1
|
Ponne S, Chinnadurai RK, Kumar R, Mohanty AK, Nogueira Brilhante RS, Trang Nhung TT, Baluchamy S. PWWP2A/B: Prominent players in the proteomic landscape. Gene 2025; 942:149245. [PMID: 39809369 DOI: 10.1016/j.gene.2025.149245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The PWWP domain is a conserved motif unique to eukaryotes, playing a critical role in various cellular processes. Proteins containing the PWWP domain are typically found in chromatin, where they bind to DNA and histones in nucleosomes, facilitating chromatin-associated functions. Among these proteins, PWWP-domain containing proteins 2A and 2B (PWWP2A and PWWP2B), identified during the H2A interactome analysis, are DNA methyltransferase-related proteins, that are structurally disordered, except for their PWWP domain. While their precise functions remain to be fully elucidated, PWWP2A and PWWP2B have been implicated in essential processes such as embryonic development, mitotic regulation, adipose thermogenesis, transcriptional control, and DNA damage response. Their involvement in disease pathology is an emerging area of research, with PWWP2B downregulation linked to recurrent gastric cancer, promoting cell proliferation and migration. Literature reveals that the circular RNA, cPWWP2A sequesters miR-203, miR-223, and miR-27, to modulate TGF-β signalling by inhibiting key regulators like SMAD3 and SP3. Additionally, PWWP2A/B proteins may interact with P4HA3, a regulator of the TGF-β/SMAD signalling pathway that influences tumour invasiveness, though the precise nature of this interaction is not yet fully understood. The PWWP2-miRNA-TGF-β axis, particularly the PWWP2-P4HA3 association, provides valuable insights into therapeutic strategies, especially under adverse conditions where this pathway is differentially regulated. Overall, given their essential roles in fundamental cellular processes and their involvement in disease mechanisms, PWWP2A and PWWP2B proteins could be ideal targets for therapeutic intervention. Thus, these proteins occupy a prominent position in the human proteome and epigenetic landscape.
Collapse
Affiliation(s)
- Saravanaraman Ponne
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry 607403, India.
| | - Raj Kumar Chinnadurai
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry 607402, India
| | - Rajender Kumar
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden
| | - Aman Kumar Mohanty
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry 607402, India
| | - Raimunda Sâmia Nogueira Brilhante
- Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | | | - Sudhakar Baluchamy
- Department of Biotechnology, Pondicherry Central University, Pondicherry 605014, India
| |
Collapse
|
2
|
Chen H, Hu Y, Zhuang Z, Wang D, Ye Z, Jing J, Cheng X. Advancements and Obstacles of PARP Inhibitors in Gastric Cancer. Cancers (Basel) 2023; 15:5114. [PMID: 37958290 PMCID: PMC10647262 DOI: 10.3390/cancers15215114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Gastric cancer (GC) is a common and aggressive cancer of the digestive system, exhibiting high aggressiveness and significant heterogeneity. Despite advancements in improving survival rates over the past few decades, GC continues to carry a worrisome prognosis and notable mortality. As a result, there is an urgent need for novel therapeutic approaches to address GC. Recent targeted sequencing studies have revealed frequent mutations in DNA damage repair (DDR) pathway genes in many GC patients. These mutations lead to an increased reliance on poly (adenosine diphosphate-ribose) polymerase (PARP) for DNA repair, making PARP inhibitors (PARPi) a promising treatment option for GC. This article presents a comprehensive overview of the rationale and development of PARPi, highlighting its progress and challenges in both preclinical and clinical research for treating GC.
Collapse
Affiliation(s)
- Hongjie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Yangchan Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Zirui Zhuang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dingyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Zu Ye
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
3
|
Li Y, Gao Y, Jiang X, Cheng Y, Zhang J, Xu L, Liu X, Huang Z, Xie C, Gong Y. SAMHD1 silencing cooperates with radiotherapy to enhance anti-tumor immunity through IFI16-STING pathway in lung adenocarcinoma. J Transl Med 2022; 20:628. [PMID: 36578072 PMCID: PMC9798699 DOI: 10.1186/s12967-022-03844-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (SAMHD1) is a DNA end resection factor, which is involved in DNA damage repair and innate immunity. However, the role of SAMHD1 in anti-tumor immunity is still unknown. This study investigated the effects of SAMHD1 on stimulator of interferon genes (STING)-type I interferon (IFN) pathway and radiation-induced immune responses. METHODS The roles of SAMHD1 in the activation of cytosolic DNA sensing STING pathway in lung adenocarcinoma (LUAD) cells were investigated with flow cytometry, immunofluorescence, immunoblotting and qPCR. The combined effects of SAMHD1 silencing and radiation on tumor cell growth and STING pathway activation were also evaluated with colony formation and CCK8 assay. The Lewis lung cancer mouse model was used to evaluate the combined efficiency of SAMHD1 silencing and radiotherapy in vivo. Macrophage M1 polarization and cytotoxic T cell infiltration were evaluated with flow cytometry. RESULTS The single-stranded DNA (ssDNA) accumulated in the cytosol of SAMHD1-deficient lung adenocarcinoma (LUAD) cells, accompanied by upregulated DNA sensor IFN-γ-inducible protein 16 (IFI16) and activated STING pathway. The translocation of IFI16 from nucleus to cytosol was detected in SAMHD1-deficient cells. IFI16 and STING were acquired in the activation of STING-IFN-I pathway in SAMHD1-deficient cells. SAMHD1 silencing in LUAD cells promoted macrophage M1 polarization in vitro. SAMHD1 silencing synergized with radiation to activate ssDNA-STING-IFN-I pathway, inhibit proliferation, promote apoptosis and regulate cell cycle. SAMHD1 silencing cooperated with radiotherapy to inhibit tumor growth and increase CD86+MHC-IIhigh M1 proportion and CD8+ T cell infiltration in vivo. CONCLUSIONS SAMHD1 deficiency induced IFN-I production through cytosolic IFI16-STING pathway in LUAD cells. Moreover, SAMHD1 downregulation and radiation cooperated to inhibit tumor growth and enhance anti-tumor immune responses through macrophage M1 polarization and CD8+ T cell infiltration. Combination of SAMHD1 inhibition and radiotherapy may be a potentially therapeutic strategy for LUAD patients.
Collapse
Affiliation(s)
- Yangyi Li
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Yuke Gao
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Xueping Jiang
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Yajie Cheng
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Jianguo Zhang
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Liexi Xu
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Xinyu Liu
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Zhengrong Huang
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China ,grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Conghua Xie
- grid.413247.70000 0004 1808 0969Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China ,grid.413247.70000 0004 1808 0969Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China ,grid.413247.70000 0004 1808 0969Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Yan Gong
- grid.413247.70000 0004 1808 0969Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China ,grid.413247.70000 0004 1808 0969Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| |
Collapse
|