1
|
Xie X, Zhang Y, Peng H, Deng Z. Sex Chromosome Dosage Compensation in Insects. INSECTS 2025; 16:160. [PMID: 40003790 PMCID: PMC11856597 DOI: 10.3390/insects16020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
Dosage compensation (DC) is of crucial importance in balancing the sex-linked gene expression between males and females. It serves to guarantee that the proteins or other enzymatic products encoded by the sex chromosome exhibit quantitative parity between the two genders. During the evolutionary process of achieving dose compensation, insects have developed a wide variety of mechanisms. There exist two primary modes of dosage compensation mechanisms, including the up-regulation of heterogametic sex chromosomes in the heterogamety and down-regulation of homogametic sex chromosomes in the homogamety. Although extensive investigations have been conducted on dosage compensation in model insects, many questions still remain unresolved. Meanwhile, research on non-model insects is attracting increasing attention. This paper systematically summarizes the current advances in the field of insect dosage compensation with respect to its types and mechanisms. The principal insects involved in this study include the Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and other lepidopteran insects. This paper analyzes the controversial issues about insect dosage compensation and also provides prospects for future research.
Collapse
Affiliation(s)
- Xingcheng Xie
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.X.); (H.P.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yakun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Heyuan Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.X.); (H.P.)
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.X.); (H.P.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
2
|
Zhu Z, Younas L, Zhou Q. Evolution and regulation of animal sex chromosomes. Nat Rev Genet 2025; 26:59-74. [PMID: 39026082 DOI: 10.1038/s41576-024-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Animal sex chromosomes typically carry the upstream sex-determining gene that triggers testis or ovary development and, in some species, are regulated by global dosage compensation in response to functional decay of the Y chromosome. Despite the importance of these pathways, they exhibit striking differences across species, raising fundamental questions regarding the mechanisms underlying their evolutionary turnover. Recent studies of non-model organisms, including insects, reptiles and teleosts, have yielded a broad view of the diversity of sex chromosomes that challenges established theories. Moreover, continued studies in model organisms with recently developed technologies have characterized the dynamics of sex determination and dosage compensation in three-dimensional nuclear space and at single-cell resolution. Here, we synthesize recent insights into sex chromosomes from a variety of species to review their evolutionary dynamics with respect to the canonical model, as well as their diverse mechanisms of regulation.
Collapse
Affiliation(s)
- Zexian Zhu
- Evolutionary and Organismal Biology Research Center and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Qi Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Babosha V, Klimenko N, Revel-Muroz A, Tikhonova E, Georgiev P, Maksimenko O. N-terminus of Drosophila melanogaster MSL1 is critical for dosage compensation. eLife 2024; 13:RP93241. [PMID: 39699942 DOI: 10.7554/elife.93241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3-7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.
Collapse
Affiliation(s)
- Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
4
|
Ali M, Younas L, Liu J, He H, Zhang X, Zhou Q. Development and evolution of Drosophila chromatin landscape in a 3D genome context. Nat Commun 2024; 15:9452. [PMID: 39487148 PMCID: PMC11530545 DOI: 10.1038/s41467-024-53892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Little is known about how the epigenomic states change during development and evolution in a 3D genome context. Here we use Drosophila pseudoobscura with complex turnover of sex chromosomes as a model to address this, by collecting massive epigenomic and Hi-C data from five developmental stages and three adult tissues. We reveal that over 60% of the genes and transposable elements (TE) exhibit at least one developmental transition of chromatin state. Transitions on specific but not housekeeping enhancers are associated with specific chromatin loops and topologically associated domain borders (TABs). While evolutionarily young TEs are generally silenced, old TEs more often have been domesticated as interacting TABs or specific enhancers. But on the recently evolved X chromosome, young TEs are instead often active and recruited as TABs, due to acquisition of dosage compensation. Overall we characterize how Drosophila epigenomic landscapes change during development and in response to chromosome evolution, and highlight the important roles of TEs in genome organization and regulation.
Collapse
Affiliation(s)
- Mujahid Ali
- Center for Reproductive Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Institute of Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Jing Liu
- Center for Evolutionary & Organismal Biology & Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huangyi He
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xinpei Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qi Zhou
- Center for Reproductive Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
- Center for Evolutionary & Organismal Biology & Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
| |
Collapse
|
5
|
Salzler HR, Vandadi V, Sallean JR, Matera AG. Set2 and H3K36 regulate the Drosophila male X chromosome in a context-specific manner, independent from MSL complex spreading. Genetics 2024; 228:iyae168. [PMID: 39417694 PMCID: PMC11631440 DOI: 10.1093/genetics/iyae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions betwen MSL3 (male-specific lethal 3) and Set2-dependent histone marks like trimethylated H3 lysine-36 (H3K36me3). However, Set2 could affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Furthermore, it is important to parse male-specific effects from those that are X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 'residue' and Set2 'writer' mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global, male-specific reduction of X-genes in Set2 or H3K36 mutants, we observe heterogeneous effects. Interestingly, we identified groups of differentially expressed genes (DEGs) whose changes were in opposite directions following loss of H3K36 or Set2, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, differential expression analysis of combined H3.2K36R/H3.3K36R mutants showed neither consistent reduction in X-gene expression, nor correlation with MSL3 binding. Motif analysis of the DEGs implicated BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 is essential for spreading the MSL complex to genes along the male X. Rather, we propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.
Collapse
Affiliation(s)
- Harmony R Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Julia R Sallean
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Shukla HG, Chakraborty M, Emerson J. Genetic variation in recalcitrant repetitive regions of the Drosophila melanogaster genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598575. [PMID: 38915508 PMCID: PMC11195212 DOI: 10.1101/2024.06.11.598575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Many essential functions of organisms are encoded in highly repetitive genomic regions, including histones involved in DNA packaging, centromeres that are core components of chromosome segregation, ribosomal RNA comprising the protein translation machinery, telomeres that ensure chromosome integrity, piRNA clusters encoding host defenses against selfish elements, and virtually the entire Y chromosome. These regions, formed by highly similar tandem arrays, pose significant challenges for experimental and informatic study, impeding sequence-level descriptions essential for understanding genetic variation. Here, we report the assembly and variation analysis of such repetitive regions in Drosophila melanogaster, offering significant improvements to the existing community reference assembly. Our work successfully recovers previously elusive segments, including complete reconstructions of the histone locus and the pericentric heterochromatin of the X chromosome, spanning the Stellate locus to the distal flank of the rDNA cluster. To infer structural changes in these regions where alignments are often not practicable, we introduce landmark anchors based on unique variants that are putatively orthologous. These regions display considerable structural variation between different D. melanogaster strains, exhibiting differences in copy number and organization of homologous repeat units between haplotypes. In the histone cluster, although we observe minimal genetic exchange indicative of crossing over, the variation patterns suggest mechanisms such as unequal sister chromatid exchange. We also examine the prevalence and scale of concerted evolution in the histone and Stellate clusters and discuss the mechanisms underlying these observed patterns.
