1
|
Wei Y, Lyu X, Wang J, Zhang L, Xu C, Yuan S, Sun L. Targeting protein arginine methyltransferases in breast cancer: Promising strategies. Eur J Pharmacol 2025; 992:177350. [PMID: 39914786 DOI: 10.1016/j.ejphar.2025.177350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze arginine methylation, an essential protein posttranslational modification involved in a variety of biological processes, such as transcription, RNA splicing and the DNA damage response (DDR), protein stability, and signal transduction. Due to their significant roles in these processes, PRMTs have emerged as promising therapeutic targets in cancer. Among all cancer types, breast cancer has been the most extensively studied in relation to PRMTs dysregulation. Previous studies have reported that several PRMTs are overexpressed in breast cancer and play critical roles in tumor growth, metastasis, and the maintenance of breast cancer stem cells. Moreover, an increasing number of PRMT inhibitors are undergoing clinical trials for breast cancer treatment, demonstrating significant progress. This review aims to provide a comprehensive overview of the biological functions of PRMTs in breast cancer and to summarize the latest clinical developments of PRMT inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Yuancheng Wei
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaodan Lyu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jia Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, 210009, China.
| | - Liufeng Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, 210009, China.
| | - Chenxi Xu
- Computer Science Department, Emory University, Atlanta, 30322, United States.
| | - Shengtao Yuan
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Li H, Fan J, Shen W, Zhang Y, Zhu X, Li P, Gu Z, Jing P. PRMT5 Inhibition Enhances Therapeutic Efficacy of Cisplatin via Mediating miR-29b-3p-Mcl-1 Expression in Lung Adenocarcinoma. Cell Biol Int 2025; 49:407-418. [PMID: 39891587 DOI: 10.1002/cbin.12278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/12/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Cisplatin is one of the front-line therapeutic agents used to treat cancers, while drug resistance is a great obstacle to anti-tumor efficiency. Protein arginine methyltransferase 5 (PRMT5) has been identified as a promoter of tumorigenesis, motility, and invasion. Inhibiting PRMT5 reduced hypoxia-induced carboplatin resistance in lung adenocarcinoma (LUAD). However, the specific relationship between PRMT5 and cisplatin (CDDP) warrants further investigation. Our research revealed that PRMT5 inhibitor C9 enhanced CDDP chemosensitivity by suppressing proliferation and promoting apoptosis in LUAD cells. Through examining pro-apoptotic proteins regulated by PRMT5, we identified that Mcl-1 played a significant role in PRMT5-mediated CDDP chemosensitivity. Furthermore, PRMT5 regulated Mcl-1 expression through mediating miR-29b-3p. In vivo, our research presented that C9 increased CDDP chemosensitivity in LUAD xenografts. All in all, our data raised an interesting possibility that epigenetic reprogramming was associated with chemosensitivity. PRMT5 inhibitor C9 improved CDDP effectiveness in LUAD cells by inhibiting Mcl-1 expression via miR-29b-3p, thereby modulating cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- Haichao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Jiangjiang Fan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Weiwei Shen
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Ximing Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Pei Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Zhongping Gu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Pengyu Jing
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Radwan AM, Abosharaf HA, Sharaky M, Abdelmonem R, Effat H. Functional combination of resveratrol and tamoxifen to overcome tamoxifen-resistance in breast cancer cells. Arch Pharm (Weinheim) 2024; 357:e2400261. [PMID: 38943449 DOI: 10.1002/ardp.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024]
Abstract
Researchers are encountering challenges in addressing the issue of cancer cells becoming unresponsive to various chemotherapy treatments due to drug resistance. This study was designed to study the influence of antioxidant resveratrol (RSV) to sensitize resistant breast cancer (BC) cells toward tamoxifen (TAM). The cytotoxic effects of RSV and TAM against TAM-resistant LCC2 cells and their parental michigan cancer foundation-7 BC cells were determined by sulphorhodamine B assay. Further, the expression levels of multidrug resistance (MDR) genes including ABCB1, ABCC2, ABCG2, and MRP1 using quantitative polymerase chain reaction, apoptosis induction, and reactive oxygen species (ROS) content using flow cytometry were evaluated in either LCC2 cells treated with RSV, TAM, or their combination. The obtained results showed that resistant cells have a magnificent level of MDR genes. This elevated expression dramatically lowered upon receiving the combined therapy of RSV and TAM. Additionally, our work assessed the possible role of RSV in modulating the expression of MDR genes by controlling the expression of certain microRNAs (miRNAs) that target ATP-binding cassette (ABC) transporters. According to the obtained data, the TAM and RSV combination increased the expression of tumor inhibitor miRNAs such miR-10b-3p, miR-195-3p, and miR-223-3p, which made LCC2 cells more sensitive to TAM. Furthermore, this combination showed an elevation in apoptotic levels and total ROS content. The combination between RSV and TAM could be a functional therapy in the fight against TAM-resistant BC cells via modulating miRNA and ABC transporters.
