1
|
Dasgupta P, Puduvalli VK. Diversity of metabolic features and relevance to clinical subtypes of gliomas. Semin Cancer Biol 2025; 112:126-134. [PMID: 40194749 DOI: 10.1016/j.semcancer.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/13/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Gliomas carry a dismal prognosis and have proven difficult to treat. Current treatments and efforts to target individual signaling pathways have failed. This is thought to be due to genetic and epigenetic heterogeneity and resistance. Therefore, interest has grown in developing a deeper understanding of the metabolic alterations that represent drivers and dependencies in gliomas. Therapies that target glioma-specific metabolic dependencies overcome the challenges of disease heterogeneity. Here, we present the diverse metabolic features of each current clinical subtype of glioma. We believe that this approach will enable the development of novel strategies to specifically target the various clinical and molecular subtypes of glioma using these metabolic features.
Collapse
Affiliation(s)
- Pushan Dasgupta
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Huang B, Shen W, Jia Y, Qin L, Wang H, Sun Q, Xiao Z, Zhang R, Wang H. LDHAα, a lactate dehydrogenase A isoform, promotes glycolysis and tumor progression. FEBS J 2025; 292:2223-2236. [PMID: 39828959 DOI: 10.1111/febs.17374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/25/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Lactate dehydrogenase A (LDHA) is upregulated in multiple cancer types and contributes to the Warburg effect. Several studies have found that many tumor-related genes have subtypes and play important roles in promoting cancer development. Here, we identified a novel LDHA transcript, which produced a new protein 3 kDa larger than LDHA, which we named LDHAα. We found that multiple cancer cell lines express LDHAα, and ectopic expression of LDHAα led to a higher proliferation and migration rate in vitro. Ectopic expression of LDHAα could also promote tumor cell growth in vivo. Conversely, deletion of LDHAα by CRISPR-sgRNA significantly inhibited the growth of tumor cells. LDHAα was found to be mainly located in the cytoplasm, and overexpression or deletion of LDHAα could significantly affect the glucose uptake and lactate production of tumor cells. Further investigation showed that c-MYC and FOXM1 could markedly modulate the expression of both LDHA and LDHAα, especially c-MYC. We found that a small molecular compound targeting LDHA could also inhibit the enzyme activity of LDHAα. LDHAα, LDHA and c-MYC expression was significantly higher in human acute lymphocytic leukemia and colorectal cancer tissue specimens compared to normal controls. In conclusion, our study identified LDHAα as a subtype of LDHA and highlighted its critical role in tumor metabolism, providing a potential new therapeutic target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Bingqing Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wencui Shen
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital & Eye Institute, NanKai University, Tianjin, China
| | - Yujiao Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Haoxu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qi Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
3
|
Sandhbor P, John G, Bhat S, Goda JS. Immune response recalibration using immune therapy and biomimetic nano-therapy against high-grade gliomas and brain metastases. Asian J Pharm Sci 2025; 20:101021. [PMID: 40224727 PMCID: PMC11987628 DOI: 10.1016/j.ajps.2025.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/07/2024] [Accepted: 10/03/2024] [Indexed: 04/15/2025] Open
Abstract
Although with aggressive standards of care like surgical resection, chemotherapy, and radiation, high-grade gliomas (HGGs) and brain metastases (BM) treatment has remained challenging for more than two decades. However, technological advances in this field and immunotherapeutic strategies have revolutionized the treatment of HGGs and BM. Immunotherapies like immune checkpoint inhibitors, CAR-T targeting, oncolytic virus-based therapy, bispecific antibody treatment, and vaccination approaches, etc., are emerging as promising avenues offering new hope in refining patient's survival benefits. However, selective trafficking across the blood-brain barrier (BBB), immunosuppressive tumor microenvironment (TME), metabolic alteration, and tumor heterogeneity limit the therapeutic efficacy of immunotherapy for HGGs and BM. Furthermore, to address this concern, the NanoBioTechnology-based bioinspired delivery system has been gaining tremendous attention in recent years. With technological advances such as Trojan horse targeting and infusing/camouflaging nanoparticles surface with biological molecules/cells like immunocytes, erythrocytes, platelets, glioma cell lysate and/or integrating these strategies to get hybrid membrane for homotypic recognition. These biomimetic nanotherapy offers advantages over conventional nanoparticles, focusing on greater target specificity, increased circulation stability, higher active loading capacity, BBB permeability (inherent inflammatory chemotaxis of neutrophils), decreased immunogenicity, efficient metabolism-based combinatorial effects, and prevention of tumor recurrence by induction of immunological memory, etc. provide new age of improved immunotherapies outcomes against HGGs and BM. In this review, we emphasize on neuro-immunotherapy and the versatility of these biomimetic nano-delivery strategies for precise targeting of hard-to-treat and most lethal HGGs and BM. Moreover, the challenges impeding the clinical translatability of these approaches were addressed to unmet medical needs of brain cancers.
Collapse
Affiliation(s)
- Puja Sandhbor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore 21218, USA
| | - Geofrey John
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar 410210, India
- Homi Bhabha National Institute, Anushakti Nagar 400094, India
| | - Sakshi Bhat
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar 410210, India
- Homi Bhabha National Institute, Anushakti Nagar 400094, India
| | - Jayant S. Goda
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar 410210, India
- Homi Bhabha National Institute, Anushakti Nagar 400094, India
| |
Collapse
|
4
|
Yuan W, Lu G, Zhao Y, He X, Liao S, Wang Z, Lei X, Xie Z, Yang X, Tang S, Tang G, Deng X. Intranuclear TCA and mitochondrial overload: The nascent sprout of tumors metabolism. Cancer Lett 2025; 613:217527. [PMID: 39909232 DOI: 10.1016/j.canlet.2025.217527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Abnormal glucose metabolism in tumors is a well-known form of metabolic reprogramming in tumor cells, the most representative of which, the Warburg effect, has been widely studied and discussed since its discovery. However, contradictions in a large number of studies and suboptimal efficacy of drugs targeting glycolysis have prompted us to further deepen our understanding of glucose metabolism in tumors. Here, we review recent studies on mitochondrial overload, nuclear localization of metabolizing enzymes, and intranuclear TCA (nTCA) in the context of the anomalies produced by inhibition of the Warburg effect. We provide plausible explanations for many of the contradictory points in the existing studies, including the causes of the Warburg effect. Furthermore, we provide a detailed prospective discussion of these studies in the context of these new findings, providing new ideas for the use of nTCA and mitochondrial overload in tumor therapy.
Collapse
Affiliation(s)
- Weixi Yuan
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guozhong Lu
- 922nd Hospital of Hengyang, 421001, Hunan, China
| | - Yin Zhao
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiang He
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Senyi Liao
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyong Lei
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Xiangnan University, Chenzhou, 423000, China
| | - Zhizhong Xie
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Xiangnan University, Chenzhou, 423000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery Systems (2018TP1044), Hunan, 410007, China.
| | - Guotao Tang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Deng H, Zhao L, Ge H, Gao Y, Fu Y, Lin Y, Masoodi M, Losmanova T, Medová M, Ott J, Su M, Wang W, Peng RW, Dorn P, Marti TM. Ubiquinol-mediated suppression of mitochondria-associated ferroptosis is a targetable function of lactate dehydrogenase B in cancer. Nat Commun 2025; 16:2597. [PMID: 40090955 PMCID: PMC11911438 DOI: 10.1038/s41467-025-57906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Lactate dehydrogenase B (LDHB) fuels oxidative cancer cell metabolism by converting lactate to pyruvate. This study uncovers LDHB's role in countering mitochondria-associated ferroptosis independently of lactate's function as a carbon source. LDHB silencing alters mitochondrial morphology, causes lipid peroxidation, and reduces cancer cell viability, which is potentiated by the ferroptosis inducer RSL3. Unlike LDHA, LDHB acts in parallel with glutathione peroxidase 4 (GPX4) and dihydroorotate dehydrogenase (DHODH) to suppress mitochondria-associated ferroptosis by decreasing the ubiquinone (coenzyme Q, CoQ) to ubiquinol (CoQH2) ratio. Indeed, supplementation with mitoCoQH2 (mitochondria-targeted analogue of CoQH2) suppresses mitochondrial lipid peroxidation and cell death after combined LDHB silencing and RSL3 treatment, consistent with the presence of LDHB in the cell fraction containing the mitochondrial inner membrane. Addressing the underlying molecular mechanism, an in vitro NADH consumption assay with purified human LDHB reveals that LDHB catalyzes the transfer of reducing equivalents from NADH to CoQ and that the efficiency of this reaction increases by the addition of lactate. Finally, radiation therapy induces mitochondrial lipid peroxidation and reduces tumor growth, which is further enhanced when combined with LDHB silencing. Thus, LDHB-mediated lactate oxidation drives the CoQ-dependent suppression of mitochondria-associated ferroptosis, a promising target for combination therapies.