Collapse
Affiliation(s)
- Harsh G. Shukla
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
- Graduate Program in Mathematical, Computational and Systems Biology, University of California Irvine, Irvine, California 92697, USA
| | - Mahul Chakraborty
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - J.J. Emerson
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
7
|
Salzler HR, Vandadi V, Matera AG. Set2 and H3K36 regulate the Drosophila male X chromosome in a context-specific manner, independent from MSL complex spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592390. [PMID: 38766267 PMCID: PMC11100620 DOI: 10.1101/2024.05.03.592390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions of MSL3 (male-specific lethal 3) with histone marks; in particular, Set2-dependent H3 lysine-36 trimethylation (H3K36me3). However, Set2 might affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Further, it is difficult to parse male-specific effects from those that are simply X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 (residue) and Set2 (writer) mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global male-specific reduction of X-genes in Set2/H3K36 mutants, the effects were heterogeneous. We identified cohorts of genes whose expression was significantly altered following loss of H3K36 or Set2, but the changes were in opposite directions, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, analysis of combined H3.2K36R/H3.3K36R mutants neither showed consistent reduction in X-gene expression, nor any correlation with MSL3 binding. Examination of other developmental stages/tissues revealed additional layers of context-dependence. Our studies implicate BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 directly recruits the MSL complex. We propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.
Collapse
Affiliation(s)
- Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Mancheno-Ferris A, Immarigeon C, Rivero A, Depierre D, Schickele N, Fosseprez O, Chanard N, Aughey G, Lhoumaud P, Anglade J, Southall T, Plaza S, Payre F, Cuvier O, Polesello C. Crosstalk between chromatin and Shavenbaby defines transcriptional output along the Drosophila intestinal stem cell lineage. iScience 2024; 27:108624. [PMID: 38174321 PMCID: PMC10762455 DOI: 10.1016/j.isci.2023.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
The transcription factor Shavenbaby (Svb), the only member of the OvoL family in Drosophila, controls the fate of various epithelial embryonic cells and adult stem cells. Post-translational modification of Svb produces two protein isoforms, Svb-ACT and Svb-REP, which promote adult intestinal stem cell renewal or differentiation, respectively. To define Svb mode of action, we used engineered cell lines and develop an unbiased method to identify Svb target genes across different contexts. Within a given cell type, Svb-ACT and Svb-REP antagonistically regulate the expression of a set of target genes, binding specific enhancers whose accessibility is constrained by chromatin landscape. Reciprocally, Svb-REP can influence local chromatin marks of active enhancers to help repressing target genes. Along the intestinal lineage, the set of Svb target genes progressively changes, together with chromatin accessibility. We propose that Svb-ACT-to-REP transition promotes enterocyte differentiation of intestinal stem cells through direct gene regulation and chromatin remodeling.
Collapse
Affiliation(s)
- Alexandra Mancheno-Ferris
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Control of cell shape remodeling team, CBI, CNRS, UPS, 31062 Toulouse, France
| | - Clément Immarigeon
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Control of cell shape remodeling team, CBI, CNRS, UPS, 31062 Toulouse, France
| | - Alexia Rivero
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Control of cell shape remodeling team, CBI, CNRS, UPS, 31062 Toulouse, France
| | - David Depierre
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Chromatin Dynamics and Cell Proliferation team, CBI, CNRS, UPS, 31062 Toulouse, France
| | - Naomi Schickele
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Chromatin Dynamics and Cell Proliferation team, CBI, CNRS, UPS, 31062 Toulouse, France
| | - Olivier Fosseprez
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Chromatin Dynamics and Cell Proliferation team, CBI, CNRS, UPS, 31062 Toulouse, France
| | - Nicolas Chanard
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Chromatin Dynamics and Cell Proliferation team, CBI, CNRS, UPS, 31062 Toulouse, France
| | - Gabriel Aughey
- Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, UK
| | - Priscilla Lhoumaud
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Chromatin Dynamics and Cell Proliferation team, CBI, CNRS, UPS, 31062 Toulouse, France
- Institut Jacques Monod, Université Paris Cité/CNRS, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Julien Anglade
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Chromatin Dynamics and Cell Proliferation team, CBI, CNRS, UPS, 31062 Toulouse, France
| | - Tony Southall
- Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, UK
| | - Serge Plaza
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Laboratoire de Recherche en Sciences Végétales, CNRS/UPS/INPT, 31320 Auzeville-Tolosane, France
| | - François Payre
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Control of cell shape remodeling team, CBI, CNRS, UPS, 31062 Toulouse, France
| | - Olivier Cuvier
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Chromatin Dynamics and Cell Proliferation team, CBI, CNRS, UPS, 31062 Toulouse, France
| | - Cédric Polesello
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Control of cell shape remodeling team, CBI, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
9
|
Torosin NS, Golla TR, Lawlor MA, Cao W, Ellison CE. Mode and Tempo of 3D Genome Evolution in Drosophila. Mol Biol Evol 2022; 39:6750036. [PMID: 36201625 PMCID: PMC9641997 DOI: 10.1093/molbev/msac216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Topologically associating domains (TADs) are thought to play an important role in preventing gene misexpression by spatially constraining enhancer-promoter contacts. The deleterious nature of gene misexpression implies that TADs should, therefore, be conserved among related species. Several early studies comparing chromosome conformation between species reported high levels of TAD conservation; however, more recent studies have questioned these results. Furthermore, recent work suggests that TAD reorganization is not associated with extensive changes in gene expression. Here, we investigate the evolutionary conservation of TADs among 11 species of Drosophila. We use Hi-C data to identify TADs in each species and employ a comparative phylogenetic approach to derive empirical estimates of the rate of TAD evolution. Surprisingly, we find that TADs evolve rapidly. However, we also find that the rate of evolution depends on the chromatin state of the TAD, with TADs enriched for developmentally regulated chromatin evolving significantly slower than TADs enriched for broadly expressed, active chromatin. We also find that, after controlling for differences in chromatin state, highly conserved TADs do not exhibit higher levels of gene expression constraint. These results suggest that, in general, most TADs evolve rapidly and their divergence is not associated with widespread changes in gene expression. However, higher levels of evolutionary conservation and gene expression constraints in TADs enriched for developmentally regulated chromatin suggest that these TAD subtypes may be more important for regulating gene expression, likely due to the larger number of long-distance enhancer-promoter contacts associated with developmental genes.