Collapse
Affiliation(s)
- Aliaa M Radwan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science & Technology, 6th October City, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Shen J, He Y, Li S, Chen H. Crosstalk of methylation and tamoxifen in breast cancer (Review). Mol Med Rep 2024; 30:180. [PMID: 39129315 PMCID: PMC11338244 DOI: 10.3892/mmr.2024.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Tamoxifen is a widely used anti‑estrogen drug in the endocrine therapy of breast cancer (BC). It blocks estrogen signaling by competitively binding to estrogen receptor α (ERα), thereby inhibiting the growth of BC cells. However, with the long‑term application of tamoxifen, a subset of patients with BC have shown resistance to tamoxifen, which leads to low overall survival and progression‑free survival. The molecular mechanism of resistance is mainly due to downregulation of ERα expression and abnormal activation of the PI3K/AKT/mTOR signaling pathway. Moreover, the downregulation of targeted gene expression mediated by DNA methylation is an important regulatory mode to control protein expression. In the present review, methylation and tamoxifen are briefly introduced, followed by a focus on the effect of methylation on tamoxifen resistance and sensitivity. Finally, the clinical application of methylation for tamoxifen is described, including its use as a prognostic indicator. Finally, it is hypothesized that when methylation is used in combination with tamoxifen, it could recover the resistance of tamoxifen.
Collapse
Affiliation(s)
- Jin Shen
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Yan He
- Department of Neurology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Shengpeng Li
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Huimin Chen
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
5
|
Martinez S, Sentis S, Poulard C, Trédan O, Le Romancer M. Role of PRMT1 and PRMT5 in Breast Cancer. Int J Mol Sci 2024; 25:8854. [PMID: 39201539 PMCID: PMC11354362 DOI: 10.3390/ijms25168854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. Early-stage breast cancer is curable in ~70-80% of patients, while advanced metastatic breast cancer is considered incurable with current therapies. Breast cancer is a highly heterogeneous disease categorized into three main subtypes based on key markers orientating specific treatment strategies for each subtype. The complexity of breast carcinogenesis is often associated with epigenetic modification regulating different signaling pathways, involved in breast tumor initiation and progression, particularly by the methylation of arginine residues. Protein arginine methyltransferases (PRMT1-9) have emerged, through their ability to methylate histones and non-histone substrates, as essential regulators of cancers. Here, we present an updated overview of the mechanisms by which PRMT1 and PRMT5, two major members of the PRMT family, control important signaling pathways impacting breast tumorigenesis, highlighting them as putative therapeutic targets.
Collapse
Affiliation(s)
- Sébastien Martinez
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Stéphanie Sentis
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Coralie Poulard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Olivier Trédan
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Oncology Department, Centre Leon Bérard, F-69008 Lyon, France
| | - Muriel Le Romancer
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| |
Collapse
|
6
|
Xiong G, Obringer B, Jones A, Horton E, Xu R. Regulation of RORα Stability through PRMT5-Dependent Symmetric Dimethylation. Cancers (Basel) 2024; 16:1914. [PMID: 38791992 PMCID: PMC11120602 DOI: 10.3390/cancers16101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Retinoic acid receptor-related orphan receptor alpha (RORα), a candidate tumor suppressor, is prevalently downregulated or lost in malignant breast cancer cells. However, the mechanisms of how RORα expression is regulated in breast epithelial cells remain incompletely understood. Protein arginine N-methyltransferase 5 (PRMT5), a type II methyltransferase catalyzing the symmetric methylation of the amino acid arginine in target proteins, was reported to regulate protein stability. To study whether and how PRMT5 regulates RORα, we examined the direct interaction between RORα and PRMT5 by immunoprecipitation and GST pull-down assays. The results showed that PRMT5 directly bound to RORα, and PRMT5 mainly symmetrically dimethylated the DNA-binding domain (DBD) but not the ligand-binding domain (LBD) of RORα. To investigate whether RORα protein stability is regulated by PRMT5, we transfected HEK293FT cells with RORα and PRMT5-expressing or PRMT5-silencing (shPRMT5) vectors and then examined RORα protein stability by a cycloheximide chase assay. The results showed that PRMT5 increased RORα protein stability, while silencing PRMT5 accelerated RORα protein degradation. In PRMT5-silenced mammary epithelial cells, RORα protein expression was decreased, accompanied by an enhanced epithelial-mesenchymal transition morphology and cell invasion and migration abilities. In PRMT5-overexpressed mammary epithelial cells, RORα protein was accumulated, and cell invasion was suppressed. These findings revealed a novel mechanism by which PRMT5 regulates RORα protein stability.