Collapse
Affiliation(s)
- Haibin Deng
- 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Liang Zhao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Huixiang Ge
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Yan Fu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Yantang Lin
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Tereza Losmanova
- Institute of Tissue Medicine and Pathology, ITMP, University of Bern, Bern, Switzerland
| | - Michaela Medová
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Julien Ott
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Min Su
- 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenxiang Wang
- 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Zarzuela L, Durán RV, Tomé M. Metabolism and signaling crosstalk in glioblastoma progression and therapy resistance. Mol Oncol 2025; 19:592-613. [PMID: 38105543 PMCID: PMC11887670 DOI: 10.1002/1878-0261.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023] Open
Abstract
Glioblastoma is the most common form of primary malignant brain tumor in adults and one of the most lethal human cancers, with high recurrence and therapy resistance. Glioblastoma cells display extensive genetic and cellular heterogeneity, which precludes a unique and common therapeutic approach. The standard of care in glioblastoma patients includes surgery followed by radiotherapy plus concomitant temozolomide. As in many other cancers, cell signaling is deeply affected due to mutations or alterations in the so-called molecular drivers. Moreover, glioblastoma cells undergo metabolic adaptations to meet the new demands in terms of energy and building blocks, with an increasing amount of evidence connecting metabolic transformation and cell signaling deregulation in this type of aggressive brain tumor. In this review, we summarize some of the most common alterations both in cell signaling and metabolism in glioblastoma, presenting an integrative discussion about how they contribute to therapy resistance. Furthermore, this review aims at providing a comprehensive overview of the state-of-the-art of therapeutic approaches and clinical trials exploiting signaling and metabolism in glioblastoma.
Collapse
Affiliation(s)
- Laura Zarzuela
- Centro Andaluz de Biología Molecular y Medicina Regenerativa – CABIMER, Consejo Superior de Investigaciones CientíficasUniversidad de Sevilla, Universidad Pablo de OlavideSevilleSpain
| | - Raúl V. Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa – CABIMER, Consejo Superior de Investigaciones CientíficasUniversidad de Sevilla, Universidad Pablo de OlavideSevilleSpain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa – CABIMER, Consejo Superior de Investigaciones CientíficasUniversidad de Sevilla, Universidad Pablo de OlavideSevilleSpain
| |
Collapse
|
7
|
Godlewski A, Mojsak P, Pienkowski T, Lyson T, Mariak Z, Reszec J, Kaminski K, Moniuszko M, Kretowski A, Ciborowski M. Metabolomic profiling of plasma from glioma and meningioma patients based on two complementary mass spectrometry techniques. Metabolomics 2025; 21:33. [PMID: 39987409 DOI: 10.1007/s11306-025-02231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/02/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Extracranial and intracranial tumors are a diverse group of malignant and benign neoplasms, influenced by multiple factors. Given the complex nature of these tumors and usually late or accidental diagnosis, minimally invasive, rapid, early, and accurate diagnostic methods are urgently required. Metabolomics offers promising insights into central nervous system tumors by uncovering distinctive metabolic changes linked to tumor development. OBJECTIVES This study aimed to elucidate the role of altered metabolites and the associated biological pathways implicated in the development of gliomas and meningiomas. METHODS The study was conducted on 95 patients with gliomas, 68 patients with meningiomas, and 71 subjects as a control group. The metabolic profiling of gliomas and meningiomas achieved by integrating untargeted metabolomic analysis based on GC-MS and targeted analysis performed using LC-MS/MS represents the first comprehensive study. Three comparisons (gliomas or meningiomas vs. controls as well as gliomas vs. meningiomas) were performed to reveal statistically significant metabolites. RESULTS Comparative analysis revealed 97, 56, and 27 significant metabolites for gliomas vs. controls, meningiomas vs. controls and gliomas vs. meningiomas comparison, respectively. Moreover, among above mentioned comparisons unique metabolites involved in arginine biosynthesis and metabolism, the Krebs cycle, and lysine degradation pathways were found. Notably, 2-aminoadipic acid has been identified as a metabolite that can be used in distinguishing two tumor types. CONCLUSIONS Our results provide a deeper understanding of the metabolic changes associated with brain tumor development and progression.
Collapse
Affiliation(s)
- Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Tomasz Lyson
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Interventional Neurology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Karol Kaminski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland.
| |
Collapse
|
8
|
Liu R, Ren X, Park YE, Feng H, Sheng X, Song X, AminiTabrizi R, Shah H, Li L, Zhang Y, Abdullah KG, Dubois-Coyne S, Lin H, Cole PA, DeBerardinis RJ, McBrayer SK, Huang H, Zhao Y. Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis. Cell Metab 2025; 37:377-394.e9. [PMID: 39642882 PMCID: PMC11798710 DOI: 10.1016/j.cmet.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/18/2024] [Accepted: 11/09/2024] [Indexed: 12/09/2024]
Abstract
Histone lysine lactylation is a physiologically and pathologically relevant epigenetic pathway that can be stimulated by the Warburg effect-associated L-lactate. Nevertheless, the mechanism by which cells use L-lactate to generate lactyl-coenzyme A (CoA) and how this process is regulated remains unknown. Here, we report the identification of guanosine triphosphate (GTP)-specific SCS (GTPSCS) as a lactyl-CoA synthetase in the nucleus. The mechanism was elucidated through the crystallographic structure of GTPSCS in complex with L-lactate, followed by mutagenesis experiments. GTPSCS translocates into the nucleus and interacts with p300 to elevate histone lactylation but not succinylation. This process depends on a nuclear localization signal in the GTPSCS G1 subunit and acetylation at G2 subunit residue K73, which mediates the interaction with p300. GTPSCS/p300 collaboration synergistically regulates histone H3K18la and GDF15 expression, promoting glioma proliferation and radioresistance. GTPSCS represents the inaugural enzyme to catalyze lactyl-CoA synthesis for epigenetic histone lactylation and regulate oncogenic gene expression in glioma.
Collapse
Affiliation(s)
- Ruilong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Xuelian Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yae Eun Park
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Huixu Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinlei Sheng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaohan Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Roya AminiTabrizi
- Biological Science Division, Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Hardik Shah
- Biological Science Division, Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Lingting Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Sarah Dubois-Coyne
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Philip A Cole
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ralph J DeBerardinis
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Feng JH, Liu RJ, Chen X. Association between lactate dehydrogenase and 28-day all-cause mortality in patients with non-traumatic intracerebral hemorrhage: A retrospective analysisof the MIMIC-IV database. BIOMOLECULES & BIOMEDICINE 2025; 25:663-671. [PMID: 39508803 PMCID: PMC12010977 DOI: 10.17305/bb.2024.11189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Lactate dehydrogenase (LDH), a nonspecific inflammatory biomarker, has been used in the assessment of acute myocardial infarction, acute hepatitis, acute lung injury, and other severe diseases. However, no studies have evaluated the prognostic value of LDH in patients with non-traumatic intracerebral hemorrhage (ICH). This cohort study aims to assess the association between LDH levels and 28-day all-cause mortality in patients with non-traumatic ICH. Data for this retrospective cohort analysis were obtained from the MIMIC-IV (v2.2) database, and the study included patients with non-traumatic ICH as defined by the International Classification of Diseases, 9th and 10th editions. Patients were categorized into four distinct groups based on their LDH levels. The primary outcome of interest was the 28-day mortality rate. To analyze these associations and assess the consistency of interactions, subgroup analyses, Cox regression analysis, Kaplan-Meier (K-M) curves, and nonlinear analysis were conducted. A total of 406 patients with non-traumatic ICH were enrolled in the study and were divided into quartiles based on LDH levels. The K-M curve indicated that the 28-day all-cause mortality rate of patients in the Q4 group (LDH > 287.25) was significantly higher than in the Q1 (LDH < 194.7) (P < 0.001) and Q2 (194.7 < LDH < 233.0) (P < 0.001) groups, though not significantly different from Q3 (P = 0.140). Multivariate Cox proportional hazards analysis revealed that patients in the highest LDH quartile had a significantly increased risk of mortality compared to those in the lowest quartile across three models: unadjusted [HR, 3.401; 95% CI, 1.719-6.731; P < 0.001], partially adjusted [HR, 2.422; 95% CI, 1.211-4.846; P = 0.012], and fully adjusted [HR, 3.054; 95% CI, 1.522-6.126; P = 0.002]. Restricted cubic spline (RCS) models revealed an L-shaped association between LDH levels and the 28-day all-cause mortality rate, indicating a nonlinear relationship (P < 0.001). No significant interactions were observed between LDH levels and other factors in the subgroup analyses (all P for interaction > 0.05). Our findings indicate a significant association between 28-day all-cause mortality and LDH levels in patients with non-traumatic ICH. Specifically, patients with elevated LDH levels within the first 24 h of ICU admission are at a higher risk of mortality.