Collapse
Affiliation(s)
- Nicole S Torosin
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Tirupathi Rao Golla
- LifeCell, Kelambakkam Main Road, Keelakottaiyur, Chennai 600127, Tamil Nadu, India
| | - Matthew A Lawlor
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Weihuan Cao
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
10
|
Dosage Compensation in Drosophila: Its Canonical and Non-Canonical Mechanisms. Int J Mol Sci 2022; 23:ijms231810976. [PMID: 36142884 PMCID: PMC9506574 DOI: 10.3390/ijms231810976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.
Collapse
|
11
|
Ilyin AA, Kononkova AD, Golova AV, Shloma VV, Olenkina O, Nenasheva V, Abramov Y, Kotov AA, Maksimov D, Laktionov P, Pindyurin A, Galitsyna A, Ulianov S, Khrameeva E, Gelfand M, Belyakin S, Razin S, Shevelyov Y. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3203-3225. [PMID: 35166842 PMCID: PMC8989536 DOI: 10.1093/nar/gkac109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis – in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs). We found that initiation of SpC-specific transcription correlates with promoters’ detachment from the NL and with local spatial insulation of adjacent regions. However, this insulation does not result in the partitioning of inactive TADs into sub-TADs. We also revealed an increased contact frequency between SpC-specific genes in SpCs implying their de novo gathering into transcription factories. In addition, we uncovered the specific X chromosome organization in the male germline. In SpG and SpCs, a single X chromosome is stronger associated with the NL than autosomes. Nevertheless, active chromatin regions in the X chromosome interact with each other more frequently than in autosomes. Moreover, despite the absence of dosage compensation complex in the male germline, randomly inserted SpG-specific reporter is expressed higher in the X chromosome than in autosomes, thus evidencing that non-canonical dosage compensation operates in SpG.
Collapse
Affiliation(s)
| | | | | | | | | | - Valentina V Nenasheva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Yuri A Abramov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Alexei A Kotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Petr P Laktionov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina E Khrameeva
- Correspondence may also be addressed to Ekaterina Khrameeva. Tel: +7 495 2801481; Fax: +7 495 2801481;
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Stepan N Belyakin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Yuri Y Shevelyov
- To whom correspondence should be addressed. Tel: +7 499 1960809; Fax: +7 499 1960221;
| |
Collapse
|
12
|
Lindehell H, Glotov A, Dorafshan E, Schwartz YB, Larsson J. The role of H3K36 methylation and associated methyltransferases in chromosome-specific gene regulation. SCIENCE ADVANCES 2021; 7:eabh4390. [PMID: 34597135 PMCID: PMC10938550 DOI: 10.1126/sciadv.abh4390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In Drosophila, two chromosomes require special mechanisms to balance their transcriptional output to the rest of the genome. These are the male-specific lethal complex targeting the male X chromosome and Painting of fourth targeting chromosome 4. Here, we explore the role of histone H3 methylated at lysine-36 (H3K36) and the associated methyltransferases—Set2, NSD, and Ash1—in these two chromosome-specific systems. We show that the loss of Set2 impairs the MSL complex–mediated dosage compensation; however, the effect is not recapitulated by H3K36 replacement and indicates an alternative target of Set2. Unexpectedly, balanced transcriptional output from the fourth chromosome requires intact H3K36 and depends on the additive functions of NSD and Ash1. We conclude that H3K36 methylation and the associated methyltransferases are important factors to balance transcriptional output of the male X chromosome and the fourth chromosome. Furthermore, our study highlights the pleiotropic effects of these enzymes.
Collapse
Affiliation(s)
- Henrik Lindehell
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Alexander Glotov
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Eshagh Dorafshan
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | | | | |
Collapse
|
13
|
Jordan W, Larschan E. The zinc finger protein CLAMP promotes long-range chromatin interactions that mediate dosage compensation of the Drosophila male X-chromosome. Epigenetics Chromatin 2021; 14:29. [PMID: 34187599 PMCID: PMC8240218 DOI: 10.1186/s13072-021-00399-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Drosophila dosage compensation is an important model system for defining how active chromatin domains are formed. The male-specific lethal dosage compensation complex (MSLc) increases transcript levels of genes along the length of the single male X-chromosome to equalize with that expressed from the two female X-chromosomes. The strongest binding sites for MSLc cluster together in three-dimensional space largely independent of MSLc because clustering occurs in both sexes. CLAMP, a non-sex specific, ubiquitous zinc finger protein, binds synergistically with MSLc to enrich the occupancy of both factors on the male X-chromosome. Results Here, we demonstrate that CLAMP promotes the observed three-dimensional clustering of MSLc binding sites. Moreover, the X-enriched CLAMP protein more strongly promotes longer-range three-dimensional interactions on the X-chromosome than autosomes. Genome-wide, CLAMP promotes three-dimensional interactions between active chromatin regions together with other insulator proteins. Conclusion Overall, we define how long-range interactions which are modulated by a locally enriched ubiquitous transcription factor promote hyper-activation of the X-chromosome to mediate dosage compensation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00399-3.
Collapse
Affiliation(s)
- William Jordan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
14
|
Lauria Sneideman MP, Meller VH. Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:1-26. [PMID: 34386870 DOI: 10.1007/978-3-030-74889-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.