Collapse
Affiliation(s)
- Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Brynne Obringer
- College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA; (B.O.); (A.J.)
| | - Austen Jones
- College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA; (B.O.); (A.J.)
| | - Elise Horton
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
7
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
8
|
Noureddine LM, Ablain J, Surmieliova-Garnès A, Jacquemetton J, Pham TH, Marangoni E, Schnitzler A, Bieche I, Badran B, Trédan O, Hussein N, Le Romancer M, Poulard C. PRMT5 triggers glucocorticoid-induced cell migration in triple-negative breast cancer. Life Sci Alliance 2023; 6:e202302009. [PMID: 37536978 PMCID: PMC10400884 DOI: 10.26508/lsa.202302009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are the most aggressive breast cancers, and therapeutic options mainly rely on chemotherapy and immunotherapy. Although synthetic glucocorticoids (GCs) are given to alleviate the side effects of these treatments, GCs and their receptor, the glucocorticoid receptor (GR), were recently associated with detrimental effects, albeit the mechanisms involved remain elusive. Here, we identified the arginine methyltransferase PRMT5 as a master coregulator of GR, serving as a scaffold protein to recruit phospho-HP1γ and subsequently RNA polymerase II, independently of its methyltransferase activity. Moreover, the GR/PRMT5/HP1γ complex regulated the transcription of GC-target genes involved in cell motility and triggering cell migration of human TNBC cells in vitro and in a zebrafish model. Of note, we observed that GR/PRMT5 interaction was low in primary tumors but significantly increased in residual tumors treated with chemotherapy and GCs in neoadjuvant setting. These data suggest that the routine premedication prescription of GCs for early TNBC patients should be further assessed and that this complex could potentially be modulated to specifically target deleterious GR effects.
Collapse
Affiliation(s)
- Lara Malik Noureddine
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Lebanese University, Faculty of Sciences I, Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Beirut, Lebanon
| | - Julien Ablain
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Ausra Surmieliova-Garnès
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Julien Jacquemetton
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Thuy Ha Pham
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Elisabetta Marangoni
- Institut Curie, Translational Research Department, PSL University, Paris, France
| | | | - Ivan Bieche
- Institut Curie, Department of Genetics, Paris, France
| | - Bassam Badran
- Lebanese University, Faculty of Sciences I, Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Beirut, Lebanon
| | - Olivier Trédan
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre Leon Bérard, Oncology Department, Lyon, France
| | - Nader Hussein
- Lebanese University, Faculty of Sciences I, Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Beirut, Lebanon
| | - Muriel Le Romancer
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Coralie Poulard
- Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
9
|
Poulard C, Ha Pham T, Drouet Y, Jacquemetton J, Surmielova A, Kassem L, Mery B, Lasset C, Reboulet J, Treilleux I, Marangoni E, Trédan O, Le Romancer M. Nuclear PRMT5 is a biomarker of sensitivity to tamoxifen in ERα + breast cancer. EMBO Mol Med 2023; 15:e17248. [PMID: 37458145 PMCID: PMC10405064 DOI: 10.15252/emmm.202217248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Endocrine therapies targeting estrogen signaling, such as tamoxifen, have significantly improved management of estrogen receptor alpha (ERα)-positive breast cancers. However, their efficacy is limited by intrinsic and acquired resistance to treatment, and there is currently no predictive marker of response to these anti-estrogens to guide treatment decision. Here, using two independent cohorts of breast cancer patients, we identified nuclear PRMT5 expression as an independent predictive marker of sensitivity to tamoxifen. Mechanistically, we discovered that tamoxifen stimulates ERα methylation by PRMT5, a key event for its binding to corepressors such as SMRT and HDAC1, participating in the inhibition of the transcriptional activity of ERα. Although PRMT5 is mainly localized in the cytoplasm of tumor cells, our analyses show that tamoxifen triggers its nuclear translocation in tamoxifen-sensitive tumors but not in resistant ones. Hence, we unveil a biomarker of sensitivity to tamoxifen in ERα-positive breast tumors that could be used to enhance the response of breast cancer patients to endocrine therapy, by fostering its nuclear expression.
Collapse
Affiliation(s)
- Coralie Poulard
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Thuy Ha Pham
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Youenn Drouet
- Département Prévention et Santé PubliqueCentre Léon BérardLyonFrance
| | - Julien Jacquemetton
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Ausra Surmielova
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Loay Kassem
- Clinical Oncology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Benoite Mery
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
- Oncology DepartmentCentre Leon BérardLyonFrance
| | - Christine Lasset
- Département Prévention et Santé PubliqueCentre Léon BérardLyonFrance
- CNRS UMR 5558 LBBEUniversité de LyonVilleurbanneFrance
| | | | - Isabelle Treilleux
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
- Pathology DepartmentCentre Leon BérardLyonFrance
| | | | - Olivier Trédan
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
- Oncology DepartmentCentre Leon BérardLyonFrance
| | - Muriel Le Romancer
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| |
Collapse
|