1
|
Mohan AA, Talwar P. MAM kinases: physiological roles, related diseases, and therapeutic perspectives-a systematic review. Cell Mol Biol Lett 2025; 30:35. [PMID: 40148800 PMCID: PMC11951743 DOI: 10.1186/s11658-025-00714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria-associated membranes (MAMs) are tethering regions amid the membranes of the endoplasmic reticulum (ER) and mitochondria. They are a lipid raft-like structure occupied by various proteins that facilitates signal transduction between the two organelles. The MAM proteome participates in cellular functions such as calcium (Ca2+) homeostasis, lipid synthesis, ER stress, inflammation, autophagy, mitophagy, and apoptosis. The human kinome is a superfamily of homologous proteins consisting of 538 kinases. MAM-associated kinases participate in the aforementioned cellular functions and act as cell fate executors. Studies have proved the dysregulated kinase interactions in MAM as an etiology for various diseases including cancer, diabetes mellitus, neurodegenerative diseases, cardiovascular diseases (CVDs), and obesity. Several small kinase inhibitory molecules have been well explored as promising drug candidates in clinical trials with an accelerating impact in the field of precision medicine. This review narrates the physiological actions, pathophysiology, and therapeutic potential of MAM-associated kinases with recent updates in the field.
Collapse
Affiliation(s)
- A Anjana Mohan
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Dunn-Davies H, Dudnakova T, Nogara A, Rodor J, Thomas AC, Parish E, Gautier P, Meynert A, Ulitsky I, Madeddu P, Caporali A, Baker A, Tollervey D, Mitić T. Control of endothelial cell function and arteriogenesis by MEG3:EZH2 epigenetic regulation of integrin expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102173. [PMID: 38617973 PMCID: PMC11015509 DOI: 10.1016/j.omtn.2024.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Epigenetic processes involving long non-coding RNAs regulate endothelial gene expression. However, the underlying regulatory mechanisms causing endothelial dysfunction remain to be elucidated. Enhancer of zeste homolog 2 (EZH2) is an important rheostat of histone H3K27 trimethylation (H3K27me3) that represses endothelial targets, but EZH2 RNA binding capacity and EZH2:RNA functional interactions have not been explored in post-ischemic angiogenesis. We used formaldehyde/UV-assisted crosslinking ligation and sequencing of hybrids and identified a new role for maternally expressed gene 3 (MEG3). MEG3 formed the predominant RNA:RNA hybrid structures in endothelial cells. Moreover, MEG3:EZH2 assists recruitment onto chromatin. By EZH2-chromatin immunoprecipitation, following MEG3 depletion, we demonstrated that MEG3 controls recruitment of EZH2/H3K27me3 onto integrin subunit alpha4 (ITGA4) promoter. Both MEG3 knockdown or EZH2 inhibition (A-395) promoted ITGA4 expression and improved endothelial cell migration and adhesion to fibronectin in vitro. The A-395 inhibitor re-directed MEG3-assisted chromatin remodeling, offering a direct therapeutic benefit by increasing endothelial function and resilience. This approach subsequently increased the expression of ITGA4 in arterioles following ischemic injury in mice, thus promoting arteriogenesis. Our findings show a context-specific role for MEG3 in guiding EZH2 to repress ITGA4. Novel therapeutic strategies could antagonize MEG3:EZH2 interaction for pre-clinical studies.
