1
|
Grella SL, Donaldson TN. Contextual memory engrams, and the neuromodulatory influence of the locus coeruleus. Front Mol Neurosci 2024; 17:1342622. [PMID: 38375501 PMCID: PMC10875109 DOI: 10.3389/fnmol.2024.1342622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Here, we review the basis of contextual memory at a conceptual and cellular level. We begin with an overview of the philosophical foundations of traversing space, followed by theories covering the material bases of contextual representations in the hippocampus (engrams), exploring functional characteristics of the cells and subfields within. Next, we explore various methodological approaches for investigating contextual memory engrams, emphasizing plasticity mechanisms. This leads us to discuss the role of neuromodulatory inputs in governing these dynamic changes. We then outline a recent hypothesis involving noradrenergic and dopaminergic projections from the locus coeruleus (LC) to different subregions of the hippocampus, in sculpting contextual representations, giving a brief description of the neuroanatomical and physiological properties of the LC. Finally, we examine how activity in the LC influences contextual memory processes through synaptic plasticity mechanisms to alter hippocampal engrams. Overall, we find that phasic activation of the LC plays an important role in promoting new learning and altering mnemonic processes at the behavioral and cellular level through the neuromodulatory influence of NE/DA in the hippocampus. These findings may provide insight into mechanisms of hippocampal remapping and memory updating, memory processes that are potentially dysregulated in certain psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephanie L. Grella
- MNEME Lab, Department of Psychology, Program in Neuroscience, Loyola University Chicago, Chicago, IL, United States
| | - Tia N. Donaldson
- Systems Neuroscience and Behavior Lab, Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
2
|
Custodio RJP, Kim M, Chung YC, Kim BN, Kim HJ, Cheong JH. Thrsp Gene and the ADHD Predominantly Inattentive Presentation. ACS Chem Neurosci 2023; 14:573-589. [PMID: 36716294 DOI: 10.1021/acschemneuro.2c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
There are three presentations of attention-deficit/hyperactivity disorder (ADHD): the predominantly inattention (ADHD-PI), predominantly hyperactive-impulsive (ADHD-HI), and combined (ADHD-C) presentations of ADHD. These may represent distinct childhood-onset neurobehavioral disorders with separate etiologies. ADHD diagnoses are behaviorally based, so investigations into potential etiologies should be founded on behavior. Animal models of ADHD demonstrate face, predictive, and construct validity when they accurately reproduce elements of the symptoms, etiology, biochemistry, and disorder treatment. Spontaneously hypertensive rats (SHR/NCrl) fulfill many validation criteria and compare well with clinical cases of ADHD-C. Compounding the difficulty of selecting an ideal model to study specific presentations of ADHD is a simple fact that our knowledge regarding ADHD neurobiology is insufficient. Accordingly, the current review has explored a potential animal model for a specific presentation, ADHD-PI, with acceptable face, predictive, and construct validity. The Thrsp gene could be a biomarker for ADHD-PI presentation, and THRSP OE mice could represent an animal model for studying this distinct ADHD presentation.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors─IfADo, Ardeystraße 67, 44139 Dortmund, Germany
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea.,Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Bung-Nyun Kim
- Department of Psychiatry and Behavioral Science, College of Medicine, Seoul National University, 101 Daehakro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
3
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Noori T, Sahebgharani M, Sureda A, Sobarzo-Sanchez E, Fakhri S, Shirooie S. Targeting PI3K by Natural Products: A Potential Therapeutic Strategy for Attention-deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1564-1578. [PMID: 35043762 PMCID: PMC9881086 DOI: 10.2174/1570159x20666220119125040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/02/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is a highly prevalent childhood psychiatric disorder. In general, a child with ADHD has significant attention problems with difficulty concentrating on a subject and is generally associated with impulsivity and excessive activity. The etiology of ADHD in most patients is unknown, although it is considered to be a multifactorial disease caused by a combination of genetics and environmental factors. Diverse factors, such as the existence of mental, nutritional, or general health problems during childhood, as well as smoking and alcohol drinking during pregnancy, are related to an increased risk of ADHD. Behavioral and psychological characteristics of ADHD include anxiety, mood disorders, behavioral disorders, language disorders, and learning disabilities. These symptoms affect individuals, families, and communities, negatively altering educational and social results, strained parent-child relationships, and increased use of health services. ADHD may be associated with deficits in inhibitory frontostriatal noradrenergic neurons on lower striatal structures that are predominantly driven by dopaminergic neurons. Phosphoinositide 3-kinases (PI3Ks) are a conserved family of lipid kinases that control a number of cellular processes, including cell proliferation, differentiation, migration, insulin metabolism, and apoptosis. Since PI3K plays an important role in controlling the noradrenergic neuron, it opens up new insights into research on ADHD and other developmental brain diseases. This review presents evidence for the potential usefulness of PI3K and its modulators as a potential treatment for ADHD.