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xuanyuan Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Bei Lan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Hao Chen
- Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Chenghao Xuan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
11
|
Zhong J, Huang K, Xie S, Tan A, Peng J, Nie D, Ma L, Li Y. PHGDH is Key to a Prognostic Multigene Signature and a Potential Therapeutic Target in Acute Myeloid Leukemia. J Cancer 2024; 15:2538-2548. [PMID: 38577610 PMCID: PMC10988303 DOI: 10.7150/jca.90822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/04/2024] [Indexed: 04/06/2024] Open
Abstract
As a rate-limiting enzyme for the serine biosynthesis pathway (SSP) in the initial step, phosphoglycerate dehydrogenase (PHGDH) is overexpressed in many different tumors, and pharmacological or genetic inhibition of PHGDH promotes antitumor effects. In the present research, by analyzing several acute myeloid leukemia (AML) datasets in the Gene Expression Omnibus (GEO), we identified prognosis-related genes and constructed a multigene signature by univariate, multivariate Cox regression and LASSO regression. Subsequently, the multigene signature was confirmed through Cox, Kaplan-Meier, and ROC analyses in the validation cohort. Moreover, PHGDH acted as a risk factor and was correlated with inferior overall survival. We further analysed other datasets and found that PHGDH was overexpressed in AML. Importantly, the expression of PHGDH was higher in drug-resistant AML compared to drug-sensitive ones. In vitro experiments showed that inhibition of PHGDH induced apoptosis and reduced proliferation in AML cells, and these antitumor effects could be related to the Bcl-2/Bax signaling pathway by the noncanonical or nonmetabolic functions of PHGDH. In summary, we constructed a twenty-gene signature that could predicate prognosis of AML patients and found that PHGDH may be a potential target for AML treatment.
Collapse
Affiliation(s)
- Jiagui Zhong
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Hematology, The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi 844099, China
| | - Kezhi Huang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Internal Medicine Ward I, JieXi People's Hospital (Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University-JieXi Medical Center), JieYang 515499, China
| | - Shaofan Xie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ailian Tan
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiaqin Peng
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Danian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liping Ma
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
12
|
Mäntyselkä S, Kolari K, Baumert P, Ylä-Outinen L, Kuikka L, Lahtonen S, Permi P, Wackerhage H, Kalenius E, Kivelä R, Hulmi JJ. Serine synthesis pathway enzyme PHGDH is critical for muscle cell biomass, anabolic metabolism, and mTORC1 signaling. Am J Physiol Endocrinol Metab 2024; 326:E73-E91. [PMID: 37991454 DOI: 10.1152/ajpendo.00151.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Cells use glycolytic intermediates for anabolism, e.g., via the serine synthesis and pentose phosphate pathways. However, we still understand poorly how these metabolic pathways contribute to skeletal muscle cell biomass generation. The first aim of this study was therefore to identify enzymes that limit protein synthesis, myotube size, and proliferation in skeletal muscle cells. We inhibited key enzymes of glycolysis, the pentose phosphate pathway, and the serine synthesis pathway to evaluate their importance in C2C12 myotube protein synthesis. Based on the results of this first screen, we then focused on the serine synthesis pathway enzyme phosphoglycerate dehydrogenase (PHGDH). We used two different PHGDH inhibitors and mouse C2C12 and human primary muscle cells to study the importance and function of PHGDH. Both myoblasts and myotubes incorporated glucose-derived carbon into proteins, RNA, and lipids, and we showed that PHGDH is essential in these processes. PHGDH inhibition decreased protein synthesis, myotube size, and myoblast proliferation without cytotoxic effects. The decreased protein synthesis in response to PHGDH inhibition appears to occur mainly mechanistic target of rapamycin complex 1 (mTORC1)-dependently, as was evident from experiments with insulin-like growth factor 1 and rapamycin. Further metabolomics analyses revealed that PHGDH inhibition accelerated glycolysis and altered amino acid, nucleotide, and lipid metabolism. Finally, we found that supplementing an antioxidant and redox modulator, N-acetylcysteine, partially rescued the decreased protein synthesis and mTORC1 signaling during PHGDH inhibition. The data suggest that PHGDH activity is critical for skeletal muscle cell biomass generation from glucose and that it regulates protein synthesis and mTORC1 signaling.NEW & NOTEWORTHY The use of glycolytic intermediates for anabolism was demonstrated in both myoblasts and myotubes, which incorporate glucose-derived carbon into proteins, RNA, and lipids. We identify phosphoglycerate dehydrogenase (PHGDH) as a critical enzyme in those processes and also for muscle cell hypertrophy, proliferation, protein synthesis, and mTORC1 signaling. Our results thus suggest that PHGDH in skeletal muscle is more than just a serine-synthesizing enzyme.
Collapse
Affiliation(s)
- Sakari Mäntyselkä
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Kalle Kolari
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Philipp Baumert
- Department for Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Laura Ylä-Outinen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Lauri Kuikka
- Central Finland Health Care District Hospital District, Jyväskylä, Finland
| | - Suvi Lahtonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Henning Wackerhage
- Department for Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Elina Kalenius
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Riikka Kivelä
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
13
|
Sun L, Gao P. An idle PHGDH takes control of cell fate. Cell Res 2023; 33:894-895. [PMID: 37833359 PMCID: PMC10709640 DOI: 10.1038/s41422-023-00883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Affiliation(s)
- Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Wu YQ, Zhang CS, Xiong J, Cai DQ, Wang CZ, Wang Y, Liu YH, Wang Y, Li Y, Wu J, Wu J, Lan B, Wang X, Chen S, Cao X, Wei X, Hu HH, Guo H, Yu Y, Ghafoor A, Xie C, Wu Y, Xu Z, Zhang C, Zhu M, Huang X, Sun X, Lin SY, Piao HL, Zhou J, Lin SC. Low glucose metabolite 3-phosphoglycerate switches PHGDH from serine synthesis to p53 activation to control cell fate. Cell Res 2023; 33:835-850. [PMID: 37726403 PMCID: PMC10624847 DOI: 10.1038/s41422-023-00874-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.
Collapse
Affiliation(s)
- Yu-Qing Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dong-Qi Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Zhe Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yiming Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Center, Xiamen University, Xiamen, Fujian, China
| | - Bin Lan
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Xiamen, Fujian, China
| | - Xuefeng Wang
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Xiamen, Fujian, China
| | - Siwei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xianglei Cao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui-Hui Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaxin Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Abdul Ghafoor
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Jianyin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
15
|
Kuzuoglu‐Ozturk D. PHGDH and cancer: new job for an old enzyme! EMBO J 2023; 42:e113068. [PMID: 36477891 PMCID: PMC9890222 DOI: 10.15252/embj.2022113068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
How do cancer cells bolster their energy metabolism under conditions of stress? Recent work by Shu et al (2022) unveils a novel, non-canonical function of the de novo serine synthesis pathway enzyme phosphoglycerate dehydrogenase (PHGDH) as a regulator of mitochondrial translation and tumor progression in liver cancer.
Collapse
Affiliation(s)
- Duygu Kuzuoglu‐Ozturk
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|