Collapse
Affiliation(s)
- Hywel Dunn-Davies
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building Max Born Crescent, King’s Buildings, Edinburgh EH9 3BF, UK
| | - Tatiana Dudnakova
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Antonella Nogara
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Julie Rodor
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Anita C. Thomas
- Bristol Medical School, Translational Health Sciences, University of Bristol, Research and Teaching Floor Level 7, Queens Building, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Elisa Parish
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann-UK Building rm. 007, Weizmann Institute of Science Rehovot 76100, Israel
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Research and Teaching Floor Level 7, Queens Building, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Andrea Caporali
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew Baker
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building Max Born Crescent, King’s Buildings, Edinburgh EH9 3BF, UK
| | - Tijana Mitić
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
3
|
Chen J, Zhao H, Liu M, Chen L. A new perspective on the autophagic and non-autophagic functions of the GABARAP protein family: a potential therapeutic target for human diseases. Mol Cell Biochem 2024; 479:1415-1441. [PMID: 37440122 DOI: 10.1007/s11010-023-04800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Mammalian autophagy-related protein Atg8, including the LC3 subfamily and GABARAP subfamily. Atg8 proteins play a vital role in autophagy initiation, autophagosome formation and transport, and autophagy-lysosome fusion. GABARAP subfamily proteins (GABARAPs) share a high degree of homology with LC3 family proteins, and their unique roles are often overlooked. GABARAPs are as indispensable as LC3 in autophagy. Deletion of GABARAPs fails autophagy flux induction and autophagy lysosomal fusion, which leads to the failure of autophagy. GABARAPs are also involved in the transport of selective autophagy receptors. They are engaged in various particular autophagy processes, including mitochondrial autophagy, endoplasmic reticulum autophagy, Golgi autophagy, centrosome autophagy, and dorphagy. Furthermore, GABARAPs are closely related to the transport and delivery of the inhibitory neurotransmitter γ-GABAA and the angiotensin II AT1 receptor (AT1R), tumor growth, metastasis, and prognosis. GABARAPs also have been confirmed to be involved in various diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. In order to better understand the role and therapeutic potential of GABARAPs, this article comprehensively reviews the autophagic and non-autophagic functions of GABARAPs, as well as the research progress of the role and mechanism of GABARAPs in cancer, cardiovascular diseases and neurodegenerative diseases. It emphasizes the significance of GABARAPs in the clinical prevention and treatment of diseases, and may provide new therapeutic ideas and targets for human diseases. GABARAP and GABARAPL1 in the serum of cancer patients are positively correlated with the prognosis of patients, which can be used as a clinical biomarker, predictor and potential therapeutic target.
Collapse
Affiliation(s)
- Jiawei Chen
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hong Zhao
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Meiqing Liu
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Renaud CC, Nicolau CA, Maghe C, Trillet K, Jardine J, Escot S, David N, Gavard J, Bidère N. Necrosulfonamide causes oxidation of PCM1 and impairs ciliogenesis and autophagy. iScience 2024; 27:109580. [PMID: 38600973 PMCID: PMC11004361 DOI: 10.1016/j.isci.2024.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Centriolar satellites are high-order assemblies, scaffolded by the protein PCM1, that gravitate as particles around the centrosome and play pivotal roles in fundamental cellular processes notably ciliogenesis and autophagy. Despite stringent control mechanisms involving phosphorylation and ubiquitination, the landscape of post-translational modifications shaping these structures remains elusive. Here, we report that necrosulfonamide (NSA), a small molecule known for binding and inactivating the pivotal effector of cell death by necroptosis MLKL, intersects with centriolar satellites, ciliogenesis, and autophagy independently of MLKL. NSA functions as a potent redox cycler and triggers the oxidation and aggregation of PCM1 alongside select partners, while minimally impacting the overall distribution of centriolar satellites. Additionally, NSA-mediated ROS production disrupts ciliogenesis and leads to the accumulation of autophagy markers, partially alleviated by PCM1 deletion. Together, these results identify PCM1 as a redox sensor protein and provide new insights into the interplay between centriolar satellites and autophagy.