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mousa Sahebgharani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de MallorcaE-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
5
|
Schmidt T, Meller S, Talbot SR, Berk BA, Law TH, Hobbs SL, Meyerhoff N, Packer RMA, Volk HA. Urinary Neurotransmitter Patterns Are Altered in Canine Epilepsy. Front Vet Sci 2022; 9:893013. [PMID: 35651965 PMCID: PMC9150448 DOI: 10.3389/fvets.2022.893013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is the most common chronic neurological disease in humans and dogs. Epilepsy is thought to be caused by an imbalance of excitatory and inhibitory neurotransmission. Intact neurotransmitters are transported from the central nervous system to the periphery, from where they are subsequently excreted through the urine. In human medicine, non-invasive urinary neurotransmitter analysis is used to manage psychological diseases, but not as yet for epilepsy. The current study aimed to investigate if urinary neurotransmitter profiles differ between dogs with epilepsy and healthy controls. A total of 223 urine samples were analysed from 63 dogs diagnosed with idiopathic epilepsy and 127 control dogs without epilepsy. The quantification of nine urinary neurotransmitters was performed utilising mass spectrometry technology. A significant difference between urinary neurotransmitter levels (glycine, serotonin, norepinephrine/epinephrine ratio, ɤ-aminobutyric acid/glutamate ratio) of dogs diagnosed with idiopathic epilepsy and the control group was found, when sex and neutering status were accounted for. Furthermore, an influence of antiseizure drug treatment upon the urinary neurotransmitter profile of serotonin and ɤ-aminobutyric acid concentration was revealed. This study demonstrated that the imbalances in the neurotransmitter system that causes epileptic seizures also leads to altered neurotransmitter elimination in the urine of affected dogs. Urinary neurotransmitters have the potential to serve as valuable biomarkers for diagnostics and treatment monitoring in canine epilepsy. However, more research on this topic needs to be undertaken to understand better the association between neurotransmitter deviations in the brain and urine neurotransmitter concentrations in dogs with idiopathic epilepsy.
Collapse
Affiliation(s)
- Teresa Schmidt
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Benjamin A. Berk
- BrainCheck.Pet – Tierärztliche Praxis für Epilepsie, Sachsenstraße, Mannheim, Germany
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Tsz H. Law
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Sarah L. Hobbs
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Nina Meyerhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Rowena M. A. Packer
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
6
|
Song I, Neal J, Lee TH. Age-Related Intrinsic Functional Connectivity Changes of Locus Coeruleus from Childhood to Older Adults. Brain Sci 2021; 11:1485. [PMID: 34827484 PMCID: PMC8615904 DOI: 10.3390/brainsci11111485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
The locus coeruleus is critical for selective information processing by modulating the brain's connectivity configuration. Increasingly, studies have suggested that LC controls sensory inputs at the sensory gating stage. Furthermore, accumulating evidence has shown that young children and older adults are more prone to distraction and filter out irrelevant information less efficiently, possibly due to the unoptimized LC connectivity. However, the LC connectivity pattern across the life span is not fully examined yet, hampering our ability to understand the relationship between LC development and the distractibility. In this study, we examined the intrinsic network connectivity of the LC using a public fMRI dataset with wide-range age samples. Based on LC-seed functional connectivity maps, we examined the age-related variation in the LC connectivity with a quadratic model. The analyses revealed two connectivity patterns explicitly. The sensory-related brain regions showed a positive quadratic age effect (u-shape), and the frontal regions for the cognitive control showed a negative quadratic age effect (inverted u-shape). Our results imply that such age-related distractibility is possibly due to the impaired sensory gating by the LC and the insufficient top-down controls by the frontal regions. We discuss the underlying neural mechanisms and limitations of our study.
