1
|
Li L, Fan Z, Liu M, Dong H, Li J, Li Y, Song Z, Liu Y, Zhang Z, Gu X, Zhang T. USP1 promotes pancreatic cancer progression and autophagy by deubiquitinating ATG14. J Biol Chem 2025; 301:108190. [PMID: 39814232 PMCID: PMC11871461 DOI: 10.1016/j.jbc.2025.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis, high mortality, and limited therapeutic strategy. Autophagy is hyperactivated in PDAC, and targeting autophagy is emerging as a promising therapeutic strategy. The dysfunction of deubiquitinase ubiquitin-specific peptidase 1 (USP1) results in tumorigenesis and chemotherapy resistance. However, little is known about how USP1 regulates autophagy and its mechanism in tumor progression and drug sensitivity in PDAC. In this study, we found USP1 elevated in pancreatic cancer and USP1 expression inversely correlated with overall survival. USP1 depletion inhibited cell proliferation, epithelial-mesenchymal transition, and migration in PDAC cells. Interestingly, USP1 knockdown or inhibition reduced autophagy initiation and autophagy flux. By screening of interacting protein using coimmunoprecipitation, we identified that USP1 interacted with ATG14 (autophagy-related gene 14) protein, acting as a core component in autophagy initiation. Furthermore, USP1 overexpression deubiquitinated and enhanced ATG14 protein stability by reduced binding ubiquitin levels, whereas USP1 inhibition promoted its proteasome-dependent degradation. Notably, USP1 depletion or a novel USP1 inhibitor I-138 dramatically delayed tumor growth in xenograft model. USP1 inhibitor synergistically enhanced the anticancer efficiency of cisplatin in PDAC cells. Collectively, our study identifies USP1 as the first deubiquitinase in the modulation of ATG14 deubiquitination and unveils a regulatory role for USP1 in autophagy and PDAC progression. Targeting USP1 using a selective inhibitor I-138 may provide an effective strategy for chemotherapy treatment and combating drug resistance in autophagy-activated pancreatic cancer.
Collapse
Affiliation(s)
- Leilei Li
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhili Fan
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengfei Liu
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hao Dong
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Li
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Li
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zan Song
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Liu
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhicheng Zhang
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinyu Gu
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Zhang
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
2
|
Mazloumi Aboukheili AM, Walden H. USP1 in regulation of DNA repair pathways. DNA Repair (Amst) 2025; 146:103807. [PMID: 39848025 DOI: 10.1016/j.dnarep.2025.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves. This review covers recent findings on the mechanisms and functions of USP1 in DNA repair, its regulation, and its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Helen Walden
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland.
| |
Collapse
|
3
|
Yang D, Bai F, Lopez Martinez D, Xu H, Johjima-Murata A, Cao LJ, Cohn MA. PP2A licenses the FANCD2/FANCI complex for chromosome loading. Cell Rep 2024; 43:114971. [PMID: 39535917 DOI: 10.1016/j.celrep.2024.114971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The Fanconi anemia (FA) pathway removes interstrand crosslinks (ICLs) between the Watson-Crick strands of the DNA double helix in humans. Central to the pathway is the FANCD2/FANCI complex, which must be loaded onto chromosomes. Here, we report the identification of a PP2A phosphatase complex, which specifically dephosphorylates an inhibitory cluster in FANCD2, thereby licensing its loading in response to DNA damage. We show that PP2A is required for normal monoubiquitination of the FANCD2/FANCI complex and for its loading onto chromosomes. We have fully reconstituted a coupled dephosphorylation-ubiquitination reaction in vitro using a highly purified PP2A complex. Using super-resolution live-cell single-molecule tracking, we show how PP2A switches on the FA pathway in response to ICLs and that cells are sensitive to ICL-forming drugs in the absence of PP2A. Our work uncovers a mechanism where PP2A facilitates the activation of the FA pathway by licensing chromosome loading of the FANCD2/FANCI complex.
Collapse
Affiliation(s)
- Di Yang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Fengxiang Bai
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Hannan Xu
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Ai Johjima-Murata
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Lily Jiaqi Cao
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
4
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
5
|
Sanchez-Lopez I, Orantos-Aguilera Y, Pozo-Guisado E, Alvarez-Barrientos A, Lilla S, Zanivan S, Lachaud C, Martin-Romero FJ. STIM1 translocation to the nucleus protects cells from DNA damage. Nucleic Acids Res 2024; 52:2389-2415. [PMID: 38224453 PMCID: PMC10954485 DOI: 10.1093/nar/gkae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/30/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024] Open
Abstract
DNA damage represents a challenge for cells, as this damage must be eliminated to preserve cell viability and the transmission of genetic information. To reduce or eliminate unscheduled chemical modifications in genomic DNA, an extensive signaling network, known as the DNA damage response (DDR) pathway, ensures this repair. In this work, and by means of a proteomic analysis aimed at studying the STIM1 protein interactome, we have found that STIM1 is closely related to the protection from endogenous DNA damage, replicative stress, as well as to the response to interstrand crosslinks (ICLs). Here we show that STIM1 has a nuclear localization signal that mediates its translocation to the nucleus, and that this translocation and the association of STIM1 to chromatin increases in response to mitomycin-C (MMC), an ICL-inducing agent. Consequently, STIM1-deficient cell lines show higher levels of basal DNA damage, replicative stress, and increased sensitivity to MMC. We show that STIM1 normalizes FANCD2 protein levels in the nucleus, which explains the increased sensitivity of STIM1-KO cells to MMC. This study not only unveils a previously unknown nuclear function for the endoplasmic reticulum protein STIM1 but also expands our understanding of the genes involved in DNA repair.