Collapse
Affiliation(s)
- Clotilde C.N. Renaud
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Carolina Alves Nicolau
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Clément Maghe
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Kilian Trillet
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Jane Jardine
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sophie Escot
- Laboratoire d’Optique et de Biosciences LOB, Ecole Polytechnique, Palaiseau, France
| | - Nicolas David
- Laboratoire d’Optique et de Biosciences LOB, Ecole Polytechnique, Palaiseau, France
| | - Julie Gavard
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Institut de Cancérologie de l’Ouest (ICO), Saint-Herblain, France
| | - Nicolas Bidère
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
5
|
Huang Y, Lu C, Wang H, Gu L, Fu YX, Li GM. DNAJA2 deficiency activates cGAS-STING pathway via the induction of aberrant mitosis and chromosome instability. Nat Commun 2023; 14:5246. [PMID: 37640708 PMCID: PMC10462666 DOI: 10.1038/s41467-023-40952-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Molecular chaperone HSP70s are attractive targets for cancer therapy, but their substrate broadness and functional non-specificity have limited their role in therapeutical success. Functioning as HSP70's cochaperones, HSP40s determine the client specificity of HSP70s, and could be better targets for cancer therapy. Here we show that tumors defective in HSP40 member DNAJA2 are benefitted from immune-checkpoint blockade (ICB) therapy. Mechanistically, DNAJA2 maintains centrosome homeostasis by timely degrading key centriolar satellite proteins PCM1 and CEP290 via HSC70 chaperone-mediated autophagy (CMA). Tumor cells depleted of DNAJA2 or CMA factor LAMP2A exhibit elevated levels of centriolar satellite proteins, which causes aberrant mitosis characterized by abnormal spindles, chromosome missegregation and micronuclei formation. This activates the cGAS-STING pathway to enhance ICB therapy response in tumors derived from DNAJA2-deficient cells. Our study reveals a role for DNAJA2 to regulate mitotic division and chromosome stability and suggests DNAJA2 as a potential target to enhance cancer immunotherapy, thereby providing strategies to advance HSPs-based cancer therapy.
Collapse
Affiliation(s)
- Yaping Huang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Changzheng Lu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hanzhi Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China.
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Chinese Institutes for Medical Research, Beijing, China.
| |
Collapse
|
6
|
Chen F, Zhan J, Al Mamun A, Tao Y, Huang S, Zhao J, Zhang Y, Xu Y, Du S, Lu W, Li X, Chen Z, Xiao J. Sulforaphane protects microvascular endothelial cells in lower limb ischemia/reperfusion injury mice. Food Funct 2023; 14:7176-7194. [PMID: 37462424 DOI: 10.1039/d3fo01801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Background: Microvascular damage is a key pathological factor in acute lower limb ischemia/reperfusion (I/R) injury. Current evidence suggests that sulforaphane (SFN) protects tissue from I/R injury. However, the role of SFN in acute lower limb I/R injury remains elusive. This study aimed to investigate the role and potential mechanism of SFN in I/R-related microvascular damage in the limb. Methods: Limb viability was evaluated by laser Doppler imaging, tissue edema analysis and histological analysis. Western blotting and immunofluorescence were applied to analyze the levels of apoptosis, oxidative stress, autophagy, transcription factor EB (TFEB) activity and mucolipin 1 (MCOLN1)-calcineurin signaling pathway. Results: SFN administration significantly ameliorated I/R-induced hypoperfusion, tissue edema, skeletal muscle fiber injury and endothelial cell (EC) damage in the limb. Pharmacological inhibition of NFE2L2 (nuclear factor, erythroid 2 like 2) reversed the anti-oxidation and anti-apoptosis effects of SFN on ECs. Additionally, silencing of TFEB by interfering RNA abolished the SFN-induced autophagy restoration, anti-oxidant response and anti-apoptosis effects on ECs. Furthermore, silencing of MCOLN1 by interfering RNA and pharmacological inhibition of calcineurin inhibited the activity of TFEB induced by SFN, demonstrating that SFN regulates the activity of TFEB through the MCOLN1-calcineurin signaling pathway. Conclusion: SFN protects microvascular ECs against I/R injury by TFEB-mediated autophagy restoration and anti-oxidant response.