Collapse
Affiliation(s)
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
15
|
Torosin NS, Anand A, Golla TR, Cao W, Ellison CE. 3D genome evolution and reorganization in the Drosophila melanogaster species group. PLoS Genet 2020; 16:e1009229. [PMID: 33284803 PMCID: PMC7746282 DOI: 10.1371/journal.pgen.1009229] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/17/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Topologically associating domains, or TADs, are functional units that organize chromosomes into 3D structures of interacting chromatin. TADs play an important role in regulating gene expression by constraining enhancer-promoter contacts and there is evidence that deletion of TAD boundaries leads to aberrant expression of neighboring genes. While the mechanisms of TAD formation have been well-studied, current knowledge on the patterns of TAD evolution across species is limited. Due to the integral role TADs play in gene regulation, their structure and organization is expected to be conserved during evolution. However, more recent research suggests that TAD structures diverge relatively rapidly. We use Hi-C chromosome conformation capture to measure evolutionary conservation of whole TADs and TAD boundary elements between D. melanogaster and D. triauraria, two early-branching species from the melanogaster species group which diverged ∼15 million years ago. We find that the majority of TADs have been reorganized since the common ancestor of D. melanogaster and D. triauraria, via a combination of chromosomal rearrangements and gain/loss of TAD boundaries. TAD reorganization between these two species is associated with a localized effect on gene expression, near the site of disruption. By separating TADs into subtypes based on their chromatin state, we find that different subtypes are evolving under different evolutionary forces. TADs enriched for broadly expressed, transcriptionally active genes are evolving rapidly, potentially due to positive selection, whereas TADs enriched for developmentally-regulated genes remain conserved, presumably due to their importance in restricting gene-regulatory element interactions. These results provide novel insight into the evolutionary dynamics of TADs and help to reconcile contradictory reports related to the evolutionary conservation of TADs and whether changes in TAD structure affect gene expression.
Collapse
Affiliation(s)
- Nicole S. Torosin
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States
| | - Aparna Anand
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States
| | - Tirupathi Rao Golla
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States
| | - Christopher E. Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States
| |
Collapse
|
16
|
RNA nucleation by MSL2 induces selective X chromosome compartmentalization. Nature 2020; 589:137-142. [PMID: 33208948 DOI: 10.1038/s41586-020-2935-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Confinement of the X chromosome to a territory for dosage compensation is a prime example of how subnuclear compartmentalization is used to regulate transcription at the megabase scale. In Drosophila melanogaster, two sex-specific non-coding RNAs (roX1 and roX2) are transcribed from the X chromosome. They associate with the male-specific lethal (MSL) complex1, which acetylates histone H4 lysine 16 and thereby induces an approximately twofold increase in expression of male X-linked genes2,3. Current models suggest that X-over-autosome specificity is achieved by the recognition of cis-regulatory DNA high-affinity sites (HAS) by the MSL2 subunit4,5. However, HAS motifs are also found on autosomes, indicating that additional factors must stabilize the association of the MSL complex with the X chromosome. Here we show that the low-complexity C-terminal domain (CTD) of MSL2 renders its recruitment to the X chromosome sensitive to roX non-coding RNAs. roX non-coding RNAs and the MSL2 CTD form a stably condensed state, and functional analyses in Drosophila and mammalian cells show that their interactions are crucial for dosage compensation in vivo. Replacing the CTD of mammalian MSL2 with that from Drosophila and expressing roX in cis is sufficient to nucleate ectopic dosage compensation in mammalian cells. Thus, the condensing nature of roX-MSL2CTD is the primary determinant for specific compartmentalization of the X chromosome in Drosophila.
Collapse
|
17
|
Belyi A, Argyridou E, Parsch J. The Influence of Chromosomal Environment on X-Linked Gene Expression in Drosophila melanogaster. Genome Biol Evol 2020; 12:2391-2402. [PMID: 33104185 PMCID: PMC7719225 DOI: 10.1093/gbe/evaa227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Sex chromosomes often differ from autosomes with respect to their gene expression and regulation. In Drosophila melanogaster, X-linked genes are dosage compensated by having their expression upregulated in the male soma, a process mediated by the X-chromosome-specific binding of the dosage compensation complex (DCC). Previous studies of X-linked gene expression found a negative correlation between a gene’s male-to-female expression ratio and its distance to the nearest DCC binding site in somatic tissues, including head and brain, which suggests that dosage compensation influences sex-biased gene expression. A limitation of the previous studies, however, was that they focused on endogenous X-linked genes and, thus, could not disentangle the effects of chromosomal position from those of gene-specific regulation. To overcome this limitation, we examined the expression of an exogenous reporter gene inserted at many locations spanning the X chromosome. We observed a negative correlation between the male-to-female expression ratio of the reporter gene and its distance to the nearest DCC binding site in somatic tissues, but not in gonads. A reporter gene’s location relative to a DCC binding site had greater influence on its expression than the local regulatory elements of neighboring endogenous genes, suggesting that intra-chromosomal variation in the strength of dosage compensation is a major determinant of sex-biased gene expression. Average levels of sex-biased expression did not differ between head and brain, but there was greater positional effect variation in the brain, which may explain the observed excess of endogenous sex-biased genes located on the X chromosome in this tissue.
Collapse
Affiliation(s)
- Aleksei Belyi
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Eliza Argyridou
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
18
|
Rieder LE, Jordan WT, Larschan EN. Targeting of the Dosage-Compensated Male X-Chromosome during Early Drosophila Development. Cell Rep 2020; 29:4268-4275.e2. [PMID: 31875538 PMCID: PMC6952266 DOI: 10.1016/j.celrep.2019.11.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
Dosage compensation, which corrects for the imbalance in X-linked gene expression between XX females and XY males, represents a model for how genes are targeted for coordinated regulation. However, the mechanism by which dosage compensation complexes identify the X chromosome during early development remains unknown because of the difficulty of sexing embryos before zygotic transcription using X- or Y-linked reporter transgenes. We used meiotic drive to sex Drosophila embryos before zygotic transcription and ChIP-seq to measure the dynamics of dosage compensation factor targeting. The Drosophila male-specific lethal dosage compensation complex (MSLc) requires the ubiquitous zinc-finger protein chromatin-linked adaptor for MSL proteins (CLAMP) to identify the X chromosome. We observe a multi-stage process in which MSLc first identifies CLAMP binding sites throughout the genome, followed by concentration at the strongest X-linked MSLc sites. We provide insight into the dynamics of binding site recognition by a large transcription complex during early development. Rieder et al. establish a meiotic drive system to study Drosophila X chromosome dosage compensation before the maternal-zygotic transition. This study uncovers another step in the process during which the dosage compensation complex identifies binding sites genome-wide before becoming enriched on the X chromosome.