Collapse
Affiliation(s)
- Irene Sanchez-Lopez
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Universidad de Extremadura, Badajoz 06006, Spain
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Badajoz 06006, Spain
| | - Yolanda Orantos-Aguilera
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Universidad de Extremadura, Badajoz 06006, Spain
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Badajoz 06006, Spain
| | - Eulalia Pozo-Guisado
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Badajoz 06006, Spain
- Department of Cell Biology, School of Medicine, Universidad de Extremadura, Badajoz 06006, Spain
| | | | - Sergio Lilla
- CRUK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Sara Zanivan
- CRUK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Christophe Lachaud
- Cancer Research Centre of Marseille, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli Calmettes, CRCM, Marseille, France
- OPALE Carnot Institute, Paris, France
| | - Francisco Javier Martin-Romero
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Universidad de Extremadura, Badajoz 06006, Spain
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Badajoz 06006, Spain
| |
Collapse
|
6
|
Eichman BF. Repair and tolerance of DNA damage at the replication fork: A structural perspective. Curr Opin Struct Biol 2023; 81:102618. [PMID: 37269798 PMCID: PMC10525001 DOI: 10.1016/j.sbi.2023.102618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
The replication machinery frequently encounters DNA damage and other structural impediments that inhibit progression of the replication fork. Replication-coupled processes that remove or bypass the barrier and restart stalled forks are essential for completion of replication and for maintenance of genome stability. Errors in replication-repair pathways lead to mutations and aberrant genetic rearrangements and are associated with human diseases. This review highlights recent structures of enzymes involved in three replication-repair pathways: translesion synthesis, template switching and fork reversal, and interstrand crosslink repair.
Collapse
Affiliation(s)
- Brandt F Eichman
- Vanderbilt University, Department of Biological Sciences and Department of Biochemistry, 5270A MRBIII, 465 21st Ave S, Nashville, TN 37232 USA.
| |
Collapse
|
7
|
Kupculak M, Bai F, Luo Q, Yoshikawa Y, Lopez-Martinez D, Xu H, Uphoff S, Cohn MA. Phosphorylation by ATR triggers FANCD2 chromatin loading and activates the Fanconi anemia pathway. Cell Rep 2023; 42:112721. [PMID: 37392383 PMCID: PMC10933773 DOI: 10.1016/j.celrep.2023.112721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs) in humans. Activation of the pathway relies on loading of the FANCD2/FANCI complex onto chromosomes, where it is fully activated by subsequent monoubiquitination. However, the mechanism for loading the complex onto chromosomes remains unclear. Here, we identify 10 SQ/TQ phosphorylation sites on FANCD2, which are phosphorylated by ATR in response to ICLs. Using a range of biochemical assays complemented with live-cell imaging including super-resolution single-molecule tracking, we show that these phosphorylation events are critical for loading of the complex onto chromosomes and for its subsequent monoubiquitination. We uncover how the phosphorylation events are tightly regulated in cells and that mimicking their constant phosphorylation leads to an uncontrolled active state of FANCD2, which is loaded onto chromosomes in an unrestrained fashion. Taken together, we describe a mechanism where ATR triggers FANCD2/FANCI loading onto chromosomes.
Collapse
Affiliation(s)
- Marian Kupculak
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Fengxiang Bai
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Qiang Luo
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | | | - Hannan Xu
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
8
|
Shaaban M, Clapperton JA, Ding S, Kunzelmann S, Mäeots ME, Maslen SL, Skehel JM, Enchev RI. Structural and mechanistic insights into the CAND1-mediated SCF substrate receptor exchange. Mol Cell 2023:S1097-2765(23)00418-5. [PMID: 37339624 DOI: 10.1016/j.molcel.2023.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023]
Abstract
Modular SCF (SKP1-CUL1-Fbox) ubiquitin E3 ligases orchestrate multiple cellular pathways in eukaryotes. Their variable SKP1-Fbox substrate receptor (SR) modules enable regulated substrate recruitment and subsequent proteasomal degradation. CAND proteins are essential for the efficient and timely exchange of SRs. To gain structural understanding of the underlying molecular mechanism, we reconstituted a human CAND1-driven exchange reaction of substrate-bound SCF alongside its co-E3 ligase DCNL1 and visualized it by cryo-EM. We describe high-resolution structural intermediates, including a ternary CAND1-SCF complex, as well as conformational and compositional intermediates representing SR- or CAND1-dissociation. We describe in molecular detail how CAND1-induced conformational changes in CUL1/RBX1 provide an optimized DCNL1-binding site and reveal an unexpected dual role for DCNL1 in CAND1-SCF dynamics. Moreover, a partially dissociated CAND1-SCF conformation accommodates cullin neddylation, leading to CAND1 displacement. Our structural findings, together with functional biochemical assays, help formulate a detailed model for CAND-SCF regulation.
Collapse
Affiliation(s)
- Mohammed Shaaban
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Julie A Clapperton
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Shan Ding
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Märt-Erik Mäeots
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Sarah L Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Radoslav I Enchev
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| |
Collapse
|