1
|
Huang A, Xue H, Xie T, Xiang L, Chen Z, Ma A, Yan H, Yuan J. A review of the pathogenesis of mitochondria in breast cancer and progress of targeting mitochondria for breast cancer treatment. J Transl Med 2025; 23:70. [PMID: 39815317 PMCID: PMC11734335 DOI: 10.1186/s12967-025-06077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
With breast cancer being the most common tumor among women in the world today, it is also the leading cause of cancer-related deaths. Standard treatments include chemotherapy, surgery, endocrine therapy, and targeted therapy. However, the heterogeneity, drug resistance, and poor prognosis of breast cancer highlight an urgent need for further exploration of its underlying mechanisms. Mitochondria, highly dynamic intracellular organelles, play a pivotal role in maintaining cellular energy metabolism. Altered mitochondrial function plays a critical role in various diseases, and recent studies have elucidated its pathophysiological mechanisms in breast carcinogenesis. This review explores the role of mitochondrial dysfunction in breast cancer pathogenesis and assesses potential mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Aoling Huang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Haochen Xue
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Ting Xie
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Lingyan Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Zhengzhuo Chen
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Aolong Ma
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China.
| |
Collapse
|
2
|
Cai Y, Fang L, Chen F, Zhong P, Zheng X, Xing H, Fan R, Yuan L, Peng W, Li X. Targeting AMPK related signaling pathways: A feasible approach for natural herbal medicines to intervene non-alcoholic fatty liver disease. J Pharm Anal 2025; 15:101052. [PMID: 40034684 PMCID: PMC11873010 DOI: 10.1016/j.jpha.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 03/05/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by abnormal deposition of lipid in hepatocytes. If not intervened in time, NAFLD may develop into liver fibrosis or liver cancer, and ultimately threatening life. NAFLD has complicated etiology and pathogenesis, and there are no effective therapeutic means and specific drugs. Currently, insulin sensitizers, lipid-lowering agents and hepatoprotective agents are often used for clinical intervention, but these drugs have obvious side effects, and their effectiveness and safety need to be further confirmed. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a central role in maintaining energy homeostasis. Activated AMPK can enhance lipid degradation, alleviate insulin resistance (IR), suppress oxidative stress and inflammatory response, and regulate autophagy, thereby alleviating NAFLD. Natural herbal medicines have received extensive attention recently because of their regulatory effects on AMPK and low side effects. In this article, we reviewed the biologically active natural herbal medicines (such as natural herbal medicine formulas, extracts, polysaccharides, and monomers) that reported in recent years to treat NAFLD via regulating AMPK, which can serve as a foundation for subsequent development of candidate drugs for NAFLD.
Collapse
Affiliation(s)
- Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lu Fang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Fei Chen
- Department of Pharmacy, Dazhou Integrated Traditional Chinese Medicine and Western Medicine Hospital, Dazhou, Sichuan, 635000, China
| | - Peiling Zhong
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Xiangru Zheng
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14152, Sweden
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| |
Collapse
|
3
|
Turki T, Taguchi YH. maGENEgerZ: An Efficient Artificial Intelligence-Based Framework Can Extract More Expressed Genes and Biological Insights Underlying Breast Cancer Drug Response Mechanism. MATHEMATICS 2024; 12:1536. [DOI: 10.3390/math12101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Understanding breast cancer drug response mechanisms can play a crucial role in improving treatment outcomes and survival rates. Existing bioinformatics-based approaches are far from perfect and do not adopt computational methods based on advanced artificial intelligence concepts. Therefore, we introduce a novel computational framework based on an efficient support vector machine (esvm) working as follows: First, we downloaded and processed three gene expression datasets related to breast cancer responding and non-responding to treatments from the gene expression omnibus (GEO) according to the following GEO accession numbers: GSE130787, GSE140494, and GSE196093. Our method esvm is formulated as a constrained optimization problem in its dual form as a function of λ. We recover the importance of each gene as a function of λ, y, and x. Then, we select p genes out of n, which are provided as input to enrichment analysis tools, Enrichr and Metascape. Compared to existing baseline methods, including deep learning, results demonstrate the superiority and efficiency of esvm, achieving high-performance results and having more expressed genes in well-established breast cancer cell lines, including MD-MB231, MCF7, and HS578T. Moreover, esvm is able to identify (1) various drugs, including clinically approved ones (e.g., tamoxifen and erlotinib); (2) seventy-four unique genes (including tumor suppression genes such as TP53 and BRCA1); and (3) thirty-six unique TFs (including SP1 and RELA). These results have been reported to be linked to breast cancer drug response mechanisms, progression, and metastasizing. Our method is available publicly on the maGENEgerZ web server.
Collapse
Affiliation(s)
- Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
4
|
Ortmann BM. Hypoxia-inducible factor in cancer: from pathway regulation to therapeutic opportunity. BMJ ONCOLOGY 2024; 3:e000154. [PMID: 39886164 PMCID: PMC11203102 DOI: 10.1136/bmjonc-2023-000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2025]
Abstract
Cancer remains one of the most formidable challenges in modern medicine, due to its complex and dynamic nature, which demands innovative therapeutic approaches. One major challenge to cancer treatment is the tumour microenvironment and in particular tumour hypoxia (low oxygen levels), which contributes to tumour progression and immune evasion. At the cellular level, this is primarily governed by hypoxia-inducible factor (HIF). HIF is a transcription factor that orchestrates cellular responses to low oxygen levels, driving angiogenesis, metabolic adaptation and immune regulation. HIF's dysregulation is frequently observed in various cancer types and correlates with increased aggressiveness, metastasis, resistance to therapy and poor patient prognosis. Consequently, understanding the cellular mechanisms underlying HIF activation and its downstream effects has become crucial to developing targeted cancer therapies for improving cancer patient outcomes and represents a key step towards precision medicine. Recent advancements in drug development have led to the emergence of HIF inhibitors, which aim to disrupt HIF-driven processes in cancer providing therapeutic benefit. Here, we provide a review of the molecular mechanisms through which HIF promotes tumour growth and resistance, emphasising the potential clinical benefits of HIF-targeted therapies. This review will discuss the challenges and opportunities associated with translating HIF inhibition into clinical practice, including ongoing clinical trials and future directions in the development of HIF-based cancer treatments.
Collapse
Affiliation(s)
- Brian M Ortmann
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Batie M, Fasanya T, Kenneth NS, Rocha S. Oxygen-regulated post-translation modifications as master signalling pathway in cells. EMBO Rep 2023; 24:e57849. [PMID: 37877678 DOI: 10.15252/embr.202357849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Oxygen is essential for viability in mammalian organisms. However, cells are often exposed to changes in oxygen availability, due to either increased demand or reduced oxygen supply, herein called hypoxia. To be able to survive and/or adapt to hypoxia, cells activate a variety of signalling cascades resulting in changes to chromatin, gene expression, metabolism and viability. Cellular signalling is often mediated via post-translational modifications (PTMs), and this is no different in response to hypoxia. Many enzymes require oxygen for their activity and oxygen can directly influence several PTMS. Here, we review the direct impact of changes in oxygen availability on PTMs such as proline, asparagine, histidine and lysine hydroxylation, lysine and arginine methylation and cysteine dioxygenation, with a focus on mammalian systems. In addition, indirect hypoxia-dependent effects on phosphorylation, ubiquitination and sumoylation will also be discussed. Direct and indirect oxygen-regulated changes to PTMs are coordinated to achieve the cell's ultimate response to hypoxia. However, specific oxygen sensitivity and the functional relevance of some of the identified PTMs still require significant research.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Temitope Fasanya
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Niall S Kenneth
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|