Collapse
Affiliation(s)
- Jia Hui Feng
- Department of Neurovascular Disease, The First Hospital of Jilin University, Changchun, China
| | - Ren Jie Liu
- Department of Neurovascular Disease, The First Hospital of Jilin University, Changchun, China
| | - Xuan Chen
- Department of Neurovascular Disease, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Galvis J, Guyon J, Daubon T, Nikolski M. Using DIMet for Differential Analysis of Labeled Metabolomics Data: A Step-by-step Guide Showcasing the Glioblastoma Metabolism. Bio Protoc 2025; 15:e5168. [PMID: 39872723 PMCID: PMC11769753 DOI: 10.21769/bioprotoc.5168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
Stable-isotope resolved metabolomics (SIRM) is a powerful approach for characterizing metabolic states in cells and organisms. By incorporating isotopes, such as 13C, into substrates, researchers can trace reaction rates across specific metabolic pathways. Integrating metabolomics data with gene expression profiles further enriches the analysis, as we demonstrated in our prior study on glioblastoma metabolic symbiosis. However, the bioinformatics tools for analyzing tracer metabolomics data have been limited. In this protocol, we encourage the researchers to use SIRM and transcriptomics data and to perform the downstream analysis using our software tool DIMet. Indeed, DIMet is the first comprehensive tool designed for the differential analysis of tracer metabolomics data, alongside its integration with transcriptomics data. DIMet facilitates the analysis of stable-isotope labeling and metabolic abundances, offering a streamlined approach to infer metabolic changes without requiring complex flux analysis. Its pathway-based "metabologram" visualizations effectively integrate metabolomics and transcriptomics data, offering a versatile platform capable of analyzing corrected tracer datasets across diverse systems, organisms, and isotopes. We provide detailed steps for sample preparation and data analysis using DIMet through its intuitive, web-based Galaxy interface. To showcase DIMet's capabilities, we analyzed LDHA/B knockout glioblastoma cell lines compared to controls. Accessible to all researchers through Galaxy, DIMet is free, user-friendly, and open source, making it a valuable resource for advancing metabolic research. Key features • Glioblastoma tumor spheroids in vitro replicate tumors' three-dimensional structure and natural nutrient, metabolite, and gas gradients, providing a more realistic model of tumor biology. • Joint analysis of tracer metabolomics and transcriptomics datasets provides deeper insights into the metabolic states of cells. • DIMet is a web-based tool for differential analysis and seamless integration of metabolomics and transcriptomics data, making it accessible and user-friendly. • DIMet enables researchers to infer metabolic changes, offering intuitive and visually appealing "metabologram" outputs, surpassing conventional visual representations commonly used in the field.
Collapse
Affiliation(s)
- Johanna Galvis
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| | - Joris Guyon
- University of Bordeaux, INSERM, BRIC, UMR1312, Bordeaux, France
- Department of Medical Pharmacology, CHU Bordeaux, Bordeaux, France
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
| | - Macha Nikolski
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| |
Collapse
|
11
|
Wood J, Smith SJ, Castellanos-Uribe M, Lourdusamy A, May ST, Barrett DA, Grundy RG, Kim DH, Rahman R. Metabolomic characterisation of the glioblastoma invasive margin reveals a region-specific signature. Heliyon 2025; 11:e41309. [PMID: 39816516 PMCID: PMC11732679 DOI: 10.1016/j.heliyon.2024.e41309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Isocitrate dehydrogenase wild-type glioblastoma (GBM) is characterised by a heterogeneous genetic landscape resulting from dynamic competition between tumour subclones to survive selective pressures. Improvements in metabolite identification and metabolome coverage have led to increased interest in clinically relevant applications of metabolomics. Here, we use liquid chromatography-mass spectrometry and gene expression microarray to profile integrated intratumour metabolic heterogeneity, as a direct functional readout of adaptive responses of subclones to the tumour microenvironment. Multi-region surgical sampling was performed on five adult GBM patients based on pre-operative brain imaging and fluorescence-guided surgery. Polar and hydrophobic metabolites extracted from tumour fragments were assessed, followed by putative assignment of metabolite identifications based on retention times and molecular mass. Class discrimination between tumour regions through showed clear separation of tumour regions based on polar metabolite profiles. Metabolic pathway assignments revealed several significantly altered metabolites between the tumour core and invasive region to be associated with purine and pyrimidine metabolism. This proof-of-principle study assesses intratumour heterogeneity through mass spectrometry-based metabolite profiling of multi-region biopsies. Bioinformatic interpretation of the GBM metabolome has highlighted the invasive region to be biologically distinct compared to tumour core and revealed putative drug-targetable metabolic pathways associated with purine and pyrimidine metabolism.
Collapse
Affiliation(s)
- James Wood
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Stuart J. Smith
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | | | - Anbarasu Lourdusamy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Sean T. May
- Nottingham Arabidopsis Stock Centre, School of Biosciences, University of Nottingham, UK
| | - David A. Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, UK
| | - Richard G. Grundy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| |
Collapse
|
12
|
Vijayanathan Y, Ho IAW. The Impact of Metabolic Rewiring in Glioblastoma: The Immune Landscape and Therapeutic Strategies. Int J Mol Sci 2025; 26:669. [PMID: 39859381 PMCID: PMC11765942 DOI: 10.3390/ijms26020669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM's metabolic landscape and reinforcing immune evasion. Genetic mutations, including Isocitrate Dehydrogenase (IDH) mutations, Epidermal Growth Factor Receptor (EGFR) amplification, and Phosphotase and Tensin Homolog (PTEN) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients.
Collapse
Affiliation(s)
- Yuganthini Vijayanathan
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore;
| | - Ivy A. W. Ho
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore;
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
13
|
Yang M, Han X, Li H, Du F, Feng C, Gong A. LDH Isoenzyme and GAA-BSA Nanoparticles: A Novel Therapy Approach for Proneural Subtype Glioblastoma Multiforme. J Cancer 2025; 16:1101-1117. [PMID: 39895794 PMCID: PMC11786042 DOI: 10.7150/jca.98452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025] Open
Abstract
Glioblastoma multiforme (GBM), whose pathogenesis involves proneural-to-mesenchymal transition (PMT), is the most malignant type of glioma and is associated with a bleak prognosis. Lactate dehydrogenase (LDH) comprises two major subunits, LDHA and LDHB, which can assemble into five different isoenzymes (LDH1-5). However, the role of LDH isoenzyme and its subunits in different GBM subtypes is largely unknown. Our findings reveal that LDHA and LDHB subunits correlated with mesenchymal and proneural subtype classification, and have prognostic and clinical significance in GBM patients. Moreover, it is demonstrated that LDH5, characterized by high LDHA and low LDHB levels, is highly expressed in mesenchymal subtype GBM cells and promotes proliferation, migration, and PMT. Conversely, proneural subtype GBM cells exhibited LDH1 dominance, and low LDHA and high LDHB levels. Notably, LDH1 played a pivotal role in the proliferation, migration, and PMT of proneural glioma cells. For treatment of proneural subtype GBM, gossypol-acetic acid (GAA)-bovine serum albumin (BSA) nanoparticles (GAA-BSA NPs) were developed to ameliorate PMT by targeting LDH1. These nanoparticles effectively suppress proneural subtype tumor growth both in vitro and in vivo, surpassing their efficacy against the mesenchymal subtype. The results offer several novel insights into the role of LDH isoenzyme in subtype classification between mesenchymal and proneural GBM and provide a promising therapeutic approach for proneural subtype GBM.