Collapse
Affiliation(s)
- Fanfeng Chen
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayu Zhan
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yibing Tao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shanshan Huang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaxin Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yitie Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shenghu Du
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Lu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaokun Li
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zimiao Chen
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
7
|
Shen C, Yang B, Huang L, Chen Y, Zhao H, Zhu Z. Cardioprotective effect of crude polysaccharide fermented by Trametes Sanguinea Lyoyd on doxorubicin-induced myocardial injury mice. BMC Pharmacol Toxicol 2023; 24:1. [PMID: 36627724 PMCID: PMC9832647 DOI: 10.1186/s40360-022-00641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum anti-tumor drug, but its clinical application is greatly limited because of the cardiotoxicity. Thus, exploration of effective therapies against DOX-induced cardiotoxicity is necessary. The aim of this study is to investigate the effects and possible mechanisms of Trametes Sanguinea Lyoyd fermented crude polysaccharide (TSLFACP) against DOX-induced cardiotoxicity. We investigated the protective effects of TSLFACP on myocardial injury and its possible mechanisms using two in vitro cells of DOX-treated cardiomyocytes H9C2 and embryonic myocardial cell line CCC-HEH-2 and a in vivo mouse model of DOX-induced myocardial injury. We found that TSLFACP could reverse DOX-induced toxicity in H9C2 and CCC-HEH-2 cells. Similarly, we found that when pretreatment with TSLFACP (200 mg/kg, i.g.) daily for 6 days, DOX-induced myocardial damage was attenuated, including the decrease in serum myocardial injury index, and the amelioration in cardiac histopathological morphology. Additionally, immunohistochemistry and western blotting were used to identify the underlying and possible signal pathways. We found that TSLFACP attenuated the expression of LC3-II, Beclin-1 and PRAP induced by DOX. In conclusion, our results demonstrated that TSLFACP could protect against DOX-induced cardiotoxicity by inhibiting autophagy and apoptosis.
Collapse
Affiliation(s)
- Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Bo Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Yueru Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Lauriola A, Davalli P, Marverti G, Caporali A, Mai S, D’Arca D. Telomere Dysfunction Is Associated with Altered DNA Organization in Trichoplein/Tchp/Mitostatin (TpMs) Depleted Cells. Biomedicines 2022; 10:biomedicines10071602. [PMID: 35884905 PMCID: PMC9312488 DOI: 10.3390/biomedicines10071602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recently, we highlighted a novel role for the protein Trichoplein/TCHP/Mitostatin (TpMs), both as mitotic checkpoint regulator and guardian of chromosomal stability. TpMs-depleted cells show numerical and structural chromosome alterations that lead to genomic instability. This condition is a major driving force in malignant transformation as it allows for the cells acquiring new functional capabilities to proliferate and disseminate. Here, the effect of TpMs depletion was investigated in different TpMs-depleted cell lines by means of 3D imaging and 3D Structured illumination Microscopy. We show that TpMs depletion causes alterations in the 3D architecture of telomeres in colon cancer HCT116 cells. These findings are consistent with chromosome alterations that lead to genomic instability. Furthermore, TpMs depletion changes the spatial arrangement of chromosomes and other nuclear components. Modified nuclear architecture and organization potentially induce variations that precede the onset of genomic instability and are considered as markers of malignant transformation. Our present observations connect the tumor suppression ability of TpMs with its novel functions in maintaining the proper chromosomal segregation as well as the proper telomere and nuclear architecture. Further investigations will investigate the connection between alterations in telomeres and nuclear architecture with the progression of human tumors with the aim of developing personalized therapeutic interventions.
Collapse
Affiliation(s)
- Angela Lauriola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Pierpaola Davalli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (P.D.); (G.M.)
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (P.D.); (G.M.)
| | - Andrea Caporali
- The Queen’s Medical Research Institute, BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH10 4AH, UK;
| | - Sabine Mai
- CancerCare Manitoba Research Institute, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Correspondence: (S.M.); (D.D.); Tel.: +1-204-272-3174 (S.M.); +39-059-205-5610 (D.D.)
| | - Domenico D’Arca
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (P.D.); (G.M.)