Collapse
Affiliation(s)
| | - William Thomas Jordan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Erica Nicole Larschan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
19
|
Machyna M, Kiefer L, Simon MD. Enhanced nucleotide chemistry and toehold nanotechnology reveals lncRNA spreading on chromatin. Nat Struct Mol Biol 2020; 27:297-304. [PMID: 32157249 DOI: 10.1038/s41594-020-0390-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
Understanding the targeting and spreading patterns of long non-coding RNAs (lncRNAs) on chromatin requires a technique that can detect both high-intensity binding sites and reveal genome-wide changes in spreading patterns with high precision and confidence. Here we determine lncRNA localization using biotinylated locked nucleic acid (LNA)-containing oligonucleotides with toehold architecture capable of hybridizing to target RNA through strand-exchange reaction. During hybridization, a protecting strand competitively displaces contaminating species, leading to highly specific RNA capture of individual RNAs. Analysis of Drosophila roX2 lncRNA using this approach revealed that heat shock, unlike the unfolded protein response, leads to reduced spreading of roX2 on the X chromosome, but surprisingly also to relocalization to sites on autosomes. Our results demonstrate that this improved hybridization capture approach can reveal previously uncharacterized changes in the targeting and spreading of lncRNAs on chromatin.
Collapse
Affiliation(s)
- Martin Machyna
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.,Chemical Biology Institute, Yale University, West Haven, CT, USA
| | - Lea Kiefer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.,Chemical Biology Institute, Yale University, West Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA. .,Chemical Biology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
20
|
In situ dissection of domain boundaries affect genome topology and gene transcription in Drosophila. Nat Commun 2020; 11:894. [PMID: 32060283 PMCID: PMC7021724 DOI: 10.1038/s41467-020-14651-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Chromosomes are organized into high-frequency chromatin interaction domains called topologically associating domains (TADs), which are separated from each other by domain boundaries. The molecular mechanisms responsible for TAD formation are not yet fully understood. In Drosophila, it has been proposed that transcription is fundamental for TAD organization while the participation of genetic sequences bound by architectural proteins (APs) remains controversial. Here, we investigate the contribution of domain boundaries to TAD organization and the regulation of gene expression at the Notch gene locus in Drosophila. We find that deletion of domain boundaries results in TAD fusion and long-range topological defects that are accompanied by loss of APs and RNA Pol II chromatin binding as well as defects in transcription. Together, our results provide compelling evidence of the contribution of discrete genetic sequences bound by APs and RNA Pol II in the partition of the genome into TADs and in the regulation of gene expression in Drosophila. In Drosophila, transcription is thought to be required for TAD formation, while the role of architectural proteins remains controversial. Here, the authors find that deletion of domain boundaries at the fly Notch locus results in TAD fusion and long-range topological defects, loss of architectural protein and RNA Pol II chromatin binding, and transcription defects.
Collapse
|
21
|
Albig C, Wang C, Dann GP, Wojcik F, Schauer T, Krause S, Maenner S, Cai W, Li Y, Girton J, Muir TW, Johansen J, Johansen KM, Becker PB, Regnard C. JASPer controls interphase histone H3S10 phosphorylation by chromosomal kinase JIL-1 in Drosophila. Nat Commun 2019; 10:5343. [PMID: 31767855 PMCID: PMC6877644 DOI: 10.1038/s41467-019-13174-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023] Open
Abstract
In flies, the chromosomal kinase JIL-1 is responsible for most interphase histone H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks, such as dimethylated histone H3K9 (H3K9me2) and HP1. Here, we show that JIL-1's targeting to chromatin depends on a PWWP domain-containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). JASPer-JIL-1 (JJ)-complex is the major form of kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes, to modulate transcriptional output. JIL-1 and JJ-complex depletion in cycling cells lead to small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identify interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatin formation but also coordinates chromatin-based regulation in the transcribed part of the genome.
Collapse
Affiliation(s)
- Christian Albig
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152, Martinsried, Germany
- Graduate School for Quantitative Biosciences (QBM), LMU Munich, 81377, Munich, Germany
| | - Chao Wang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Geoffrey P Dann
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, NJ, 08544, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Felix Wojcik
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, NJ, 08544, USA
| | - Tamás Schauer
- Bioinformatics Unit, Biomedical Center, Faculty of Medicine, LMU Munich, 82152, Martinsried, Germany
| | - Silke Krause
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152, Martinsried, Germany
| | - Sylvain Maenner
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152, Martinsried, Germany
- UMR7365 CNRS-UL, IMoPA, University of Lorraine, 54505, Vandoeuvre-lès-Nancy, France
| | - Weili Cai
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Yeran Li
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jack Girton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Tom W Muir
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, NJ, 08544, USA
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kristen M Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152, Martinsried, Germany.
| | - Catherine Regnard
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152, Martinsried, Germany.
| |
Collapse
|
22
|
Pal K, Forcato M, Jost D, Sexton T, Vaillant C, Salviato E, Mazza EMC, Lugli E, Cavalli G, Ferrari F. Global chromatin conformation differences in the Drosophila dosage compensated chromosome X. Nat Commun 2019; 10:5355. [PMID: 31767860 PMCID: PMC6877619 DOI: 10.1038/s41467-019-13350-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
In Drosophila melanogaster the single male chromosome X undergoes an average twofold transcriptional upregulation for balancing the transcriptional output between sexes. Previous literature hypothesised that a global change in chromosome structure may accompany this process. However, recent studies based on Hi-C failed to detect these differences. Here we show that global conformational differences are specifically present in the male chromosome X and detectable using Hi-C data on sex-sorted embryos, as well as male and female cell lines, by leveraging custom data analysis solutions. We find the male chromosome X has more mid-/long-range interactions. We also identify differences at structural domain boundaries containing BEAF-32 in conjunction with CP190 or Chromator. Weakening of these domain boundaries in male chromosome X co-localizes with the binding of the dosage compensation complex and its co-factor CLAMP, reported to enhance chromatin accessibility. Together, our data strongly indicate that chromosome X dosage compensation affects global chromosome structure.
Collapse
Affiliation(s)
- Koustav Pal
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125, Modena, Italy
| | - Daniel Jost
- University of Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble, France
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University of Claude Bernard, CNRS UMR 5239, Inserm U1210, F-69007, Lyon, France
| | - Thomas Sexton
- IGH, Institute of Human Genetics, CNRS UPR1142, 141 rue de la Cardonille, 34090, Montpellier, France
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Cédric Vaillant
- University of Lyon, ENS de Lyon, University of Claude Bernard, CNRS, Laboratoire de Physique, 46 allée d'Italie, 69007, Lyon, France
| | - Elisa Salviato
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Emilia Maria Cristina Mazza
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Via A. Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Via A. Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giacomo Cavalli
- IGH, Institute of Human Genetics, CNRS UPR1142, 141 rue de la Cardonille, 34090, Montpellier, France
| | - Francesco Ferrari
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.
