1
|
Hayes LR, Zaepfel B, Duan L, Starner AC, Bartels MD, Rothacher RL, Martin S, French R, Zhang Z, Sinha IR, Ling JP, Sun S, Ayala YM, Coller J, Van Nostrand EL, Florea L, Kalab P. 5-ethynyluridine perturbs nuclear RNA metabolism to promote the nuclear accumulation of TDP-43 and other RNA binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646885. [PMID: 40236187 PMCID: PMC11996483 DOI: 10.1101/2025.04.02.646885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
TDP-43, an essential nucleic acid binding protein and splicing regulator, is broadly disrupted in neurodegeneration. TDP-43 nuclear localization and function depend on the abundance of its nuclear RNA targets and its recruitment into large ribonucleoprotein complexes, which restricts TDP-43 nuclear efflux. To further investigate the interplay between TDP-43 and nascent RNAs, we aimed to employ 5-ethynyluridine (5EU), a widely used uridine analog for 'click chemistry' labeling of newly transcribed RNAs. Surprisingly, 5EU induced the nuclear accumulation of TDP-43 and other RNA-binding proteins and attenuated TDP-43 mislocalization caused by disruption of the nuclear transport apparatus. RNA FISH demonstrated 5EU-induced nuclear accumulation of polyadenylated and GU-repeat-rich RNAs, suggesting increased retention of both processed and intronic RNAs. TDP-43 eCLIP confirmed that 5EU preserved TDP-43 binding at predominantly GU-rich intronic sites. RNAseq revealed significant 5EU-induced changes in alternative splicing, accompanied by an overall reduction in splicing diversity, without any major changes in RNA stability or TDP-43 splicing regulatory function. These data suggest that 5EU may impede RNA splicing efficiency and subsequent nuclear RNA processing and export. Our findings have important implications for studies utilizing 5EU and offer unexpected confirmation that the accumulation of endogenous nuclear RNAs promotes TDP-43 nuclear localization.
Collapse
|
2
|
Cooperman B, McMurray M. Roles for the canonical polarity machinery in the de novo establishment of polarity in budding yeast spores. Mol Biol Cell 2025; 36:ar28. [PMID: 39841544 PMCID: PMC11974964 DOI: 10.1091/mbc.e24-07-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
The yeast Saccharomyces cerevisiae buds at sites predetermined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a predetermined polarity site drives initial polarized morphogenesis independent of mating partner location. Spore membranes are made de novo so existing cortical landmarks were unknown, as were the mechanisms by which the spore polarity site is made and how it works. We find that the landmark canonically required for distal budding, Bud8, stably marks the spore polarity site along with Bud5, a GEF for the GTPase Rsr1 that canonically links cortical landmarks to the conserved Cdc42 polarity machinery. Cdc42 and other GTPase regulators arrive at the site during its biogenesis, after spore membrane closure but apparently at the site where membrane synthesis began, and then these factors leave, pointing to the presence of discrete phases of maturation. Filamentous actin may be required for initial establishment of the site, but thereafter Bud8 accumulates independent of actin filaments. These results suggest a distinct polarization mechanism that may provide insights into gamete polarization in other organisms.
Collapse
Affiliation(s)
- Benjamin Cooperman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
3
|
Yeager R, Heasley LR, Baker N, Shrivastava V, Woodman J, McMurray MA. Wild yeast isolation by middle-school students reveals features of populations residing on North American oaks. G3 (BETHESDA, MD.) 2025; 15:jkae270. [PMID: 39570886 PMCID: PMC11708222 DOI: 10.1093/g3journal/jkae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Features of the natural life cycle of the budding yeast Saccharomyces cerevisiae were crucial to its domestication as a laboratory experimental model, especially the ability to maintain stable haploid clones and cross them at will to combine alleles via meiosis. Stable haploidy results from mutations in HO, which encodes an endonuclease required for haploid-specific mating-type switching. Previous studies found an unexpected diversity of HO alleles among natural isolates within a small geographic area. We developed a hands-on field and laboratory activity for middle-school students in Denver, CO, USA, to isolate wild yeast from oak bark, identify species via DNA sequencing, and sequence HO from S. cerevisiae isolates. We find limited HO diversity in North American oak isolates, pointing to efficient, continuous dispersal across the continent. In contrast, we isolated the "dairy yeast," Kluyveromyces lactis, from a tree <10 m away and found that it represents a new population distinct from an oak population in an adjacent state. The outreach activity partnered middle-school, high-school, and university students in making scientific discoveries and can be adapted to other locations and natural yeast habitats. Indeed, a pilot sampling activity in southeast Texas yielded S. cerevisiae oak isolates with a new allele of HO and, from a nearby prickly pear cactus, a heat-tolerant isolate of Saccharomyces paradoxus.