Collapse
Affiliation(s)
- Mengting Yang
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China, 212001
| | - Xiu Han
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China, 212001
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, China, 215213
| | - Hongxu Li
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China, 212001
| | - Fengyi Du
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China, 212001
| | - Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China, 212001
| |
Collapse
|
14
|
Chandouri B, Naves T, Yassine M, Ikhlef L, Tricard J, Chaunavel A, Homayed Z, Pannequin J, Girard N, Durand S, Carré V, Lalloué F. Comparison of methods for cancer stem cell detection in prognosis of early stages NSCLC. Br J Cancer 2024; 131:1425-1436. [PMID: 39304747 PMCID: PMC11519646 DOI: 10.1038/s41416-024-02839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Despite advances in diagnosis and treatment in lung cancer, therapies still fail to improve patient management due to resistance mechanisms and relapses. As Cancer stem cells (CSCs) directly contribute to tumor growth and therapeutic resistance, their clinical detection represents a major challenge. However specific and additional CSC markers lack. Thus, our aim was to achieve selective detection of CSCs with specific glycan patterns and assess the CSCs burden to predict the risk of relapse in NSCLC tumors. METHODS The lung CSCs detection and sorting with a lectin MIX were assessed and compared to CD133 in vitro. Then, its putative role as CSC biomarker was evaluated in vivo and its clinical significance on 221 NSCLC patients. RESULTS We showed a significant CSCs enrichment in the MIX+ sorted fraction compared to CD133+ cells and confirmed its high tumorigenic capacity. The MIX prognostic value on the overall survival from early stages patients was validated suggesting its potential for detecting CSCs directly linked to tumor aggressiveness. CONCLUSION The MIX could be more relevant for detecting and sorting CSCs than CD133. Moreover, its prognosis value could enable clinicians to better classify early-stage patients at high risk of relapse in order to tailor therapeutic decisions.
Collapse
Affiliation(s)
- Boutaîna Chandouri
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France.
- Carcidiag Biotechnologies company, Guéret, France.
| | - Thomas Naves
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France
| | - May Yassine
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France
| | - Léa Ikhlef
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France
| | - Jérémy Tricard
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France
- Thoracic and Cardiovascular Surgery Department, Limoges University Hospital Center, Limoges, France
| | - Alain Chaunavel
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Zeinab Homayed
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicolas Girard
- Thorax Institute Curie Montsouris, Institut Curie, Paris, France
- UVSQ, Paris Saclay University, Versailles, France
| | - Stéphanie Durand
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France.
| | | | - Fabrice Lalloué
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France.
| |
Collapse
|
15
|
Zheng X, Zhang S, Ma H, Dong Y, Zheng J, Zeng L, Liu J, Dai Y, Yin Q. Replenishment of TCA cycle intermediates and long-noncoding RNAs regulation in breast cancer. Mol Cell Endocrinol 2024; 592:112321. [PMID: 38936596 DOI: 10.1016/j.mce.2024.112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/13/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The tricarboxylic acid (TCA) cycle is an essential interface that coordinates cellular metabolism and is as a primary route determining the fate of a variety of fuel sources, including glucose, fatty acid and glutamate. The crosstalk of nutrients replenished TCA cycle regulates breast cancer (BC) progression by changing substrate levels-induced epigenetic alterations, especially the methylation, acetylation, succinylation and lactylation. Long non-coding RNAs (lncRNA) have dual roles in inhibiting or promoting energy reprogramming, and so altering the metabolic flux of fuel sources to the TCA cycle, which may regulate epigenetic modifications at the cellular level of BC. This narrative review discussed the central role of the TCA cycle in interconnecting numerous fuels and the induced epigenetic modifications, and the underlying regulatory mechanisms of lncRNAs in BC.
Collapse
Affiliation(s)
- Xuewei Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - ShunShun Zhang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - HaoDi Ma
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yirui Dong
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiayu Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Li Zeng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiangbo Liu
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yanzhenzi Dai
- Animal Science, School of Biosciences, University of Nottingham, UK.
| | - Qinan Yin
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
16
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Li X, Du Y. Lactate Metabolism Subtypes Analysis Reveals CCDC80 as a Novel Prognostic Biomarker in Gastric Cancer. J Cancer 2024; 15:5557-5576. [PMID: 39308689 PMCID: PMC11414610 DOI: 10.7150/jca.97640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
Lactate metabolism plays a vital role in tumor progression. Currently, gastric cancer (GC) has a poor prognosis. Therefore, our research aimed to investigate novel biomarkers related to lactate metabolism in patients. Patient data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were divided into subtypes based on the expression of lactate metabolism-related genes (LMRGs). Based on the subtypes, we identified coiled-coil domain containing 80 (CCDC80) for further investigation. Univariate and multivariate Cox regression models were constructed to determine the prognostic value of CCDC80 in GC. We further explored the mechanism by which CCDC80 affects GC prognosis using gene set enrichment analysis (GSEA). Immune infiltration and drug sensitivity analyses were also performed. Finally, immunohistochemical staining was used to evaluate CCDC80 expression in normal and tumor tissues. We observed that CCDC80 was overexpressed in GC samples and was significantly associated with T and pathological stages. Multivariate Cox analysis identified high CCDC80 expression as an independent prognostic marker. GSEA indicated that the oxidative phosphorylation pathway was highly enriched in the low CCDC80 expression group. Moreover, CCDC80 was associated with immune cell infiltration, especially that of M2 macrophages. Patients with higher CCDC80 expression exhibited lower sensitivity to paclitaxel. In conclusion, our findings demonstrate that CCDC80 is a critical regulator in GC progression and immune response and is associated with lactate metabolism, and it could be used as a novel biomarker for prognostic and chemotherapy treatment purposes.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110000, China
| | - Yaqi Du
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
18
|
Galvis J, Guyon J, Dartigues B, Hecht H, Grüning B, Specque F, Soueidan H, Karkar S, Daubon T, Nikolski M. DIMet: an open-source tool for differential analysis of targeted isotope-labeled metabolomics data. Bioinformatics 2024; 40:btae282. [PMID: 38656970 PMCID: PMC11109473 DOI: 10.1093/bioinformatics/btae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
MOTIVATION Many diseases, such as cancer, are characterized by an alteration of cellular metabolism allowing cells to adapt to changes in the microenvironment. Stable isotope-resolved metabolomics (SIRM) and downstream data analyses are widely used techniques for unraveling cells' metabolic activity to understand the altered functioning of metabolic pathways in the diseased state. While a number of bioinformatic solutions exist for the differential analysis of SIRM data, there is currently no available resource providing a comprehensive toolbox. RESULTS In this work, we present DIMet, a one-stop comprehensive tool for differential analysis of targeted tracer data. DIMet accepts metabolite total abundances, isotopologue contributions, and isotopic mean enrichment, and supports differential comparison (pairwise and multi-group), time-series analyses, and labeling profile comparison. Moreover, it integrates transcriptomics and targeted metabolomics data through network-based metabolograms. We illustrate the use of DIMet in real SIRM datasets obtained from Glioblastoma P3 cell-line samples. DIMet is open-source, and is readily available for routine downstream analysis of isotope-labeled targeted metabolomics data, as it can be used both in the command line interface or as a complete toolkit in the public Galaxy Europe and Workfow4Metabolomics web platforms. AVAILABILITY AND IMPLEMENTATION DIMet is freely available at https://github.com/cbib/DIMet, and through https://usegalaxy.eu and https://workflow4metabolomics.usegalaxy.fr. All the datasets are available at Zenodo https://zenodo.org/records/10925786.