- Correspondence: (S.M.); (D.D.); Tel.: +1-204-272-3174 (S.M.); +39-059-205-5610 (D.D.)
| |
Collapse
|
9
|
Zhao F, Satyanarayana G, Zhang Z, Zhao J, Ma XL, Wang Y. Endothelial Autophagy in Coronary Microvascular Dysfunction and Cardiovascular Disease. Cells 2022; 11:2081. [PMID: 35805165 PMCID: PMC9265562 DOI: 10.3390/cells11132081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) refers to a subset of structural and/or functional disorders of coronary microcirculation that lead to impaired coronary blood flow and eventually myocardial ischemia. Amid the growing knowledge of the pathophysiological mechanisms and the development of advanced tools for assessment, CMD has emerged as a prevalent cause of a broad spectrum of cardiovascular diseases (CVDs), including obstructive and nonobstructive coronary artery disease, diabetic cardiomyopathy, and heart failure with preserved ejection fraction. Of note, the endothelium exerts vital functions in regulating coronary microvascular and cardiac function. Importantly, insufficient or uncontrolled activation of endothelial autophagy facilitates the pathogenesis of CMD in diverse CVDs. Here, we review the progress in understanding the pathophysiological mechanisms of autophagy in coronary endothelial cells and discuss their potential role in CMD and CVDs.
Collapse
Affiliation(s)
- Fujie Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | | | - Zheng Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| |
Collapse
|
10
|
Chen W, Chen Y, Liu Y, Wang X. Autophagy in muscle regeneration: potential therapies for myopathies. J Cachexia Sarcopenia Muscle 2022; 13:1673-1685. [PMID: 35434959 PMCID: PMC9178153 DOI: 10.1002/jcsm.13000] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Its biological functions include metabolic stress adaptation, stem cell differentiation, immunomodulation and diseases regulation, and so on. Current researches have proved that autophagy dysfunction may contribute to the pathogenesis of some myopathies through impairment of myofibres regeneration. Studies of autophagy inhibition also indicate the importance of autophagy in muscle regeneration, while activation of autophagy can restore muscle function in some myopathies. In this review, we aim to report the mechanisms of action of autophagy on muscle regeneration to provide relevant references for the treatment of regenerating defective myopathies by regulating autophagy. Results have shown that one key mechanism of autophagy regulating the muscle regeneration is to affect the differentiation fate of muscle stem cells (MuSCs), including quiescence maintenance, activation and differentiation. The roles of autophagy (organelle/protein degradation, energy facilitation, and/or other) vary at different myogenic stages of the repair process. When the muscle is in homeostasis, basal autophagy can maintain the quiescence state and stemness of MuSCs by renewing organelle and protein. After injury, the increased autophagy flux contributes to meet biological energy demand of MuSCs during activation and proliferation. By mitochondrial remodelling, autophagy during differentiation can promote the metabolic transformation and balance mitochondrial-mediated apoptosis signals in myoblasts. Autophagy in mature myofibres is also essential for the degradation of necrotic myofibres, and may affect the dynamics of MuSCs by affecting the secretion spectrum of myofibres or the recruitment of supporting cells. Except for myogenic cells, autophagy also plays an important role in regulating the function of non-myogenic cells in the muscle microenvironment, which is also essential for successful muscle recovery. Autophagy can regulate the immune microenvironment during muscle regeneration through the recruitment and polarization of macrophages, while autophagy in endothelial cells can regulate muscle regeneration in an angiogenic or angiogenesis-independent manner. Drug or nutrition targeted autophagy has been preliminarily proved to restore muscle function in myopathies by promoting muscle regeneration, and further understanding the role and mechanism of autophagy in various cell types during muscle regeneration will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Mameli E, Martello A, Caporali A. Autophagy at the interface of endothelial cell homeostasis and vascular disease. FEBS J 2022; 289:2976-2991. [PMID: 33934518 DOI: 10.1111/febs.15873] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/16/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
Autophagy is an essential intracellular process for cellular quality control. It enables cell homeostasis through the selective degradation of harmful protein aggregates and damaged organelles. Autophagy is essential for recycling nutrients, generating energy to maintain cell viability in most tissues and during adverse conditions such as hypoxia/ischaemia. The progressive understanding of the mechanisms modulating autophagy in the vasculature has recently led numerous studies to link intact autophagic responses with endothelial cell (EC) homeostasis and function. Preserved autophagic flux within the ECs has an essential role in maintaining their physiological characteristics, whereas defective autophagy can promote endothelial pro-inflammatory and atherogenic phenotype. However, we still lack a good knowledge of the complete molecular repertoire controlling various aspects of endothelial autophagy and how this is associated with vascular diseases. Here, we provide an overview of the current state of the art of autophagy in ECs. We review the discoveries that have so far defined autophagy as an essential mechanism in vascular biology and analyse how autophagy influences ECs behaviour in vascular disease. Finally, we emphasise opportunities for compounds to regulate autophagy in ECs and discuss the challenges of exploiting them to resolve vascular disease.