- Institute of Molecular Genetics, National Research Council, Via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
23
|
Renschler G, Richard G, Valsecchi CIK, Toscano S, Arrigoni L, Ramírez F, Akhtar A. Hi-C guided assemblies reveal conserved regulatory topologies on X and autosomes despite extensive genome shuffling. Genes Dev 2019; 33:1591-1612. [PMID: 31601616 PMCID: PMC6824461 DOI: 10.1101/gad.328971.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
Abstract
In this study, Renschler et al. set out to analyze the impact of genomic rearrangements on genome topology using the Drosophila genus and X chromosome dosage compensation as a model. The authors developed a scaffolding algorithm and generated chromosome-length assemblies from Hi-C data for studying genome topology in three distantly related Drosophila species. Their data provides unique insights into genome topology evolution. RA Genome rearrangements that occur during evolution impose major challenges on regulatory mechanisms that rely on three-dimensional genome architecture. Here, we developed a scaffolding algorithm and generated chromosome-length assemblies from Hi-C data for studying genome topology in three distantly related Drosophila species. We observe extensive genome shuffling between these species with one synteny breakpoint after approximately every six genes. A/B compartments, a set of large gene-dense topologically associating domains (TADs), and spatial contacts between high-affinity sites (HAS) located on the X chromosome are maintained over 40 million years, indicating architectural conservation at various hierarchies. Evolutionary conserved genes cluster in the vicinity of HAS, while HAS locations appear evolutionarily flexible, thus uncoupling functional requirement of dosage compensation from individual positions on the linear X chromosome. Therefore, 3D architecture is preserved even in scenarios of thousands of rearrangements highlighting its relevance for essential processes such as dosage compensation of the X chromosome.
Collapse
Affiliation(s)
- Gina Renschler
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Gautier Richard
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany.,IGEPP, INRA, Agrocampus Ouest, Université Rennes, 35600 Le Rheu, France
| | | | - Sarah Toscano
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Laura Arrigoni
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Fidel Ramírez
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
24
|
Dall'Agnese A, Caputo L, Nicoletti C, di Iulio J, Schmitt A, Gatto S, Diao Y, Ye Z, Forcato M, Perera R, Bicciato S, Telenti A, Ren B, Puri PL. Transcription Factor-Directed Re-wiring of Chromatin Architecture for Somatic Cell Nuclear Reprogramming toward trans-Differentiation. Mol Cell 2019; 76:453-472.e8. [PMID: 31519520 DOI: 10.1016/j.molcel.2019.07.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/20/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022]
Abstract
MYOD-directed fibroblast trans-differentiation into skeletal muscle provides a unique model to investigate how one transcription factor (TF) reconfigures the three-dimensional chromatin architecture to control gene expression, which is otherwise achieved by the combinatorial activities of multiple TFs. Integrative analysis of genome-wide high-resolution chromatin interactions, MYOD and CTCF DNA-binding profile, and gene expression, revealed that MYOD directs extensive re-wiring of interactions involving cis-regulatory and structural genomic elements, including promoters, enhancers, and insulated neighborhoods (INs). Re-configured INs were hot-spots of differential interactions, whereby MYOD binding to highly constrained sequences at IN boundaries and/or inside INs led to alterations of promoter-enhancer interactions to repress cell-of-origin genes and to activate muscle-specific genes. Functional evidence shows that MYOD-directed re-configuration of chromatin interactions temporally preceded the effect on gene expression and was mediated by direct MYOD-DNA binding. These data illustrate a model whereby a single TF alters multi-loop hubs to drive somatic cell trans-differentiation.
Collapse
Affiliation(s)
- Alessandra Dall'Agnese
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Luca Caputo
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Anthony Schmitt
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Sole Gatto
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yarui Diao
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Zhen Ye
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Ranjan Perera
- Analytical Genomics and Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Albig C, Tikhonova E, Krause S, Maksimenko O, Regnard C, Becker PB. Factor cooperation for chromosome discrimination in Drosophila. Nucleic Acids Res 2019; 47:1706-1724. [PMID: 30541149 PMCID: PMC6393291 DOI: 10.1093/nar/gky1238] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/05/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
Transcription regulators select their genomic binding sites from a large pool of similar, non-functional sequences. Although general principles that allow such discrimination are known, the complexity of DNA elements often precludes a prediction of functional sites. The process of dosage compensation in Drosophila allows exploring the rules underlying binding site selectivity. The male-specific-lethal (MSL) Dosage Compensation Complex (DCC) selectively binds to some 300 X chromosomal ‘High Affinity Sites’ (HAS) containing GA-rich ‘MSL recognition elements’ (MREs), but disregards thousands of other MRE sequences in the genome. The DNA-binding subunit MSL2 alone identifies a subset of MREs, but fails to recognize most MREs within HAS. The ‘Chromatin-linked adaptor for MSL proteins’ (CLAMP) also interacts with many MREs genome-wide and promotes DCC binding to HAS. Using genome-wide DNA-immunoprecipitation we describe extensive cooperativity between both factors, depending on the nature of the binding sites. These are explained by physical interaction between MSL2 and CLAMP. In vivo, both factors cooperate to compete with nucleosome formation at HAS. The male-specific MSL2 thus synergises with a ubiquitous GA-repeat binding protein for refined X/autosome discrimination.
Collapse
Affiliation(s)
- Christian Albig
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany.,Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany
| | - Evgeniya Tikhonova
- Group of Molecular Organization of Genome, Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Silke Krause
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany
| | - Oksana Maksimenko
- Group of Molecular Organization of Genome, Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Catherine Regnard
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany
| |
Collapse
|
26
|
Prayitno K, Schauer T, Regnard C, Becker PB. Progressive dosage compensation during Drosophila embryogenesis is reflected by gene arrangement. EMBO Rep 2019; 20:e48138. [PMID: 31286660 PMCID: PMC6680166 DOI: 10.15252/embr.201948138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
In Drosophila melanogaster males, X-chromosome monosomy is compensated by chromosome-wide transcription activation. We found that complete dosage compensation during embryogenesis takes surprisingly long and is incomplete even after 10 h of development. Although the activating dosage compensation complex (DCC) associates with the X-chromosome and MOF acetylates histone H4 early, many genes are not compensated. Acetylation levels on gene bodies continue to increase for several hours after gastrulation in parallel with progressive compensation. Constitutive genes are compensated earlier than developmental genes. Remarkably, later compensation correlates with longer distances to DCC binding sites. This time-space relationship suggests that DCC action on target genes requires maturation of the active chromosome compartment.