Collapse
Affiliation(s)
- Randi Yeager
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lydia R Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Nolan Baker
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vatsal Shrivastava
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie Woodman
- Department of Biology, Colorado Christian University, Lakewood, CO 80226, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Cooperman B, McMurray M. Roles for the canonical polarity machinery in the de novo establishment of polarity in budding yeast spores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.29.610423. [PMID: 39257763 PMCID: PMC11383998 DOI: 10.1101/2024.08.29.610423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The yeast Saccharomyces cerevisiae buds at sites pre-determined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a pre-determined polarity site drives initial polarized morphogenesis independent of mating partner location. Spore membranes are made de novo so existing cortical landmarks were unknown, as were the mechanisms by which the spore polarity site is made and how it works. We find that the landmark canonically required for distal budding, Bud8, stably marks the spore polarity site along with Bud5, a GEF for the GTPase Rsr1 that canonically links cortical landmarks to the conserved Cdc42 polarity machinery. Cdc42 and other GTPase regulators arrive at the site during its biogenesis, after spore membrane closure but apparently at the site where membrane synthesis began, and then these factors leave, pointing to the presence of discrete phases of maturation. Filamentous actin may be required for initial establishment of the site, but thereafter Bud8 accumulates independent of actin filaments. These results suggest a distinct polarization mechanism that may provide insights into gamete polarization in other organisms.
Collapse
Affiliation(s)
- Benjamin Cooperman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
5
|
Venkatachalapathy H, Brzakala C, Batchelor E, Azarin SM, Sarkar CA. Inertial effect of cell state velocity on the quiescence-proliferation fate decision. NPJ Syst Biol Appl 2024; 10:111. [PMID: 39358384 PMCID: PMC11447052 DOI: 10.1038/s41540-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
Energy landscapes can provide intuitive depictions of population heterogeneity and dynamics. However, it is unclear whether individual cell behavior, hypothesized to be determined by initial position and noise, is faithfully recapitulated. Using the p21-/Cdk2-dependent quiescence-proliferation decision in breast cancer dormancy as a testbed, we examined single-cell dynamics on the landscape when perturbed by hypoxia, a dormancy-inducing stress. Combining trajectory-based energy landscape generation with single-cell time-lapse microscopy, we found that a combination of initial position and velocity on a p21/Cdk2 landscape, but not position alone, was required to explain the observed cell fate heterogeneity under hypoxia. This is likely due to additional cell state information such as epigenetic features and/or other species encoded in velocity but missing in instantaneous position determined by p21 and Cdk2 levels alone. Here, velocity dependence manifested as inertia: cells with higher cell cycle velocities prior to hypoxia continued progressing along the cell cycle under hypoxia, resisting the change in landscape towards cell cycle exit. Such inertial effects may markedly influence cell fate trajectories in tumors and other dynamically changing microenvironments where cell state transitions are governed by coordination across several biochemical species.
Collapse
Affiliation(s)
- Harish Venkatachalapathy
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Cole Brzakala
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA.