Collapse
Affiliation(s)
- Eleonora Mameli
- University/BHF Centre for Cardiovascular Science, QMRI, University of Edinburgh, UK
| | | | - Andrea Caporali
- University/BHF Centre for Cardiovascular Science, QMRI, University of Edinburgh, UK
| |
Collapse
|
12
|
Huang M, Kong X, Tang Z, Lin Z, He R, Cao M, Zhang X. Cell cycle arrest induced by trichoplein depletion is independent of cilia assembly. J Cell Physiol 2022; 237:2703-2712. [PMID: 35147977 DOI: 10.1002/jcp.30693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/15/2023]
Abstract
Cilia assembly and centriole duplication are closely coordinated with cell cycle progression, and inhibition of cilia disassembly impedes cell cycle progression. The centrosomal protein trichoplein (TCHP) has been shown to promote cell cycle progression in the G1 -S phase by disassembling cilia. In this study, we showed that deletion of TCHP not only prevented the progression to the S phase but also resulted in cell cycle exit and entrance into G0 phase. Surprisingly, we found that loss of TCHP-induced G0 arrest could not be reversed by blocking the assembly of cilia. In cells without IFT20 or CEP164, two genes encoding key factors for ciliogenesis, depletion of TCHP still led to G0 arrest. Mechanistically, we also found that TCHP depletion-induced cell cycle arrest was not mediated through a centrosome surveillance mechanism, but inhibition of Rb or concomitant inhibition of both Rb and p53 signaling pathways was required to reverse the cell cycle phenotype. In conclusion, our study provides new insights into the function of TCHP in cell cycle progression.
Collapse
Affiliation(s)
- Min Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinlong Kong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaiming Tang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaisheng Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruida He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiujuan Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Neill T, Iozzo RV. The Role of Decorin Proteoglycan in Mitophagy. Cancers (Basel) 2022; 14:804. [PMID: 35159071 PMCID: PMC8834502 DOI: 10.3390/cancers14030804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycans are emerging as critical regulators of intracellular catabolism. This rise in prominence has transformed our basic understanding and alerted us to the existence of non-canonical pathways, independent of nutrient deprivation, that potently control the autophagy downstream of a cell surface receptor. As a member of the small leucine-rich proteoglycan gene family, decorin has single-handedly pioneered the connection between extracellular matrix signaling and autophagy regulation. Soluble decorin evokes protracted endothelial cell autophagy via Peg3 and breast carcinoma cell mitophagy via mitostatin by interacting with VEGFR2 or the MET receptor tyrosine kinase, respectively. In this paper, we give a mechanistic perspective of the vital factors underlying the nutrient-independent, SLRP-dependent programs utilized for autophagic and/or mitophagic progression in breast cancer. Future protein therapies based on decorin (or fellow proteoglycan members) will represent a quantum leap forward in transforming autophagic progression into a powerful tool to control intracellular cell catabolism from the outside.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Yin Y, Peng H, Shao J, Zhang J, Li Y, Pi J, Guo J. NRF2 deficiency sensitizes human keratinocytes to zinc oxide nanoparticles-induced autophagy and cytotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103721. [PMID: 34339875 DOI: 10.1016/j.etap.2021.103721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are one of the most commonly used metal oxide particles in many industrial fields. Many studies have shown that ZnO NPs induce harmful effects to human skin, but the mechanisms remain poorly understood. Our results showed that ZnO NPs concentration-dependently induced cytotoxicity, ROS accumulation, and mitochondrial dysfunction in HaCaT cells. The expressions of adaptive antioxidant response transcriptional factor NRF2 and autophagy-related proteins P62 and LC3 II/I were increased by ZnO NPs. Knock-down of NRF2 (NRF2-KD) sensitized the cells to ZnO NPs-induced autophagy and cytotoxicity while an autophagy inhibitor, 3-methyladenine, protected the cells from ZnO NPs-induced cell death. These results demonstrated that NRF2 deficiency sensitizes human keratinocytes to ZnO NPs induced autophagy and cytotoxicity, and proposed a key role of NRF2 in protecting skin cells against ZnO NPs through regulation of antioxidants and autophagy.