Collapse
Affiliation(s)
- Johanna Galvis
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| | - Joris Guyon
- University of Bordeaux, INSERM, BPH U1219, Bordeaux, France
- Medical Pharmacology Department, Bordeaux University Hospital, Bordeaux, France
| | - Benjamin Dartigues
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| | - Helge Hecht
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Galaxy Europe, University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Björn Grüning
- Galaxy Europe, University of Freiburg, Freiburg, Baden-Württemberg, Germany
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany
| | - Florian Specque
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
| | - Hayssam Soueidan
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| | - Slim Karkar
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
| | - Macha Nikolski
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| |
Collapse
|
19
|
Sang C, Yan L, Lin J, Lin Y, Gao Q, Shen X. Identification and validation of a lactate metabolism-related six-gene prognostic signature in intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol 2024; 150:199. [PMID: 38627278 PMCID: PMC11021257 DOI: 10.1007/s00432-024-05723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant and fatal liver tumor with increasing incidence worldwide. Lactate metabolism has been recently reported as a crucial contributor to tumor progression and immune regulation in the tumor microenvironment. However, it remains poorly identified about the biological functions of lactate metabolism in iCCA, which hinders the development of prognostic tools and therapeutic interventions. METHODS The univariate Cox regression analysis and Boruta algorithm were utilized to identify key lactate metabolism-related genes (LMRGs), and a prognostic signature was constructed based on LMRG scores. Genomic variations and immune cell infiltration were evaluated in the high and low LMRG score groups. Finally, the biological functions of key LMRGs were verified with in vitro and in vivo experiments. RESULTS Patients in the high LMRG score group exhibit a poor prognosis compared to those in the low LMRG score group, with a high frequency of TP53 and KRAS mutations. Moreover, the infiltration and function of NK cells were compromised in the high LMRG score group, consistent with the results from two independent single-cell RNA sequencing datasets and immunohistochemistry of tissue microarrays. Experimental data revealed that lactate dehydrogenase A (LDHA) knockdown inhibited proliferation and migration in iCCA cell lines and tumor growth in immunocompetent mice. CONCLUSION Our study revealed the biological roles of LDHA in iCCA and developed a reliable lactate metabolism-related prognostic signature for iCCA, offering promising therapeutic targets for iCCA in the clinic.
Collapse
Affiliation(s)
- Chen Sang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Li Yan
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lin
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.
| | - Xia Shen
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Yan C, Yang Z, Chen P, Yeh Y, Sun C, Xie T, Huang W, Zhang X. GPR65 sensing tumor-derived lactate induces HMGB1 release from TAM via the cAMP/PKA/CREB pathway to promote glioma progression. J Exp Clin Cancer Res 2024; 43:105. [PMID: 38576043 PMCID: PMC10993467 DOI: 10.1186/s13046-024-03025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Lactate has emerged as a critical regulator within the tumor microenvironment, including glioma. However, the precise mechanisms underlying how lactate influences the communication between tumor cells and tumor-associated macrophages (TAMs), the most abundant immune cells in glioma, remain poorly understood. This study aims to elucidate the impact of tumor-derived lactate on TAMs and investigate the regulatory pathways governing TAM-mediated tumor-promotion in glioma. METHODS Bioinformatic analysis was conducted using datasets from TCGA and CGGA. Single-cell RNA-seq datasets were analyzed by using UCSC Cell Browser and Single Cell Portal. Cell proliferation and mobility were evaluated through CCK8, colony formation, wound healing, and transwell assays. Western blot and immunofluorescence staining were applied to assess protein expression and cell distribution. RT-PCR and ELISA were employed to identify the potential secretory factors. Mechanistic pathways were explored by western blotting, ELISA, shRNA knockdown, and specific inhibitors and activators. The effects of pathway blockades were further assessed using subcutaneous and intracranial xenograft tumor models in vivo. RESULTS Elevated expressions of LDHA and MCT1 were observed in glioma and exhibited a positive correlation with M2-type TAM infiltration. Lactate derived from glioma cells induced TAMs towards M2-subtype polarization, subsequently promoting glioma cells proliferation, migration, invasion, and mesenchymal transition. GPR65, highly expressed on TAMs, sensed lactate-stimulation in the TME, fueling glioma cells malignant progression through the secretion of HMGB1. GPR65 on TAMs triggered HMGB1 release in response to lactate stimulation via the cAMP/PKA/CREB signaling pathway. Disrupting this feedback loop by GPR65-knockdown or HMGB1 inhibition mitigated glioma progression in vivo. CONCLUSION These findings unveil the intricate interplay between TAMs and tumor cells mediated by lactate and HMGB1, driving tumor progression in glioma. GPR65, selectively highly expressed on TAMs in glioma, sensed lactate stimulation and fostered HMGB1 secretion via the cAMP/PKA/CREB signaling pathway. Blocking this feedback loop presents a promising therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Chaolong Yan
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zijiang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pin Chen
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyang Yeh
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chongjing Sun
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Wei Huang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Bacq A, Depaulis A, Castagné V, Le Guern ME, Wirrell EC, Verleye M. An Update on Stiripentol Mechanisms of Action: A Narrative Review. Adv Ther 2024; 41:1351-1371. [PMID: 38443647 PMCID: PMC10960919 DOI: 10.1007/s12325-024-02813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Stiripentol (Diacomit®) (STP) is an orally active antiseizure medication (ASM) indicated as adjunctive therapy, for the treatment of seizures associated with Dravet syndrome (DS), a severe form of childhood epilepsy, in conjunction with clobazam and, in some regions valproic acid. Since the discovery of STP, several mechanisms of action (MoA) have been described that may explain its specific effect on seizures associated with DS. STP is mainly considered as a potentiator of gamma-aminobutyric acid (GABA) neurotransmission: (i) via uptake blockade, (ii) inhibition of degradation, but also (iii) as a positive allosteric modulator of GABAA receptors, especially those containing α3 and δ subunits. Blockade of voltage-gated sodium and T-type calcium channels, which is classically associated with anticonvulsant and neuroprotective properties, has also been demonstrated for STP. Finally, several studies indicate that STP could regulate glucose energy metabolism and inhibit lactate dehydrogenase. STP is also an inhibitor of several cytochrome P450 enzymes involved in the metabolism of other ASMs, contributing to boost their anticonvulsant efficacy as add-on therapy. These different MoAs involved in treatment of DS and recent data suggest a potential for STP to treat other neurological or non-neurological diseases.
Collapse
Affiliation(s)
- Alexandre Bacq
- Biocodex Research and Development Center, Compiègne, France.