Collapse
Affiliation(s)
- Inuk Song
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
| | - Joshua Neal
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
7
|
Hamrakova A, Ondrejka I, Sekaninova N, Bona Olexova L, Visnovcova Z, Cesnekova D, Hrtanek I, Oppa M, Hutka P, Tonhajzerova I. Central autonomic regulation assessed by pupillary light reflex is impaired in children with attention deficit hyperactivity disorder. Physiol Res 2020; 69:S513-S521. [PMID: 33476173 DOI: 10.33549/physiolres.934589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
It is assumed that the Attention Deficit Hyperactivity Disorder is associated with the central autonomic dysregulation, however, the studies are rare. Analysis of pupillary light reflex represents a non-invasive tool to provide information related to the central autonomic regulation; thus, we aimed to evaluate potential disturbances in the central autonomic integrity using pupillary light reflex examination in Attention Deficit Hyperactivity Disorder. We have examined 20 children with Attention Deficit Hyperactivity Disorder (10 boys, 13.0+/-2.3 years) and 20 age/gender-matched healthy subjects. Pupillary light reflex was examined at rest for both eyes using Pupillometer PLR-2000 (NeurOptics, USA). Evaluated parameters were: diameter of the pupil before the application of light stimulus and after illumination at the peak of the constriction, the percentual change of the pupil diameter during constriction, average constriction velocity, maximum constriction velocity and average dilation velocity. We found significantly lower percentual change of the pupil diameter during constriction for both eyes in Attention Deficit Hyperactivity Disorder group compared to controls (right eye: -25.81+/-1.23 % vs. -30.32+/-1.31 %, p<0.05, left eye: -25.44+/-1.65 % vs. -30.35+/-0.98 %, p<0.05). The average constriction velocity and maximum constriction velocity were significantly shortened in left eye in Attention Deficit Hyperactivity Disorder group compared to controls (p<0.05). Our findings revealed altered pupillary light reflex indicating abnormal centrally-mediated autonomic regulation characterized by parasympathetic underactivity associated with relative sympathetic predominance in children suffering from Attention Deficit Hyperactivity Disorder.
Collapse
Affiliation(s)
- A Hamrakova
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic. ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lerner S, Anderzhanova E, Verbitsky S, Eilam R, Kuperman Y, Tsoory M, Kuznetsov Y, Brandis A, Mehlman T, Mazkereth R, McCarter R, Segal M, Nagamani SCS, Chen A, Erez A. ASL Metabolically Regulates Tyrosine Hydroxylase in the Nucleus Locus Coeruleus. Cell Rep 2020; 29:2144-2153.e7. [PMID: 31747589 PMCID: PMC6902269 DOI: 10.1016/j.celrep.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with germline mutations in the urea-cycle enzyme argininosuccinate lyase (ASL) are at risk for developing neurobehavioral and cognitive deficits. We find that ASL is prominently expressed in the nucleus locus coeruleus (LC), the central source of norepinephrine. Using natural history data, we show that individuals with ASL deficiency are at risk for developing attention deficits. By generating LC-ASL-conditional knockout (cKO) mice, we further demonstrate altered response to stressful stimuli with increased seizure reactivity in LC-ASL-cKO mice. Depletion of ASL in LC neurons leads to reduced amount and activity of tyrosine hydroxylase (TH) and to decreased catecholamines synthesis, due to decreased nitric oxide (NO) signaling. NO donors normalize catecholamine levels in the LC, seizure sensitivity, and the stress response in LC-ASL-cKO mice. Our data emphasize ASL importance for the metabolic regulation of LC function with translational relevance for ASL deficiency (ASLD) patients as well as for LC-related pathologies. ASL is expressed in the locus coeruleus (LC) and regulates catecholamine synthesis LC-ASL deficiency in mice promotes abnormal stress response and seizure sensitivity LC-ASL deficiency decreases nitric-oxide levels and tyrosine hydroxylase activity NO donors normalize catecholamine production and rescue LC-ASL deficiency phenotype
Collapse
Affiliation(s)
- Shaul Lerner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Elmira Anderzhanova
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Clinic for Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Sima Verbitsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Ram Mazkereth
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Robert McCarter
- Center for Translational Sciences, Children's National Health System, The George Washington University, Washington, DC, USA
| | - Menahem Segal
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Function, Regulation and Biological Roles of PI3Kγ Variants. Biomolecules 2019; 9:biom9090427. [PMID: 31480354 PMCID: PMC6770443 DOI: 10.3390/biom9090427] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylinositide 3-kinase (PI3K) γ is the only class IB PI3K member playing significant roles in the G-protein-dependent regulation of cell signaling in health and disease. Originally found in the immune system, increasing evidence suggest a wide array of functions in the whole organism. PI3Kγ occur as two different heterodimeric variants: PI3Kγ (p87) and PI3Kγ (p101), which share the same p110γ catalytic subunit but differ in their associated non-catalytic subunit. Here we concentrate on specific PI3Kγ features including its regulation and biological functions. In particular, the roles of its non-catalytic subunits serving as the main regulators determining specificity of class IB PI3Kγ enzymes are highlighted.