Collapse
Affiliation(s)
- Yuanyuan Yin
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Hui Peng
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China
| | - Junbo Shao
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Jing Zhang
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No.23 Back District, Dongcheng Area, Beijing, 100010, China
| | - Yujie Li
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China
| | - Jingbo Pi
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| | - Jiabin Guo
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
15
|
Abdollahi-Arpanahi R, Pacheco HA, Peñagaricano F. Targeted sequencing reveals candidate causal variants for dairy bull subfertility. Anim Genet 2021; 52:509-513. [PMID: 34028060 PMCID: PMC8361668 DOI: 10.1111/age.13089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 05/04/2021] [Indexed: 01/11/2023]
Abstract
Bull fertility is a key factor for successful reproductive performance in dairy cattle. Since the semen from a single bull can be used to inseminate hundreds of cows, one subfertile bull could have a major impact on herd reproductive efficiency. We have previously identified five genomic regions, located on BTA8 (72.2 Mb), BTA9 (43.7 Mb), BTA13 (60.2 Mb), BTA17 (63.3 Mb), and BTA27 (34.7 Mb), that show large dominance effects on bull fertility. Each of these regions explained about 5–8% of the observed differences in sire conception rate between Holstein bulls. Here, we aimed to identify candidate causal variants responsible for this variation using targeted sequencing (10 Mb per region). For each genomic region, two DNA pools were constructed from n≈20 high‐fertility and n≈20 low‐fertility Holstein bulls. The DNA‐sequencing analysis included reads quality control (using FastQC), genome alignment (using BWA and ARS‐UCD1.2), variant calling (using GATK) and variant annotation (using Ensembl). The sequencing depth per pool varied from 39× to 51×. We identified a set of nonsense mutations, missense mutations, and frameshift variants carried by low‐fertility bulls. Notably, some of these variants were classified as strong candidate causal variants, i.e., mutations with deleterious effects located on genes exclusively/highly expressed in testis. Genes affected by these candidate causal variants include AK9, TTLL9, TCHP, and FOXN4. These results could aid in the development of novel genomic tools that allow early detection and culling of subfertile bull calves.
Collapse
Affiliation(s)
| | - H A Pacheco
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - F Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Castellano-Pellicena I, Morrison CG, Bell M, O’Connor C, Tobin DJ. Melanin Distribution in Human Skin: Influence of Cytoskeletal, Polarity, and Centrosome-Related Machinery of Stratum basale Keratinocytes. Int J Mol Sci 2021; 22:ijms22063143. [PMID: 33808676 PMCID: PMC8003549 DOI: 10.3390/ijms22063143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Melanin granules cluster within supra-nuclear caps in basal keratinocytes (KCs) of the human epidermis, where they protect KC genomic DNA against ultraviolet radiation (UVR) damage. While much is known about melanogenesis in melanocytes (MCs) and a moderate amount about melanin transfer from MC to KC, we know little about the fate of melanin once inside KCs. We recently reported that melanin fate in progenitor KCs is regulated by rare asymmetric organelle movement during mitosis. Here, we explore the role of actin, microtubules, and centrosome-associated machinery in distributing melanin within KCs. Short-term cultures of human skin explants were treated with cytochalasin-B and nocodazole to target actin filaments and microtubules, respectively. Treatment effects on melanin distribution were assessed by the Warthin-Starry stain, on centrosome-associated proteins by immunofluorescence microscopy, and on co-localisation with melanin granules by brightfield microscopy. Cytochalasin-B treatment disassembled supra-nuclear melanin caps, while nocodazole treatment moved melanin from the apical to basal KC domain. Centrosome and centriolar satellite-associated proteins showed a high degree of co-localisation with melanin. Thus, once melanin granules are transferred to KCs, their preferred apical distribution appears to be facilitated by coordinated movement of centrosomes and centriolar satellites. This mechanism may control melanin's strategic position within UVR-exposed KCs.