| | - Antoine Depaulis
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | | | | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Marc Verleye
- Biocodex Research and Development Center, Compiègne, France
| |
Collapse
|
22
|
Lachiondo-Ortega S, Rejano-Gordillo CM, Simon J, Lopitz-Otsoa F, C Delgado T, Mazan-Mamczarz K, Goikoetxea-Usandizaga N, Zapata-Pavas LE, García-Del Río A, Guerra P, Peña-Sanfélix P, Hermán-Sánchez N, Al-Abdulla R, Fernandez-Rodríguez C, Azkargorta M, Velázquez-Cruz A, Guyon J, Martín C, Zalamea JD, Egia-Mendikute L, Sanz-Parra A, Serrano-Maciá M, González-Recio I, Gonzalez-Lopez M, Martínez-Cruz LA, Pontisso P, Aransay AM, Barrio R, Sutherland JD, Abrescia NGA, Elortza F, Lujambio A, Banales JM, Luque RM, Gahete MD, Palazón A, Avila MA, G Marin JJ, De S, Daubon T, Díaz-Quintana A, Díaz-Moreno I, Gorospe M, Rodríguez MS, Martínez-Chantar ML. SUMOylation controls Hu antigen R posttranscriptional activity in liver cancer. Cell Rep 2024; 43:113924. [PMID: 38507413 PMCID: PMC11025316 DOI: 10.1016/j.celrep.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/08/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Claudia M Rejano-Gordillo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, University Institute of Biosanitary Research of Extremadura (INUBE), 06071 Badajoz, Spain; Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Jorge Simon
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - L Estefanía Zapata-Pavas
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Ana García-Del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Pietro Guerra
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Patricia Peña-Sanfélix
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Natalia Hermán-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Ruba Al-Abdulla
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Institute of Medical Biochemistry and Molecular Biology, University Medicine of Greifswald, 17475 Greifswald, Germany
| | - Carmen Fernandez-Rodríguez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Joris Guyon
- University of Bordeaux, INSERM, BPH, U1219, 33000 Bordeaux, France; CHU de Bordeaux, Service de Pharmacologie Médicale, 33000 Bordeaux, France
| | - César Martín
- Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Arantza Sanz-Parra
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Monika Gonzalez-Lopez
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Ana M Aransay
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Rosa Barrio
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - James D Sutherland
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Félix Elortza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Asís Palazón
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Hepatology Program, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Manuel S Rodríguez
- Laboratoire de Chimie de Coordination (LCC), UPR 8241, CNRS; IPBS-University of Toulouse III-Paul Sabatier, Toulouse, France
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| |
Collapse
|
23
|
HOU GUOQIANG, XU XINHANG, HU WEIXING. GRIK1 promotes glioblastoma malignancy and is a novel prognostic factor of poor prognosis. Oncol Res 2024; 32:727-736. [PMID: 38560566 PMCID: PMC10972720 DOI: 10.32604/or.2023.043391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/08/2023] [Indexed: 04/04/2024] Open
Abstract
Primary tumors of the central nervous system (CNS) are classified into over 100 different histological types. The most common type of glioma is derived from astrocytes, and the most invasive glioblastoma (WHO IV) accounts for over 57% of these tumors. Glioblastoma (GBM) is the most common and fatal tumor of the CNS, with strong growth and invasion capabilities, which makes complete surgical resection almost impossible. Despite various treatment methods such as surgery, radiotherapy, and chemotherapy, glioma is still an incurable disease, and the median survival time of patients with GBM is shorter than 15 months. Thus, molecular mechanisms of GBM characteristic invasive growth need to be clarified to improve the poor prognosis. Glutamate ionotropic receptor kainate type subunit 1 (GRIK1) is essential for brain function and is involved in many mental and neurological diseases. However, GRIK1's pathogenic roles and mechanisms in GBM are still unknown. Single-nuclear RNA sequencing of primary and recurrent GBM samples revealed that GRIK1 expression was noticeably higher in the recurrent samples. Moreover, immunohistochemical staining of an array of GBM samples showed that high levels of GRIK1 correlated with poor prognosis of GBM, consistent with The Cancer Genome Atlas database. Knockdown of GRIK1 retarded GBM cells growth, migration, and invasion. Taken together, these findings show that GRIK1 is a unique and important component in the development of GBM and may be considered as a biomarker for the diagnosis and therapy in individuals with GBM.
Collapse
Affiliation(s)
- GUOQIANG HOU
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - XINHANG XU
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - WEIXING HU
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Fernandes S, Vieira M, Prudêncio C, Ferraz R. Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives. Int J Mol Sci 2024; 25:2108. [PMID: 38396785 PMCID: PMC10889789 DOI: 10.3390/ijms25042108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Betulinic acid is a naturally occurring compound that can be obtained through methanolic or ethanolic extraction from plant sources, as well as through chemical synthesis or microbial biotransformation. Betulinic acid has been investigated for its potential therapeutic properties, and exhibits anti-inflammatory, antiviral, antimalarial, and antioxidant activities. Notably, its ability to cross the blood-brain barrier addresses a significant challenge in treating neurological pathologies. This review aims to compile information about the impact of betulinic acid as an antitumor agent, particularly in the context of glioblastoma. Importantly, betulinic acid demonstrates selective antitumor activity against glioblastoma cells by inhibiting proliferation and inducing apoptosis, consistent with observations in other cancer types. Compelling evidence published highlights the acid's therapeutic action in suppressing the Akt/NFκB-p65 signaling cascade and enhancing the cytotoxic effects of the chemotherapeutic agent temozolomide. Interesting findings with betulinic acid also suggest a focus on researching the reduction of glioblastoma's invasiveness and aggressiveness profile. This involves modulation of extracellular matrix components, remodeling of the cytoskeleton, and secretion of proteolytic proteins. Drawing from a comprehensive review, we conclude that betulinic acid formulations as nanoparticles and/or ionic liquids are promising drug delivery approaches with the potential for translation into clinical applications for the treatment and management of glioblastoma.
Collapse
Affiliation(s)
- Sílvia Fernandes
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Center for Research on Health and Environment (CISA), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Mariana Vieira
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
| | - Cristina Prudêncio
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Ricardo Ferraz
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
25
|
McAfee D, Moyer M, Queen J, Mortazavi A, Boddeti U, Bachani M, Zaghloul K, Ksendzovsky A. Differential metabolic alterations in IDH1 mutant vs. wildtype glioma cells promote epileptogenesis through distinctive mechanisms. Front Cell Neurosci 2023; 17:1288918. [PMID: 38026690 PMCID: PMC10680369 DOI: 10.3389/fncel.2023.1288918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma-related epilepsy (GRE) is a hallmark clinical presentation of gliomas with significant impacts on patient quality of life. The current standard of care for seizure management is comprised of anti-seizure medications (ASMs) and surgical resection. Seizures in glioma patients are often drug-resistant and can often recur after surgery despite total tumor resection. Therefore, current research is focused on the pro-epileptic pathological changes occurring in tumor cells and the peritumoral environment. One important contribution to seizures in GRE patients is metabolic reprogramming in tumor and surrounding cells. This is most evident by the significantly heightened seizure rate in patients with isocitrate dehydrogenase mutated (IDHmut) tumors compared to patients with IDH wildtype (IDHwt) gliomas. To gain further insight into glioma metabolism in epileptogenesis, this review compares the metabolic changes inherent to IDHmut vs. IDHwt tumors and describes the pro-epileptic effects these changes have on both the tumor cells and the peritumoral environment. Understanding alterations in glioma metabolism can help to uncover novel therapeutic interventions for seizure management in GRE patients.
Collapse
Affiliation(s)
- Darrian McAfee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mitchell Moyer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jaden Queen
- The College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - Armin Mortazavi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kareem Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Yan K, He Q, Lin D, Liang J, Chen J, Xie Z, Chen Z. Promotion of NAD + recycling by the hypoxia-induced shift in the lactate dehydrogenase isozyme profile reduces the senescence of human bone marrow-derived endothelial progenitor cells. Free Radic Biol Med 2023; 208:88-102. [PMID: 37536460 DOI: 10.1016/j.freeradbiomed.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Expansion of bone marrow-derived endothelial progenitor cells (EPCs) in vitro to obtain required cell numbers for therapeutic applications faces the challenge of growing cell senescence under the traditional normoxic culture condition. We previously found that 1% O2 hypoxic culture condition is favorable for reducing senescence of EPCs, but the mechanisms underlying the favorability are still unclear. Here, we found that, compared with normoxia, hypoxia induced a shift in lactate dehydrogenase (LDH) isozyme profile, which manifested as decreased LDH2 and LDH1 and increased LDH5, LDH4 and total LDHs. Moreover, under hypoxia, EPCs presented higher LDH activity, which could promote the conversion of pyruvate to lactate, as well as a higher level of NAD+, Bcl2 interacting protein 3 (BNIP3) expression and mitophagy. Additionally, under hypoxia, knock-down of the LDHA subunit increased the LDH2 and LDH1 levels and knock-down of the LDHB subunit increased the LDH5 level, while the simultaneous knock-down of LDHA and LDHB reduced total LDHs and NAD+ level. Inhibition of NAD+ recycling reduced BNIP3 expression and mitophagy and promoted cell senescence. Taken together, these data demonstrated that 1% O2 hypoxia induces a shift in the LDH isozyme profile, promotes NAD+ recycling, increases BNIP3 expression and mitophagy, and reduces EPC senescence. Our findings contribute to a better understanding of the connection between hypoxic culture conditions and the senescence of bone marrow-derived EPCs and provide a novel strategy to improve in vitro expansion of EPCs.
Collapse
Affiliation(s)
- Kaihao Yan
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qiwei He
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dongni Lin
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jianli Liang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Junxiong Chen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zijing Xie
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhenzhou Chen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
27
|
Frisardi V, Canovi S, Vaccaro S, Frazzi R. The Significance of Microenvironmental and Circulating Lactate in Breast Cancer. Int J Mol Sci 2023; 24:15369. [PMID: 37895048 PMCID: PMC10607673 DOI: 10.3390/ijms242015369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Lactate represents the main product of pyruvate reduction catalyzed by the lactic dehydrogenase family of enzymes. Cancer cells utilize great quantities of glucose, shifting toward a glycolytic metabolism. With the contribution of tumor stromal cells and under hypoxic conditions, this leads toward the acidification of the extracellular matrix. The ability to shift between different metabolic pathways is a characteristic of breast cancer cells and is associated with an aggressive phenotype. Furthermore, the preliminary scientific evidence concerning the levels of circulating lactate in breast cancer points toward a correlation between hyperlactacidemia and poor prognosis, even though no clear linkage has been demonstrated. Overall, lactate may represent a promising metabolic target that needs to be investigated in breast cancer.