Collapse
|
10
|
Park G, Jung YS, Park MK, Yang CH, Kim YU. Melatonin inhibits attention-deficit/hyperactivity disorder caused by atopic dermatitis-induced psychological stress in an NC/Nga atopic-like mouse model. Sci Rep 2018; 8:14981. [PMID: 30297827 PMCID: PMC6175954 DOI: 10.1038/s41598-018-33317-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/27/2018] [Indexed: 12/28/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with the hallmark characteristics of pruritus, psychological stress, and sleep disturbance, all possibly associated with an increased risk of attention-deficit/hyperactivity disorder (ADHD). However, the etiology of the possible association between AD and ADHD is still not well understood. 2,4-dinitrochlorobenzene or corticosterone was used to evaluate the atopic symptom and its psychologic stress in the atopic mice model. Melatonin, corticotropin-releasing hormone, corticotropin-releasing hormone receptor, urocortin, proopiomelanocortin, adrenocorticotropic hormone, corticosterone, cAMP, cAMP response element-binding protein, dopamine and noradrenaline were analyzed spectrophotometrically, and the expression of dopamine beta-hydroxylase and tyrosine hydroxylase were measured by Western blotting or immunohistochemistry. AD-related psychological stress caused an increase in the levels of dopamine beta-hydroxylase and tyrosine hydroxylase, degradation of melatonin, hyper-activity of the hypothalamic-pituitary-adrenal axis, and dysregulation of dopamine and noradrenaline levels (ADHD phenomena) in the locus coeruleus, prefrontal cortex, and striatum of the AD mouse brain. Notably, melatonin administration inhibited the development of ADHD phenomena and their-related response in the mouse model. This study demonstrated that AD-related psychological stress increased catecholamine dysfunction and accelerated the development of psychiatric comorbidities, such as ADHD.
Collapse
MESH Headings
- Animals
- Attention Deficit Disorder with Hyperactivity/chemically induced
- Attention Deficit Disorder with Hyperactivity/drug therapy
- Attention Deficit Disorder with Hyperactivity/metabolism
- Attention Deficit Disorder with Hyperactivity/pathology
- Brain/metabolism
- Brain/pathology
- Cell Line, Transformed
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Disease Models, Animal
- Humans
- Melatonin/pharmacology
- Mice
- Stress, Psychological/chemically induced
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
Collapse
Affiliation(s)
- Gunhyuk Park
- The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Moon-Ki Park
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsangbuk-do, 38610, Republic of Korea
| | - Chae Ha Yang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsangbuk-do, 38610, Republic of Korea.
| |
Collapse
|
11
|
Noradrenergic Modulation of Cognition in Health and Disease. Neural Plast 2017; 2017:6031478. [PMID: 28596922 PMCID: PMC5450174 DOI: 10.1155/2017/6031478] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
Norepinephrine released by the locus coeruleus modulates cellular processes and synaptic transmission in the central nervous system through its actions at a number of pre- and postsynaptic receptors. This transmitter system facilitates sensory signal detection and promotes waking and arousal, processes which are necessary for navigating a complex and dynamic sensory environment. In addition to its effects on sensory processing and waking behavior, norepinephrine is now recognized as a contributor to various aspects of cognition, including attention, behavioral flexibility, working memory, and long-term mnemonic processes. Two areas of dense noradrenergic innervation, the prefrontal cortex and the hippocampus, are particularly important with regard to these functions. Due to its role in mediating normal cognitive function, it is reasonable to expect that noradrenergic transmission becomes dysfunctional in a number of neuropsychiatric and neurodegenerative diseases characterized by cognitive deficits. In this review, we summarize the unique role that norepinephrine plays in prefrontal cortical and hippocampal function and how its interaction with its various receptors contribute to cognitive behaviors. We further assess the changes that occur in the noradrenergic system in Alzheimer's disease, Parkinson's disease, attention-deficit/hyperactivity disorder, and schizophrenia and how these changes contribute to cognitive decline in these pathologies.
Collapse
|