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Yeager R, Heasley L, Baker N, Shrivastava V, Woodman J, McMurray M. Wild yeast isolation by middle school students reveals features of North American oak populations of Saccharomyces cerevisiae and Kluyveromyces lactis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601111. [PMID: 39005424 PMCID: PMC11244913 DOI: 10.1101/2024.06.27.601111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Features of the natural life cycle of the budding yeast Saccharomyces cerevisiae were crucial to its domestication as a laboratory experimental model, especially the ability to maintain stable haploid clones and cross them at will to combine alleles via meiosis. Stable haploidy results from mutations in HO, which encodes an endonuclease required for haploid-specific mating-type switching. Previous studies found an unexpected diversity of HO alleles among natural isolates within a small geographic area. We developed a hands-on field and laboratory activity for middle school students in Denver, Colorado, USA to isolate wild yeast from oak bark, identify species via DNA sequencing, and sequence HO from S. cerevisiae isolates. We find limited HO diversity in North American oak isolates, pointing to efficient, continuous dispersal across the continent. By contrast, we isolated the "dairy yeast", Kluyveromyces lactis, from a tree <10 m away and found that it represents a new population distinct from an oak population in an adjacent state, pointing to high genetic diversity. The outreach activity partnered middle school, high school, and university students in making scientific discoveries and can be adapted to other locations and natural yeast habitats. Indeed, a pilot sampling activity in southeast Texas yielded S. cerevisiae oak isolates with a new allele of HO and, from a nearby prickly pear cactus, a heat-tolerant isolate of Saccharomyces paradoxus.
Collapse
Affiliation(s)
- Randi Yeager
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lydia Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Nolan Baker
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vatsal Shrivastava
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Woodman
- Department of Biology, Colorado Christian University, Lakewood, Colorado, USA
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Walker RM, Sanabria VC, Youk H. Microbial life in slow and stopped lanes. Trends Microbiol 2024; 32:650-662. [PMID: 38123400 PMCID: PMC11187706 DOI: 10.1016/j.tim.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Microbes in nature often lack nutrients and face extreme or widely fluctuating temperatures, unlike microbes in growth-optimized settings in laboratories that much of the literature examines. Slowed or suspended lives are the norm for microbes. Studying them is important for understanding the consequences of climate change and for addressing fundamental questions about life: are there limits to how slowly a cell's life can progress, and how long cells can remain viable without self-replicating? Recent studies began addressing these questions with single-cell-level measurements and mathematical models. Emerging principles that govern slowed or suspended lives of cells - including lives of dormant spores and microbes at extreme temperatures - are re-defining discrete cellular states as continuums and revealing intracellular dynamics at new timescales. Nearly inactive, lifeless-appearing microbes are transforming our understanding of life.
Collapse
Affiliation(s)
- Rachel M Walker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Valeria C Sanabria
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hyun Youk
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Venkatachalapathy H, Brzakala C, Batchelor E, Azarin SM, Sarkar CA. Inertial effect of cell state velocity on the quiescence-proliferation fate decision in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541793. [PMID: 37292599 PMCID: PMC10245870 DOI: 10.1101/2023.05.22.541793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Energy landscapes can provide intuitive depictions of population heterogeneity and dynamics. However, it is unclear whether individual cell behavior, hypothesized to be determined by initial position and noise, is faithfully recapitulated. Using the p21-/Cdk2-dependent quiescence-proliferation decision in breast cancer dormancy as a testbed, we examined single-cell dynamics on the landscape when perturbed by hypoxia, a dormancy-inducing stress. Combining trajectory-based energy landscape generation with single-cell time-lapse microscopy, we found that initial position on a p21/Cdk2 landscape did not fully explain the observed cell-fate heterogeneity under hypoxia. Instead, cells with higher cell state velocities prior to hypoxia, influenced by epigenetic parameters, tended to remain proliferative under hypoxia. Thus, the fate decision on this landscape is significantly influenced by "inertia", a velocity-dependent ability to resist directional changes despite reshaping of the underlying landscape, superseding positional effects. Such inertial effects may markedly influence cell-fate trajectories in tumors and other dynamically changing microenvironments.
Collapse
Affiliation(s)
- Harish Venkatachalapathy
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cole Brzakala
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samira M. Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Casim A. Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Ohtsuka H, Imada K, Shimasaki T, Aiba H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. Microbiologyopen 2022; 11:e1303. [PMID: 35765188 PMCID: PMC9214231 DOI: 10.1002/mbo3.1303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistryNational Institute of Technology (KOSEN), Suzuka CollegeSuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversitySumiyoshi‐kuOsakaJapan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| |
Collapse
|