Collapse
Affiliation(s)
- Irene Castellano-Pellicena
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland;
| | - Mike Bell
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Clare O’Connor
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Desmond J. Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Correspondence: ; Tel.: +353-(0)-1-716-6262
| |
Collapse
|
17
|
Martello A, Lauriola A, Mellis D, Parish E, Dawson JC, Imrie L, Vidmar M, Gammoh N, Mitić T, Brittan M, Mills NL, Carragher NO, D'Arca D, Caporali A. Trichoplein binds PCM1 and controls endothelial cell function by regulating autophagy. EMBO Rep 2020; 21:e48192. [PMID: 32337819 PMCID: PMC7332983 DOI: 10.15252/embr.201948192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an essential cellular quality control process that has emerged as a critical one for vascular homeostasis. Here, we show that trichoplein (TCHP) links autophagy with endothelial cell (EC) function. TCHP localizes to centriolar satellites, where it binds and stabilizes PCM1. Loss of TCHP leads to delocalization and proteasome-dependent degradation of PCM1, further resulting in degradation of PCM1's binding partner GABARAP. Autophagic flux under basal conditions is impaired in THCP-depleted ECs, and SQSTM1/p62 (p62) accumulates. We further show that TCHP promotes autophagosome maturation and efficient clearance of p62 within lysosomes, without affecting their degradative capacity. Reduced TCHP and high p62 levels are detected in primary ECs from patients with coronary artery disease. This phenotype correlates with impaired EC function and can be ameliorated by NF-κB inhibition. Moreover, Tchp knock-out mice accumulate of p62 in the heart and cardiac vessels correlating with reduced cardiac vascularization. Taken together, our data reveal that TCHP regulates endothelial cell function via an autophagy-mediated mechanism.
Collapse
Affiliation(s)
- Andrea Martello
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Angela Lauriola
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena & Reggio EmiliaModenaItaly
| | - David Mellis
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Elisa Parish
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - John C Dawson
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Lisa Imrie
- Centre for Synthetic and Systems Biology (SynthSys)University of EdinburghEdinburghUK
| | - Martina Vidmar
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Noor Gammoh
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tijana Mitić
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| | - Nicholas L Mills
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
- Usher InstituteUniversity of EdinburghEdinburghUK
| | - Neil O Carragher
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena & Reggio EmiliaModenaItaly
| | - Andrea Caporali
- University/BHF Centre for Cardiovascular ScienceQMRIUniversity of EdinburghEdinburghUK
| |
Collapse
|
18
|
Depletion of Trichoplein (TpMs) Causes Chromosome Mis-Segregation, DNA Damage and Chromosome Instability in Cancer Cells. Cancers (Basel) 2020; 12:cancers12040993. [PMID: 32316593 PMCID: PMC7226535 DOI: 10.3390/cancers12040993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mitotic perturbations frequently lead to chromosome mis-segregation that generates genome instability, thereby triggering tumor onset and/or progression. Error-free mitosis depends on fidelity-monitoring systems that ensure the temporal and spatial coordination of chromosome segregation. Recent investigations are focused on mitotic DNA damage response (DDR) and chromosome mis-segregations with the aim of developing more efficient anti-cancer therapies. We previously demonstrated that trichoplein keratin filament binding protein (TpMs) exhibits hallmarks of a tumor suppressor gene in cancer-derived cells and human tumors. Here, we show that silencing of TpMs expression results in chromosome mis-segregation, DNA damage and chromosomal instability. TpMs interacts with Mad2, and TpMs depletion results in decreased levels of Mad2 and Cyclin B1 proteins. All the genetic alterations observed are consistent with both defective activation of the spindle assembly checkpoint and mitotic progression. Thus, low levels of TpMs found in certain human tumors may contribute to cellular transformation by promoting genomic instability.
Collapse
|