Collapse
Affiliation(s)
- Vincenza Frisardi
- Geriatric Unit, Neuromotor Department, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Simone Canovi
- Clinical Laboratory, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Salvatore Vaccaro
- Clinical Nutrition Unit and Oncological Metabolic Centre, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Raffaele Frazzi
- Scientific Directorate, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| |
Collapse
|
28
|
Hailiwu R, Zeng H, Zhan M, Pan T, Yang H, Li P. Salvianolic acid A diminishes LDHA-driven aerobic glycolysis to restrain myofibroblasts activation and cardiac fibrosis via blocking Akt/GSK-3β/HIF-1α axis. Phytother Res 2023; 37:4540-4556. [PMID: 37337901 DOI: 10.1002/ptr.7925] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Myofibroblasts activation intensively contributes to cardiac fibrosis with undefined mechanism. Salvianolic acid A (SAA) is a phenolic component derived from Salvia miltiorrhiza with antifibrotic potency. This study aimed to interrogate the inhibitory effects and underlying mechanism of SAA on myofibroblasts activation and cardiac fibrosis. Antifibrotic effects of SAA were evaluated in mouse myocardial infarction (MI) model and in vitro myofibroblasts activation model. Metabolic regulatory effects and mechanism of SAA were determined using bioenergetic analysis and cross-validated by multiple metabolic inhibitors and siRNA or plasmid targeting Ldha. Finally, Akt/GSK-3β-related upstream regulatory mechanisms were investigated by immunoblot, q-PCR, and cross-validated by specific inhibitors. SAA inhibited cardiac fibroblasts-to-myofibroblasts transition, suppressed collage matrix proteins expression, and effectively attenuated MI-induced collagen deposition and cardiac fibrosis. SAA attenuated myofibroblasts activation and cardiac fibrosis by inhibiting LDHA-driven abnormal aerobic glycolysis. Mechanistically, SAA inhibited Akt/GSK-3β axis and downregulated HIF-1α expression by promoting its degradation via a noncanonical route, and therefore restrained HIF-1α-triggered Ldha gene expression. SAA is an effective component for treating cardiac fibrosis by diminishing LDHA-driven glycolysis during myofibroblasts activation. Targeting metabolism of myofibroblasts might occupy a potential therapeutic strategy for cardiac fibrosis.
Collapse
Affiliation(s)
- Renaguli Hailiwu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meiling Zhan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
29
|
Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D'Alessandro A, Beule D, Pellerin L, Mameli M, Paolicelli RC. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun 2023; 14:5749. [PMID: 37717033 PMCID: PMC10505217 DOI: 10.1038/s41467-023-41502-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Microglia, the innate immune cells of the central nervous system, actively participate in brain development by supporting neuronal maturation and refining synaptic connections. These cells are emerging as highly metabolically flexible, able to oxidize different energetic substrates to meet their energy demand. Lactate is particularly abundant in the brain, but whether microglia use it as a metabolic fuel has been poorly explored. Here we show that microglia can import lactate, and this is coupled with increased lysosomal acidification. In vitro, loss of the monocarboxylate transporter MCT4 in microglia prevents lactate-induced lysosomal modulation and leads to defective cargo degradation. Microglial depletion of MCT4 in vivo leads to impaired synaptic pruning, associated with increased excitation in hippocampal neurons, enhanced AMPA/GABA ratio, vulnerability to seizures and anxiety-like phenotype. Overall, these findings show that selective disruption of the MCT4 transporter in microglia is sufficient to alter synapse refinement and to induce defects in mouse brain development and adult behavior.
Collapse
Affiliation(s)
- Katia Monsorno
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Kyllian Ginggen
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - An Buckinx
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Arnaud L Lalive
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Anna Tchenio
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Sam Benson
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Marc Vendrell
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Angelo D'Alessandro
- University of Colorado, Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Denver, CO, USA
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luc Pellerin
- Inserm U1313, University of Poitiers and CHU of Poitiers, Poitiers Cedex, France
| | - Manuel Mameli
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
30
|
Guyon J, Daubon T. Histological analysis of invasive glioblastoma organoids embedded in a 3D collagen matrix. STAR Protoc 2023; 4:102521. [PMID: 37597188 PMCID: PMC10462880 DOI: 10.1016/j.xpro.2023.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023] Open
Abstract
Organoids are unique tools to mimic how tumors evolve in a 3D environment. Here, we present a protocol to embed spheroids invading a 3D matrix into a paraffin mold. We describe steps for preparing spheroids, collagen and agarose inclusion, and paraffinization. We then detail procedures for sectioning, staining, and visualization. This protocol allows histological identification of markers expressed in cells escaping the tumor. For complete details on the use and execution of this protocol, please refer to Guyon et al. (2022).1.
Collapse
Affiliation(s)
- Joris Guyon
- CHU de Bordeaux, Service de Pharmacologie Médicale, 33000 Bordeaux, France; University Bordeaux, INSERM, BPH, U1219, 33000 Bordeaux, France
| | - Thomas Daubon
- University Bordeaux, CNRS, IBGC, UMR 5095, 33000 Bordeaux, France.
| |
Collapse
|
31
|
Choi H, Baek IC, Park SA, Park JS, Jeun SS, Kim TG, Ahn S. Polymorphisms of Killer Ig-like Receptors and the Risk of Glioblastoma. J Clin Med 2023; 12:4780. [PMID: 37510895 PMCID: PMC10380963 DOI: 10.3390/jcm12144780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE The immune responses of natural killer (NK) cells against cancer cells vary by patient. Killer Ig-like receptors (KIRs), which are some of the major receptors involved in regulating NK cell activity for killing cancer cells, have significant genetic variation. Numerous studies have suggested a potential association between the genetic variation of KIR genes and the risk of development or prognosis of various cancer types. However, an association between genetic variations of KIR genes and glioblastoma (GB) remains uncertain. We sought to evaluate the association of genetic variations of KIRs and their ligand genes with the risk of GB development in Koreans. METHODS A case-control study was performed to identify the odds ratios (ORs) of KIR genes and Classes A, B, and, C of the human leukocyte antigen (HLA) for GB. The GB group was comprised of 77 patients with newly diagnosed IDH-wildtype GB at our institution, and the control group consisted of 200 healthy Korean volunteers. RESULTS There was no significant difference in the frequency of KIR genes and KIR haplotypes between the GB and control groups. Genetic variations of KIR-2DL1, 3DL1, and 3DS1 with their ligand genes (HLA-C2, HLA-Bw4/6, and Bw4, respectively) had effects on the risk of GB in Korean patients. The frequency of KIR-2DL1 with HLA-C2 (OR 2.05, CI 1.19-3.52, p = 0.009), the frequency of KIR-3DL1 without HLA-Bw4 (80I) (OR 8.36, CI 4.06-17.18, p < 0.001), and the frequency of KIR-3DL1 with Bw6 (OR 4.54, CI 2.55-8.09, p < 0.001) in the GB group were higher than in the control group. In addition, the frequency of KIR-2DL1 without HLA-C2 (OR 0.44, CI 0.26-0.75, p = 0.003), the frequency of KIR-3DL1 with HLA-Bw4 (80T) (OR 0.13, CI 0.06-0.27, p < 0.001), the frequency of KIR-3DL1 without Bw6 (OR 0.27, CI 0.15-0.49, p < 0.001), and the frequency of KIR-3DS1 with Bw4 (80I) (OR 0.03, CI 0.00-0.50, p < 0.001) in the GB group were lower than in the control group. CONCLUSIONS This study suggests that genetic variations of KIRs and their ligand genes may affect GB development in the Korean population. Further investigations are needed to demonstrate the different immune responses for GB cells according to genetic variations of KIR genes and their ligand genes.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
32
|
Bernhard C, Reita D, Martin S, Entz-Werle N, Dontenwill M. Glioblastoma Metabolism: Insights and Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24119137. [PMID: 37298093 DOI: 10.3390/ijms24119137] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor metabolism is emerging as a potential target for cancer therapies. This new approach holds particular promise for the treatment of glioblastoma, a highly lethal brain tumor that is resistant to conventional treatments, for which improving therapeutic strategies is a major challenge. The presence of glioma stem cells is a critical factor in therapy resistance, thus making it essential to eliminate these cells for the long-term survival of cancer patients. Recent advancements in our understanding of cancer metabolism have shown that glioblastoma metabolism is highly heterogeneous, and that cancer stem cells exhibit specific metabolic traits that support their unique functionality. The objective of this review is to examine the metabolic changes in glioblastoma and investigate the role of specific metabolic processes in tumorigenesis, as well as associated therapeutic approaches, with a particular focus on glioma stem cell populations.