Collapse
Affiliation(s)
- Khairunnadiya Prayitno
- Molecular Biology DivisionBiomedical CenterLudwig‐Maximilians‐UniversityMunichGermany
- Graduate School of Quantitative Biosciences MunichLudwig‐Maximilians‐UniversityMunichGermany
| | - Tamás Schauer
- Molecular Biology DivisionBiomedical CenterLudwig‐Maximilians‐UniversityMunichGermany
- Bioinformatics UnitBiomedical CenterLudwig‐Maximilians‐UniversityMunichGermany
| | - Catherine Regnard
- Molecular Biology DivisionBiomedical CenterLudwig‐Maximilians‐UniversityMunichGermany
| | - Peter B Becker
- Molecular Biology DivisionBiomedical CenterLudwig‐Maximilians‐UniversityMunichGermany
| |
Collapse
|
27
|
Bhardwaj V, Semplicio G, Erdogdu NU, Manke T, Akhtar A. MAPCap allows high-resolution detection and differential expression analysis of transcription start sites. Nat Commun 2019; 10:3219. [PMID: 31363093 PMCID: PMC6667505 DOI: 10.1038/s41467-019-11115-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
The position, shape and number of transcription start sites (TSS) are critical determinants of gene regulation. Most methods developed to detect TSSs and study promoter usage are, however, of limited use in studies that demand quantification of expression changes between two or more groups. In this study, we combine high-resolution detection of transcription start sites and differential expression analysis using a simplified TSS quantification protocol, MAPCap (Multiplexed Affinity Purification of Capped RNA) along with the software icetea. Applying MAPCap on developing Drosophila melanogaster embryos and larvae, we detected stage and sex-specific promoter and enhancer activity and quantify the effect of mutants of maleless (MLE) helicase at X-chromosomal promoters. We observe that MLE mutation leads to a median 1.9 fold drop in expression of X-chromosome promoters and affects the expression of several TSSs with a sexually dimorphic expression on autosomes. Our results provide quantitative insights into promoter activity during dosage compensation. The position, shape and number of transcription start sites (TSS) regulate gene expression. Here authors present MAPCap, a method for high-resolution detection and differential expression analysis of TSS, and apply MAPCap to early fly development, detecting stage and sex-specific promoter and enhancer activity.
Collapse
Affiliation(s)
- Vivek Bhardwaj
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Giuseppe Semplicio
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Niyazi Umut Erdogdu
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Manke
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.
| |
Collapse
|
28
|
Jordan W, Rieder LE, Larschan E. Diverse Genome Topologies Characterize Dosage Compensation across Species. Trends Genet 2019; 35:308-315. [PMID: 30808531 DOI: 10.1016/j.tig.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/19/2023]
Abstract
Dosage compensation is the process by which transcript levels of the X chromosome are equalized with those of autosomes. Although diverse mechanisms of dosage compensation have evolved across species, these mechanisms all involve distinguishing the X chromosome from autosomes. Because one chromosome is singled out from other chromosomes for precise regulation, dosage compensation serves as an important model for understanding how specific cis-elements are identified within the highly compacted 3D genome to co-regulate thousands of genes. Recently, multiple genomic approaches have provided key insights into the mechanisms of dosage compensation, extending what we have learned from classical genetic studies. In the future, newer genomic approaches that require little starting material show great promise to provide an understanding of the heterogeneity of dosage compensation between cells and how it functions in nonmodel organisms.
Collapse
Affiliation(s)
- William Jordan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Leila E Rieder
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA; Department of Biology, Emory University, Atlanta, GA, USA
| | - Erica Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
29
|
Ellison C, Bachtrog D. Contingency in the convergent evolution of a regulatory network: Dosage compensation in Drosophila. PLoS Biol 2019; 17:e3000094. [PMID: 30742611 PMCID: PMC6417741 DOI: 10.1371/journal.pbio.3000094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/14/2019] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
The repeatability or predictability of evolution is a central question in evolutionary biology and most often addressed in experimental evolution studies. Here, we infer how genetically heterogeneous natural systems acquire the same molecular changes to address how genomic background affects adaptation in natural populations. In particular, we take advantage of independently formed neo-sex chromosomes in Drosophila species that have evolved dosage compensation by co-opting the dosage-compensation male-specific lethal (MSL) complex to study the mutational paths that have led to the acquisition of hundreds of novel binding sites for the MSL complex in different species. This complex recognizes a conserved 21-bp GA-rich sequence motif that is enriched on the X chromosome, and newly formed X chromosomes recruit the MSL complex by de novo acquisition of this binding motif. We identify recently formed sex chromosomes in the D. melanica and D. robusta species groups by genome sequencing and generate genomic occupancy maps of the MSL complex to infer the location of novel binding sites. We find that diverse mutational paths were utilized in each species to evolve hundreds of de novo binding motifs along the neo-X, including expansions of microsatellites and transposable element (TE) insertions. However, the propensity to utilize a particular mutational path differs between independently formed X chromosomes and appears to be contingent on genomic properties of that species, such as simple repeat or TE density. This establishes the "genomic environment" as an important determinant in predicting the outcome of evolutionary adaptations.
Collapse
Affiliation(s)
- Christopher Ellison
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Lee H, Oliver B. Non-canonical Drosophila X chromosome dosage compensation and repressive topologically associated domains. Epigenetics Chromatin 2018; 11:62. [PMID: 30355339 PMCID: PMC6199721 DOI: 10.1186/s13072-018-0232-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Background In animals with XY sex chromosomes, X-linked genes from a single X chromosome in males are imbalanced relative to autosomal genes. To minimize the impact of genic imbalance in male Drosophila, there is a dosage compensation complex (MSL) that equilibrates X-linked gene expression with the autosomes. There are other potential contributions to dosage compensation. Hemizygous autosomal genes located in repressive chromatin domains are often derepressed. If this homolog-dependent repression occurs on the X, which has no pairing partner, then derepression could contribute to male dosage compensation. Results We asked whether different chromatin states or topological associations correlate with X chromosome dosage compensation, especially in regions with little MSL occupancy. Our analyses demonstrated that male X chromosome genes that are located in repressive chromatin states are depleted of MSL occupancy; however, they show dosage compensation. The genes in these repressive regions were also less sensitive to knockdown of MSL components. Conclusions Our results suggest that this non-canonical dosage compensation is due to the same transacting derepression that occurs on autosomes. This mechanism would facilitate immediate compensation during the evolution of sex chromosomes from autosomes. This mechanism is similar to that of C. elegans, where enhanced recruitment of X chromosomes to the nuclear lamina dampens X chromosome expression as part of the dosage compensation response in XX individuals. Electronic supplementary material The online version of this article (10.1186/s13072-018-0232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hangnoh Lee
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, USA. .,Section on Cell Cycle Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Lucchesi JC. Transcriptional modulation of entire chromosomes: dosage compensation. J Genet 2018; 97:357-364. [PMID: 29932054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dosage compensation is a regulatory system designed to equalize the transcription output of the genes of the sex chromosomes that are present in different doses in the sexes (X or Z chromosome, depending on the animal species involved). Different mechanisms of dosage compensation have evolved in different animal groups. In Drosophila males, a complex (male-specific lethal) associates with the X chromosome and enhances the activity of most X-linked genes by increasing the rate of RNAPII elongation. In Caenorhabditis, a complex (dosage compensation complex) that contains a number of proteins involved in condensing chromosomes decreases the level of transcription of both X chromosomes in the XX hermaphrodite. In mammals, dosage compensation is achieved by the inactivation, early during development, of most X-linked genes on one of the two X chromosomes in females. The mechanism involves the synthesis of an RNA (Tsix) that protects one of the two Xs from inactivation, and of another RNA (Xist) that coats the other X chromosome and recruits histone and DNA modifying enzymes. This review will focus on the current progress in understanding the dosage compensation mechanisms in the three taxa where it has been best studied at the molecular level: flies, round worms and mammals.
Collapse
Affiliation(s)
- John C Lucchesi
- Department of Biology, Emory University, Atlanta, GA 30322, USA. E-mail:
| |
Collapse
|
32
|
|
33
|
Michieletto D, Chiang M, Colì D, Papantonis A, Orlandini E, Cook PR, Marenduzzo D. Shaping epigenetic memory via genomic bookmarking. Nucleic Acids Res 2018; 46:83-93. [PMID: 29190361 PMCID: PMC5758908 DOI: 10.1093/nar/gkx1200] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022] Open
Abstract
Reconciling the stability of epigenetic patterns with the rapid turnover of histone modifications and their adaptability to external stimuli is an outstanding challenge. Here, we propose a new biophysical mechanism that can establish and maintain robust yet plastic epigenetic domains via genomic bookmarking (GBM). We model chromatin as a recolourable polymer whose segments bear non-permanent histone marks (or colours) which can be modified by 'writer' proteins. The three-dimensional chromatin organisation is mediated by protein bridges, or 'readers', such as Polycomb Repressive Complexes and Transcription Factors. The coupling between readers and writers drives spreading of biochemical marks and sustains the memory of local chromatin states across replication and mitosis. In contrast, GBM-targeted perturbations destabilise the epigenetic patterns. Strikingly, we demonstrate that GBM alone can explain the full distribution of Polycomb marks in a whole Drosophila chromosome. We finally suggest that our model provides a starting point for an understanding of the biophysics of cellular differentiation and reprogramming.
Collapse
Affiliation(s)
- Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Michael Chiang
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Davide Colì
- Dipartimento di Fisica e Astronomia and Sezione INFN, Università di Padova, Via Marzolo 8, Padova 35131, Italy
| | - Argyris Papantonis
- Centre for Molecular Medicine, University of Cologne, Robert-Koch-Str. 21, D-50931, Cologne, DE, Germany
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN, Università di Padova, Via Marzolo 8, Padova 35131, Italy
| | - Peter R Cook
- The Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Davide Marenduzzo
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| |
Collapse
|
34
|
Schauer T, Ghavi‐Helm Y, Sexton T, Albig C, Regnard C, Cavalli G, Furlong EEM, Becker PB. Chromosome topology guides the Drosophila Dosage Compensation Complex for target gene activation. EMBO Rep 2017; 18:1854-1868. [PMID: 28794204 PMCID: PMC5623837 DOI: 10.15252/embr.201744292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
X chromosome dosage compensation in Drosophila requires chromosome-wide coordination of gene activation. The male-specific lethal dosage compensation complex (DCC) identifies and binds to X-chromosomal high-affinity sites (HAS) from which it boosts transcription. A sub-class of HAS, PionX sites, represent first contacts on the X. Here, we explored the chromosomal interactions of representative PionX sites by high-resolution 4C and determined the global chromosome conformation by Hi-C in sex-sorted embryos. Male and female X chromosomes display similar nuclear architecture, concordant with clustered, constitutively active genes. PionX sites, like HAS, are evenly distributed in the active compartment and engage in short- and long-range interactions beyond compartment boundaries. Long-range, inter-domain interactions between DCC binding sites are stronger in males, suggesting that the complex refines chromatin organization. By de novo induction of DCC in female cells, we monitored the extent of activation surrounding PionX sites. This revealed a remarkable range of DCC action not only in linear proximity, but also at megabase distance if close in space, suggesting that DCC profits from pre-existing chromosome folding to activate genes.
Collapse
Affiliation(s)
- Tamás Schauer
- Molecular Biology DivisionBiomedical Center and Center for Integrated Protein Science Ludwig‐Maximilians‐UniversityMunichGermany
| | - Yad Ghavi‐Helm
- European Molecular Biology LaboratoryGenome Biology UnitHeidelbergGermany
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular BiologyIllkirchFrance
| | - Christian Albig
- Molecular Biology DivisionBiomedical Center and Center for Integrated Protein Science Ludwig‐Maximilians‐UniversityMunichGermany
| | - Catherine Regnard
- Molecular Biology DivisionBiomedical Center and Center for Integrated Protein Science Ludwig‐Maximilians‐UniversityMunichGermany
| | - Giacomo Cavalli
- Institute of Human GeneticsCNRSMontpellierFrance
- University of MontpellierMontpellierFrance
| | - Eileen EM Furlong
- European Molecular Biology LaboratoryGenome Biology UnitHeidelbergGermany
| | - Peter B Becker
- Molecular Biology DivisionBiomedical Center and Center for Integrated Protein Science Ludwig‐Maximilians‐UniversityMunichGermany
| |
Collapse
|