Collapse
Affiliation(s)
- Chloé Bernhard
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Damien Reita
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Laboratory of Biochemistry and Molecular Biology, Department of Cancer Molecular Genetics, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Sophie Martin
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Natacha Entz-Werle
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Monique Dontenwill
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| |
Collapse
|
33
|
Westermarck J. Inhibition of adaptive therapy tolerance in cancer: is triplet mitochondrial targeting the key? Mol Oncol 2023; 17:537-540. [PMID: 36852624 PMCID: PMC10061276 DOI: 10.1002/1878-0261.13406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted therapies have become a mainstay in the treatment of cancer, but their long-term efficacy is compromised by acquired drug resistance. Acquired therapy resistance develops via two phases-first through adaptive development of nongenetic drug tolerance, which is followed by stable resistance through the acquisition of genetic mutations. Drug tolerance has been described in practically all clinical cancer treatment contexts, and detectable drug-tolerant tumors are highly associated with treatment relapse and poor survival. Thereby, novel therapeutic strategies are needed to overcome cancer therapy tolerance. Recent studies have identified a critical role of mitochondrial mechanisms in defining cancer cell sensitivity to targeted therapies and the surprising effects of established cancer therapies on mitochondria. Here, these recent studies are reviewed emphasizing an emerging concept of triplet therapies including three compounds targeting different cancer cell vulnerabilities but including at least one compound that targets the mitochondria. These mitochondria-targeting triplet therapies have very promising preclinical effects in overcoming cancer therapy tolerance. Potential strategies of how to overcome challenges in the clinical translation of mitochondria-targeting triplet therapies are also discussed.
Collapse
Affiliation(s)
- Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland.,Institute of Biomedicine, University of Turku, Finland
| |
Collapse
|
34
|
Antitumor Potential of Antiepileptic Drugs in Human Glioblastoma: Pharmacological Targets and Clinical Benefits. Biomedicines 2023; 11:biomedicines11020582. [PMID: 36831117 PMCID: PMC9953000 DOI: 10.3390/biomedicines11020582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma (GBM) is characterized by fast-growing cells, genetic and phenotypic heterogeneity, and radio-chemo-therapy resistance, contributing to its dismal prognosis. Various medical comorbidities are associated with the natural history of GBM. The most disabling and greatly affecting patients' quality of life are neurodegeneration, cognitive impairment, and GBM-related epilepsy (GRE). Hallmarks of GBM include molecular intrinsic mediators and pathways, but emerging evidence supports the key role of non-malignant cells within the tumor microenvironment in GBM aggressive behavior. In this context, hyper-excitability of neurons, mediated by glutamatergic and GABAergic imbalance, contributing to GBM growth strengthens the cancer-nervous system crosstalk. Pathogenic mechanisms, clinical features, and pharmacological management of GRE with antiepileptic drugs (AEDs) and their interactions are poorly explored, yet it is a potentially promising field of research in cancer neuroscience. The present review summarizes emerging cooperative mechanisms in oncogenesis and epileptogenesis, focusing on the neuron-to-glioma interface. The main effects and efficacy of selected AEDs used in the management of GRE are discussed in this paper, as well as their potential beneficial activity as antitumor treatment. Overall, although still many unclear processes overlapping in GBM growth and seizure onset need to be elucidated, this review focuses on the intriguing targeting of GBM-neuron mutual interactions to improve the outcome of the so challenging to treat GBM.
Collapse
|
35
|
Guyon J, Fernandez‐Moncada I, Larrieu CM, Bouchez CL, Pagano Zottola AC, Galvis J, Chouleur T, Burban A, Joseph K, Ravi VM, Espedal H, Røsland GV, Daher B, Barre A, Dartigues B, Karkar S, Rudewicz J, Romero‐Garmendia I, Klink B, Grützmann K, Derieppe M, Molinié T, Obad N, Léon C, Seano G, Miletic H, Heiland DH, Marsicano G, Nikolski M, Bjerkvig R, Bikfalvi A, Daubon T. Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis. EMBO Mol Med 2022; 14:e15343. [PMID: 36278433 PMCID: PMC9728051 DOI: 10.15252/emmm.202115343] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Lactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid (TCA) cycle in absence of glucose. Lactate dehydrogenases (LDHA and LDHB), which we found spatially expressed in GB tissues, catalyze the interconversion of pyruvate and lactate. However, ablation of both LDH isoforms, but not only one, led to a reduction in tumor growth and an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OXPHOS) in the LDHA/B KO group which sensitized tumors to cranial irradiation, thus improving mouse survival. When mice were treated with the antiepileptic drug stiripentol, which targets LDH activity, tumor growth decreased. Our findings unveil the complex metabolic network in which both LDHA and LDHB are integrated and show that the combined inhibition of LDHA and LDHB strongly sensitizes GB to therapy.
Collapse
Affiliation(s)
- Joris Guyon
- University Bordeaux, INSERM U1312, BRICPessacFrance
| | | | | | | | | | - Johanna Galvis
- University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance,Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | | | - Audrey Burban
- University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance
| | - Kevin Joseph
- Microenvironment and Immunology Research Laboratory, Medical CenterUniversity of FreiburgFreiburgGermany,Department of Neurosurgery, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of Medicine, University of FreiburgFreiburgGermany,Translational NeuroOncology Research Group, Medical CenterUniversity of FreiburgFreiburgGermany,Center of Advanced Surgical Tissue Analysis (CAST)University of FreiburgFreiburgGermany
| | - Vidhya M Ravi
- Microenvironment and Immunology Research Laboratory, Medical CenterUniversity of FreiburgFreiburgGermany,Department of Neurosurgery, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of Medicine, University of FreiburgFreiburgGermany,Translational NeuroOncology Research Group, Medical CenterUniversity of FreiburgFreiburgGermany,Center of Advanced Surgical Tissue Analysis (CAST)University of FreiburgFreiburgGermany,Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgFreiburgGermany
| | - Heidi Espedal
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway
| | | | | | - Aurélien Barre
- Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | | | - Slim Karkar
- Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | - Justine Rudewicz
- Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | | | - Barbara Klink
- Department of OncologyLuxembourg Institute of HealthLuxembourgLuxembourg,German Cancer Consortium (DKTK)DresdenGermany,Core Unit for Molecular Tumor Diagnostics (CMTD)National Center for Tumor Diseases (NCT)DresdenGermany
| | - Konrad Grützmann
- Core Unit for Molecular Tumor Diagnostics (CMTD)National Center for Tumor Diseases (NCT)DresdenGermany
| | | | | | - Nina Obad
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway
| | - Céline Léon
- University Bordeaux, INSERM U1312, BRICPessacFrance
| | - Giorgio Seano
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment LabUniversity Paris‐SaclayOrsayFrance
| | - Hrvoje Miletic
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway,Department of PathologyHaukeland University HospitalBergenNorway
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical CenterUniversity of FreiburgFreiburgGermany,Department of Neurosurgery, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of Medicine, University of FreiburgFreiburgGermany,Translational NeuroOncology Research Group, Medical CenterUniversity of FreiburgFreiburgGermany,German Cancer Consortium (DKTK), partner site FreiburgFreiburgGermany
| | | | - Macha Nikolski
- University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance,Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | - Rolf Bjerkvig
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway
| | | | - Thomas Daubon
- University Bordeaux, INSERM U1312, BRICPessacFrance,University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance
| |
Collapse
|